
The dCache Book

for 1.9.12-series (FHS layout)

EUROPEAN MIDDLEWARE INITIATIVE

The dCache Book: for 1.9.12-series (FHS layout)

Abstract

The dCache Book is the guide for administrators of dCache systems. The first part describes the installation of
a simple single-host dCache instance. The second part describes the components of dCache and in what ways
they can be configured. This is the place for finding information about the role and functionality of components
in dCache as needed by an administrator. The third part contains solutions for several problems and tasks which
might occur during operating of a dCache system. Finally, the last two parts contain a glossary and a parameter
and command reference.

Each release of dCache is available in two file layouts: FHS and opt. The FHS layout has files located according
to the Filesystem Hierarchy Standard [http://www.pathname.com/fhs/]. Most modern distributions have adopted
the FHS, so we recommend that fresh installations of dCache used this layout.

The opt layout places all the files in /opt/d-cache directory. This is where previous versions of dCache located
all the packaged files. The opt layout is provided for backwards compatibility and to satisfy those sites that cannot
use the FHS layout.

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

iii

Table of Contents
Preface .. vi

Who should read this book? .. vii
Minimum System Requirements? ... vii
What is inside? ... vii
Looking for help? .. viii

I. Getting started ... 1
1. Introduction .. 2

Cells and Domains .. 2
2. Installing dCache .. 4

Installing a dCache instance .. 4
Upgrading a dCache Instance .. 12

3. Getting in Touch with dCache ... 14
Checking the Functionality .. 14
Authentication and Authorization in dCache ... 17
How to work with secured dCache .. 20
The Web Interface for Monitoring dCache ... 22
Files ... 22
The Admin Interface ... 23

II. Configuration of dCache ... 29
4. Chimera .. 31

Mounting Chimera through NFS .. 31
Communicating with Chimera ... 33
IDs ... 33
Directory Tags .. 34

5. pnfs ... 39
The Use of pnfs in dCache ... 39
Communicating with the pnfs Server ... 39
pnfsIDs ... 40
Directory Tags .. 41
Global Configuration with Wormholes ... 42
Deleted Files in pnfs ... 43
Access Control .. 43
The Databases of pnfs .. 44

6. The Cell Package .. 46
7. The replica Service (Replica Manager) ... 47

The Basic Setup .. 47
Operation .. 48
Properties of the replica service .. 52

8. The poolmanager Service ... 55
The Pool Selection Mechanism .. 55
The Cost Module .. 64

9. The dCache Tertiary Storage System Interface .. 67
Introduction .. 67
Scope of this chapter ... 67
Requirements for a Tertiary Storage System ... 67
How dCache interacts with a Tertiary Storage System ... 68
Details on the TSS-support executable ... 68
Configuring pools to interact with a Tertiary Storage System 72
How to Store-/Restore files via the Admin Interface .. 74
How to monitor what’s going on ... 75

dCache Book

iv

Example of an executable to simulate a tape backend .. 78
10. File Hopping ... 83

File Hopping on arrival from outside dCache ... 83
11. dCache Partitioning ... 90

Parameters, partitions and inheritance ... 90
Partition Parameters .. 91
Partitions and Links .. 93
Examples .. 94

12. Authorization in dCache .. 96
Basics ... 96
gPlazma1 ... 96
gPlazma2 ... 99
Using X.509 Certificates .. 102
Configuration files .. 105
gPlazma specific dCache configuration .. 111

13. dCache as xRootd-Server ... 114
Setting up ... 114
Quick tests .. 115
xrootd security ... 116

14. dCache Storage Resource Manager ... 120
Introduction .. 120
Configuring the srm service .. 120
Utilization of Space Reservations for Data Storage .. 122
dCache specific concepts ... 123
SpaceManager configuration for Explicit Space Reservations 125
Configuring the PostgreSQL Database .. 137
General SRM Concepts (for developers) .. 138

15. The statistics Service .. 142
The Basic Setup .. 142
The Statistics Web Page .. 142
Explanation of the File Format of the xxx.raw Files ... 143

16. dCache Webadmin-Interface .. 145
Installation .. 145

17. ACLs in dCache .. 147
Introduction .. 147
Database configuration .. 148
Configuring ACL support .. 148
Administrating ACLs .. 149

18. GLUE Info Provider .. 156
Internal collection of information ... 156
Configuring the info provider .. 158
Testing the info provider ... 159
Decommissioning the old info provider .. 160
Publishing dCache information .. 160
Troubleshooting BDII problems ... 162
Updating information .. 163

19. Stage Protection .. 164
Configuration of Stage Protection .. 164
Definition of the White List ... 164

III. Cookbook ... 166
20. dCache Clients. ... 167

GSI-FTP ... 167

dCache Book

v

dCap .. 168
SRM .. 170
ldap .. 175
Using the LCG commands with dCache ... 176

21. Pool Operations ... 178
Checksums .. 178
Migration Module ... 179
Renaming a Pool ... 184
Pinning Files to a Pool .. 185

22. PostgreSQL and dCache .. 186
Installing a PostgreSQL Server .. 186
Configuring Access to PostgreSQL .. 186
Performance of the PostgreSQL Server .. 187

23. Complex Network Configuration .. 189
Firewall Configuration ... 189
GridFTP Connections via two or more Network Interfaces 191
GridFTP with Pools in a Private Subnet ... 192
Doors in the DMZ .. 193

24. Accounting .. 194
25. Protocols ... 195

dCap options mover and client options .. 195
Specifying dCap open timeouts .. 196
Using the dCap protocol for strict file checking .. 197
Passive dCap ... 198
Access to SRM and GridFTP server from behind a firewall 198
Disableing unauthenticated dCap via SRM ... 199

26. Advanced Tuning .. 201
Multiple Queues for Movers in each Pool ... 201
Tunable Properties .. 203

IV. Reference .. 205
27. dCache Clients .. 206

The SRM Client Suite .. 206
dccp ... 207

28. dCache Cell Commands ... 210
Common Cell Commands .. 210
PnfsManager Commands ... 211
Pool Commands .. 214
PoolManager Commands ... 224

29. dCache Default Port Values ... 226
30. Glossary .. 227

vi

Preface

Table of Contents
Who should read this book? .. vii
Minimum System Requirements? .. vii
What is inside? ... vii
Looking for help? .. viii

Welcome to the dCache. dCache is a distributed storage solution for storing huge amounts of data without
a hard limit, used to provide storage in the petabyte range. Therefore it qualifies as the storage system
supporting data intensive experiments.

dCache is a joined effort between the Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Nordic
Data Grid Facility (NDGF based in Copenhagen), the Fermi National Accelerator Laboratory near Chica-
go with significant distributions and support from the University of California, San Diego, INFN, Bari
as well as Rutherford Appleton Laboratory, UK and CERN in Geneva.

dCache can use hierarchical storage management (e.g., hard disk and tape), provides mechanisms to au-
tomatically increase performance and balance loads, increase resilience and availability. It also supplies
advanced control systems to manage data as well as data flows. Normal filesystem (btrfs, ext4, XFS,
ZFS) is used to store data on storage nodes. There are several ways of accessing data stored in dCache:

• NFS 4.1 (Chimera)

• HTTP and WebDAV

• GridFTP (GSI-FTP)

• xrootd

• SRM (versions 1.1 and 2.2)

• dCap and GSIdCap

dCache supports certificate based authentication through the Grid Security Infrastructure used in GSI-
FTP, GSIdCap transfer protocols and the SRM management protocol. Certificate authentication is also
available for HTTP and WebDAV. dCache also supports fine-grain authorization with support for POSIX
file permissions and NFS-style access control lists. Other features of dCache are:

• Resilience and high availability can be implemented in different ways by having multiple replicas of
the same files.

• Easy migration of data via the migration module.

• A powerful cost calculation system that allows to control the data flow (reading and writing from/to
pools, between pools and also between pools and tape).

• Load balancing and performance tuning by hot pool replication (via cost calculation and replicas
created by pool-to-pool-transfers).

• Space management and support for space tokens.

• Garbage collection of replicas, depending on their flags, age, et cetera.

Preface

vii

• Detailed logging and debugging as well as accounting and statistics.

• XML information provider with detailed live information about the cluster.

• Scriptable adminstration interface with a terminal-based front-end.

• Web-interface with live information of the most important information.

• Ensuring data integrity through checksumming.

dCache / SRM can transparently manage data distributed among dozens of disk storage nodes (some-
times distributed over several countries). The system has shown to significantly improve the efficiency
of connected tape storage systems, by caching, gather and flush and scheduled staging techniques. Fur-
thermore, it optimizes the throughput to and from data clients by dynamically replicating datasets on
the detection of load hot spots. The system is tolerant against failures of its data servers, which allows
administrators to deploy commodity disk storage components.

Access to the data is provided by various standard protocols. Furthermore the software comes with an
implementation of the Storage Resource Manager protocol (SRM), which is an open standard for grid
middleware to communicate with site specific storage fabrics.

Who should read this book?
This book is primerally targeted at system administrators.

Minimum System Requirements?
For minimal test installation:

• Hardware: contemporary CPU , 1 GiB of RAM , 100 MiB free harddisk space

• Software: Oracle/Sun Java, Postgres SQL Server

For a high performance Grid scenario the hardware requirements highly differ, which makes it im-
possible to provide such parameters here. However, if you wish to setup a dCache-based storage
system, just let us know and we will help you with your system specifications. Just contact us:
<support@dcache.org>.

What is inside?
This book shall introduce you to dCache and provide you with the details of the installation. It describes
configuration, customization of dCache as well as the usage of several protocols that dCache supports.
Additionally, it provides cookbooks for standard tasks.

Here is an overview part by part:

Part 1, Getting started: This part introduces you to the cells and domain concept in dCache. It provides
a detailed description of installing, the basic configuration, and upgrading dCache.

Part 2, Configuration of dCache: Within this part the configuration of several additional features of
dCache is described. They are not necessary to run dCache but will be needed by some users depending
on their requirements.

Preface

viii

Part 3, Cookbook: This part comprises guides for specific tasks a system administrator might want to
perform.

Looking for help?
This part gets you all the help that you might need:

• For acquiring resources:

• The download page [http://www.dcache.org/downloads].

• The YUM repositories [http://trac.dcache.org/projects/dcache/wiki/manuals/Yum].

• For getting help during installation:

• Developers <support@dcache.org>

• Additional Support:

• German support:<german-support@dcache.org>

• UK support:<GRIDPP-STORAGE@JISCMAIL.AC.UK>

• USA support:<osg-storage@opensciencegrid.org>

• User Forum: <user-forum@dcache.org>

• For features that you would like to see in dCache or bugs that should be fixed: Just write an e-mail
to <support@dcache.org>

• If you like to stay up-to-date about new releases you can use the RSS feeds available from our down-
loads page [http://www.dcache.org/downloads].

• For EMI releases of dCache please visit the EMI dCache download page [http://www.eu-emi.eu/re-
leases].

http://www.dcache.org/downloads
http://www.dcache.org/downloads
http://trac.dcache.org/projects/dcache/wiki/manuals/Yum
http://trac.dcache.org/projects/dcache/wiki/manuals/Yum
http://www.dcache.org/downloads
http://www.dcache.org/downloads
http://www.dcache.org/downloads
http://www.eu-emi.eu/releases
http://www.eu-emi.eu/releases
http://www.eu-emi.eu/releases

Part I. Getting started

Table of Contents
1. Introduction .. 2

Cells and Domains .. 2
2. Installing dCache .. 4

Installing a dCache instance .. 4
Upgrading a dCache Instance .. 12

3. Getting in Touch with dCache ... 14
Checking the Functionality .. 14
Authentication and Authorization in dCache ... 17
How to work with secured dCache .. 20
The Web Interface for Monitoring dCache ... 22
Files ... 22
The Admin Interface ... 23

This part is intended for people who are new to dCache. It gives an introduction to dCache, including
how to configure a simple setup, and details some simple and routine administrative operations.

2

Chapter 1. Introduction
dCache is a distributed storage solution. It organises storage across computers so the combined storage
can be used without the end-users being aware of where their data is stored. They simply see a large
amount of storage.

Because end-users do not need to know on which computer their data is stored, it can be migrated from
one computer to another without any interruption of service. As a consequence, (new) servers may be
added to or taken away from the dCache storage cluster at any time.

dCache supports requesting data from a tertiary storage system. Such systems typically store data on
magnetic tapes instead of disks, which must be loaded and unloaded using a tape robot. The main reason
for using tertiary storage is the better cost-efficiency, archiving a very large amount of data on rather
inexpensive hardware. In turn the access latency for archived data is significantly higher.

dCache also supports many transfer protocols (allowing users to read and write to data). These have a
modular deployment, allowing dCache to support expanded capacity by providing additional front-end
machines.

Another performance feature of dCache is hot-spot data migration. In this process, dCache will detect
when files are requested very often. If this happens, dCache can generate duplicates of the popular files
on other computers. This allows the load to be spread across multiple machines, so increasing throughput.

The flow of data within dCache can also be carefully controlled. This is especially important for large
sites as chaotic movement of data may lead to suboptimal usage. Instead, incoming and outgoing data
can be marshaled so they use designated resources guaranteeing better throughput and improving end-
user experience.

dCache provides a comprehensive administrative interface for configuring the dCache instance. This is
described in the later sections of this book.

Cells and Domains
dCache, as distributed storage software, can provide a coherent service using multiple computers or
nodes (the two terms are used interchangeable). Although dCache can provide a complete storage solu-
tion on a single computer, one of its strengths is the ability to scale by spreading the work over multiple
nodes.

A cell is dCache’s most fundamental executable building block. Even a small dCache deployment will
have many cells running. Each cell has a specific task to perform and most will interact with other cells
to achieve it.

Cells can be grouped into common types; for example, pools, doors. Cells of the same type behave in
a similar fashion and have higher-level behaviour (such as storing files, making files available). Later
chapters will describe these different cell types and how they interact in more detail.

There are only a few cells where (at most) only a single instance is required. The majority of cells within
a dCache instance can have multiple instances and dCache is designed to allow load-balancing over
these cells.

A domain is a container for running cells. Each domain runs in its own Java Virtual Machine (JVM)
instance, which it cannot share with any other domain. In essence, a domain is a JVM with the additional
functionality necessary to run cells (such as system administration and inter-cell communication). This

Introduction

3

also implies, that a node’s resources, such as memory, available CPU and network bandwidth, are shared
among several domains running on the same node.

dCache comes with a set of domain definitions, each specifying a useful set of cells to run within that
domain to achieve a certain goal. These goals include storing data, providing a front-end to the storage,
recording file names, and so on. The list of cells to run within these domains are recommended deploy-
ments: the vast majority of dCache deployments do not need to alter these lists.

A node is free to run multiple domains, provided there’s no conflicting requirement from the domains
for exclusive access to hardware. A node may run a single domain; but, typically a node will run multiple
domains. The choice of which domains to run on which nodes will depend on expected load of the dCache
instance and on the available hardware. If this sounds daunting, don’t worry: starting and stopping a
domain is easy and migrating a domain from one node to another is often as easy as stopping the domain
on one node and starting it on another.

dCache is scalable storage software. This means that (in most cases) the performance of dCache can be
improved by introducing new hardware. Depending on the performance issue, the new hardware may
be used by hosting a domain migrated from a overloaded node, or by running an additional instance of
a domain to allow load-balancing.

Most cells communicate in such a way that they don’t rely on in which domain they are running. This
allows a site to move cells from one domain to another or to create new domain definitions with some
subset of available cells. Although this is possible, it is rare that redefining domains or defining new
domains is necessary. Starting or stopping domains is usually sufficient for managing load.

Figure 1.1. The dCache Layer Model

GFAL

Storage Resource Mgr.

FTP Server (CSI, Kerberos)

GRIS

dCap Client (GSI, Kerberous) dCap Server

dCache Core HSM Adapter

Cell Package

PFNS

Storage Element (LCG)

Wide Area dCache

Resilient Cache

Basic Cache System

The layer model shown in Figure 1.1, “The dCache Layer Model” gives an overview of the architecture
of the dCache system.

4

Chapter 2. Installing dCache
The first section describes the installation of a fresh dCache instance using RPM files downloaded from
the dCache home-page [http://www.dcache.org]. It is followed by a guide to upgrading an existing in-
stallation. In both cases we assume standard requirements of a small to medium sized dCache instance
without an attached tertiary storage system. The third section contains some pointers on extended fea-
tures.

Installing a dCache instance
In the following the installation of a dCache instance will be described. The Chimera name space
provider, some management components, and the SRM need a PostgreSQL server installed. We recom-
mend running this PostgreSQL on the local node. The first section describes the configuration of a Post-
greSQL server. After that the installation of Chimera and of the dCache components will follow. During
the whole installation process root access is required.

Prerequisites
In order to install dCache the following requirements must be met:

• An RPM-based Linux distribution is required for the following procedure. For Debian derived systems
the RPM may be converted to a DEB using alien. Solaris is supported using either the Solaris package
or the tarball.

• dCache requires Java 1.6 JRE. Please use Sun JVM at the latest patch-level (at the moment of writing
this is 1.6.0_25) and make sure to upgrade to the newest version frequently. It is recommendet to
use JDK as dCache scripts can make use of some extra features that JDK provides to gather more
diagnostic information (heap-dump, etc). This helps when tracking down bugs.

• PostgreSQL must be installed and running. See the section called “Installing a PostgreSQL Server”
for more details. PostgreSQL version 8.3 or later is required.

Installation of the dCache Software
The RPM packages may be installed right away, for example using the command:

[root] # rpm -ivh dcache-server-version.noarch.rpm

The actual sources lie at http://www.dcache.org/downloads.shtml. To install for example Version
1.9.12-1 of the server you would use this:

[root] # rpm -ivh http://www.dcache.org/downloads/1.9/dcache-server-1.9.12-1.noarch.rpm

The client can be found in the download-section of the above url, too.

Readying the PostgreSQL server for the use with
dCache
Using a PostgreSQL server with dCache places a number of requirements on the database. You must
configure PostgreSQL for use by dCache and create the necessary PostgreSQL user accounts and data-
base structure. This section describes how to do this.

http://www.dcache.org
http://www.dcache.org
http://www.dcache.org/downloads.shtml

Installing dCache

5

Enabling local trust

Perhaps the simplest configuration is to allow password-less access to the database and the following
documentation assumes this is so.

To allow local users to access PostgreSQL without requiring a password, ensure the file pg_hba.conf,
usually located in /var/lib/pgsql/data, contains the following lines.

local all all trust
host all all 127.0.0.1/32 trust
host all all ::1/128 trust

Note

Please note it is also possible to run dCache with all PostgreSQL accounts requiring passwords.
See the section called “Configuring Access to PostgreSQL” for more advice on the configuration
of PostgreSQL.

Restarting PostgreSQL

If you have edited PostgreSQL configuration files, you must restart PostgreSQL for those
changes to take effect. On many systems, this can be done with the following command:

[root] # /etc/init.d/postgresql restart
Stopping postgresql service: [OK]
Starting postgresql service: [OK]

Configuring Chimera

Chimera is a library providing a hierarchical name space with associated meta data. Where pools in
dCache store the content of files, Chimera stores the names and meta data of those files. Chimera it-
self stores the data in a relational database. We will use PostgreSQL in this tutorial. The properties of
Chimera are defined in /usr/share/dcache/defaults/chimera.properties. See Chap-
ter 4, Chimera for more information.

Initialize the database

Create the Chimera user and database and add the Chimera-specific tables and stored procedures:

[root] # createdb -U postgres chimera
CREATE DATABASE

[root] # createuser -U postgres --no-superuser --no-createrole --createdb --pwprompt chimera
Enter password for new role:
Enter it again:
CREATE ROLE
You do not need to enter a password.

[root] # psql -U chimera chimera -f /usr/share/dcache/chimera/sql/create.sql
psql:/usr/share/dcache/chimera/sql/create.sql:23: NOTICE: CREATE TABLE / PRIMARY KEY will create
 implicit index "t_inodes_pkey" for table "t_inodes"
CREATE TABLE
psql:/usr/share/dcache/chimera/sql/create.sql:35: NOTICE: CREATE TABLE / PRIMARY KEY will create
 implicit index "t_dirs_pkey" for table "t_dirs"
CREATE TABLE
psql:/usr/share/dcache/chimera/sql/create.sql:45: NOTICE: CREATE TABLE / PRIMARY KEY will create
 implicit index "t_inodes_data_pkey" for table "t_inodes_data"
many more like this...
INSERT 0 1

Installing dCache

6

many more like this...
INSERT 0 1
CREATE INDEX
CREATE INDEX
psql:/usr/share/dcache/chimera/sql/create.sql:256: NOTICE: CREATE TABLE / PRIMARY KEY will create
 implicit index "t_storageinfo_pkey" for table "t_storageinfo"
CREATE TABLE
psql:/usr/share/dcache/chimera/sql/create.sql:263: NOTICE: CREATE TABLE / PRIMARY KEY will create
 implicit index "t_access_latency_pkey" for table "t_access_latency"
CREATE TABLE
psql:/usr/share/dcache/chimera/sql/create.sql:270: NOTICE: CREATE TABLE / PRIMARY KEY will create
 implicit index "t_retention_policy_pkey" for table "t_retention_policy"
CREATE TABLE
psql:/usr/share/dcache/chimera/sql/create.sql:295: NOTICE: CREATE TABLE / PRIMARY KEY will create
 implicit index "t_locationinfo_pkey" for table "t_locationinfo"
CREATE TABLE
psql:/usr/share/dcache/chimera/sql/create.sql:311: NOTICE: CREATE TABLE / PRIMARY KEY will create
 implicit index "t_locationinfo_trash_pkey" for table "t_locationinfo_trash"
CREATE TABLE
CREATE INDEX
psql:/usr/share/dcache/chimera/sql/create.sql:332: NOTICE: CREATE TABLE / PRIMARY KEY will create
 implicit index "t_acl_pkey" for table "t_acl"
CREATE TABLE
CREATE INDEX

[root] # createlang -U postgres plpgsql chimera
[root] # psql -U chimera chimera -f /usr/share/dcache/chimera/sql/pgsql-procedures.sql
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE TRIGGER
CREATE FUNCTION
CREATE TRIGGER
CREATE SEQUENCE
CREATE FUNCTION
CREATE TRIGGER

Creating users and databases for dCache

The dCache components will access the database server with the user srmdcache which can be created
with the createuser; for example:

[root] # createuser -U postgres --no-superuser --no-createrole --createdb --pwprompt srmdcache
You do not need to enter a password

Several management components running on the head node as well as the SRM will use the database
dcache for storing their state information:

[root] # createdb -U srmdcache dcache

There might be several of these on several hosts. Each is used by the dCache components running on
the respective host.

Now the configuration of PostgreSQL is done.

Generating ssh-keys
In order to use the Admin Interface of dCache (see the section called “The Admin Interface”) you will
need to generate ssh-keys.

[root] # ssh-keygen -b 768 -t rsa1 -f /etc/dcache/server_key -N ""
Generating public/private rsa1 key pair.
Your identification has been saved in /etc/dcache/server_key.
Your public key has been saved in /etc/dcache/server_key.pub.

Installing dCache

7

The key fingerprint is:
33:ac:91:4c:21:4e:63:aa:2d:90:58:4d:72:e6:b5:88 root@example.org
[root] # ssh-keygen -b 1024 -t rsa1 -f /etc/dcache/host_key -N ""
Generating public/private rsa1 key pair.
Your identification has been saved in /etc/dcache/host_key.
Your public key has been saved in /etc/dcache/host_key.pub.
The key fingerprint is:
75:a4:2b:24:cc:75:ad:b7:bd:8b:dd:1a:3e:96:3f:9d root@example.org

Now you can start dCache.

[root] # dcache start
Starting dCacheDomain done

So far, no configuration is done, so only one predefined domain is started.

Configuring dCache

Terminology

dCache consists of one or more domains. A domain in dCache is a Java Virtual Machine hosting one or
more dCache cells. Each domain must have a name which is unique throughout the dCache instance and
a cell must have a unique name within the domain hosting the cell.

A service is an abstraction used in the dCache configuration to describe atomic units to add to a domain.
It is typically implemented through one or more cells. dCache keeps lists of the domains and the services
that are to be run within these domains in the layout files. The layout file may contain domain- and
service- specific configuration values. A pool is a cell providing physical data storage services.

Configuration files

In the setup of dCache, there are three main places for configuration files:

• /usr/share/dcache/defaults

• /etc/dcache/dcache.conf

• /etc/dcache/layouts

The folder /usr/share/dcache/defaults contains the default settings of the dCache. If one of
the default configuration values needs to be changed, copy the default setting of this value from one of
the files in /usr/share/dcache/defaults to the file /etc/dcache/dcache.conf, which
initially is empty and update the value.

Note

In this first installation of dCache your dCache will not be connected to a tape sytem. Therefore
please change the values for DefaultRetentionPolicy and DefaultAccessLaten-
cy in the file /etc/dcache/dcache.conf.

DefaultRetentionPolicy=REPLICA
DefaultAccessLatency=ONLINE

Layouts describe which domains to run on a host and which services to run in each domain. For the
customized configuration of your dCache you will create a mylayout.conf file in /etc/dcache/
layouts.

Installing dCache

8

Important

Do not update configuration values in the files in the defaults folder, since changes to these files
will be overwritten by updates.

As the files in /usr/share/dcache/defaults/ do serve as succinct documentation for all avail-
able configuration parameters and their default values it is quite useful to have a look at them.

Defining domains and services

Domains and services are defined in the layout files. Depending on your site, you may have requirements
upon the doors that you want to configure and domains within which you want to organise them.

A domain must be defined if services are to run in that domain. Services will be started in the order in
which they are defined.

Every domain is a Java Virtual Machine that can be started and stopped separately. You might want to
define several domains for the different services depending on the necessity of restarting the services
separately.

The layout files define which domains to start and which services to put in which domain. Configuration
can be done per domain and per service.

A name in square brackets, without a forward-slash (/) defines a domain. A name in square brackets
with a forward slash defines a service that is to run in a domain. Lines starting with a hash-symbol (#)
are comments and will be ignored by dCache.

There may be several layout files in the layout directory, but only one of them is read by dCache when
starting up. By default it is the single.conf. If the dCache should be started with another layout file
you will have to make this configuration in /etc/dcache/dcache.conf.

dcache.layout=mylayout

This entry in /etc/dcache/dcache.conf will instruct dCache to read the layout file /etc/
dcache/layouts/mylayout.conf when starting up.

These are the first lines of /etc/dcache/layouts/single.conf:

broker.scheme=none

[dCacheDomain]
[dCacheDomain/admin]
[dCacheDomain/broadcast]
[dCacheDomain/poolmanager]

[dCacheDomain] defines a domain called dCacheDomain. In this example only one domain is
defined. All the services are running in that domain. Therefore no messagebroker is needed, which is
the meaning of the entry messageBroker=none.

[dCacheDomain/admin] declares that the admin service is to be run in the dCacheDomain
domain.

Here is an example for the first lines of the mylayout.conf of a single node dCache with several
domains.

[dCacheDomain]

Installing dCache

9

[dCacheDomain/poolmanager]
[dCacheDomain/dummy-prestager]
[dCacheDomain/broadcast]
[dCacheDomain/loginbroker]
#[dCacheDomain/topo]

[namespaceDomain]
[namespaceDomain/pnfsmanager]
[namespaceDomain/cleaner]
[namespaceDomain/acl]
[namespaceDomain/nfsv3]

[gPlazmaDomain]
[gPlazmaDomain/gplazma]

[srmDomain]
[srmDomain/srm]
[srmDomain/spacemanager]
[srmDomain/transfermanagers]

Important
Having defined more than one domain, a messagebroker is needed. This is because the
defined domains need to be able to communicate with each other. The default value
is messageBroker=cells, as defined in the defaults /usr/share/dcache/de-
faults/dcache.properties.

Creating and configuring pools

dCache will need to write the files it keeps in pools. These pools are defined as services within dCache.
Hence, they are added to the layout file of your dCache instance, like all other services.

The best way to create a pool, is to use the dcache script and restart the domain the pool runs in. The
pool will be added to your layout file.

[domainname/pool]
name=poolname
path=/path/to/pool
waitForFiles=${path}/data

The property waitForFiles instructs the pool not to start up until the specified file or directory is
available. This prevents problems should the underlying storage be unavailable (e.g., if a RAID device
is offline).

Note

Please restart dCache if your pool is created in a domain that did not exist before.

[root] # dcache pool create /srv/dcache/p1 pool1 poolDomain
Created a pool in /srv/dcache/p1. The pool was added to poolDomain in
file:/etc/dcache/layouts/mylayout.conf.

In this example we create a pool called pool1 in the directory /srv/dcache/p1. The created pool
will be running in the domain poolDomain.

Now you need to change the ownership of the directories where your data is to be stored to the user
running dCache which by default is dcache.

[root] # chown -R dcache /srv/dcache/p1

Installing dCache

10

Mind the Gap!

The default gap for poolsizes is 4GiB. This means you should make a bigger pool than 4GiB
otherwise you would have to change this gap in the dCache admin tool. See the example below.
See also the section called “The Admin Interface”.

(local) admin > cd poolname
(poolname) admin > set gap 2G
(poolname) admin > save

Adding a pool to a configuration does not modify the pool or the data in it and can thus safely be undone
or repeated.

Java heap size

By default the Java heap size and the maximum direct buffer size are defined as

dcache.java.memory.heap=512m
dcache.java.memory.direct=512m

Again, these values can be changed in /etc/dcache/dcache.conf.

For optimization of your dCache you can define the Java heap size in the layout file separately for every
domain.

[dCacheDomain]
dcache.java.memory.heap=2048m
dcache.java.memory.direct=0m
...
[utilityDomain]
dcache.java.memory.heap=384m
dcache.java.memory.direct=16m

Note

dCache uses Java to parse the configuration files and will search for Java on the system path first;
if it is found there, no further action is needed. If Java is not on the system path, the environment
variable JAVA_HOME defines the location of the Java installation directory. Alternatively, the
environment variable JAVA can be used to point to the Java executable directly.

If JAVA_HOME or JAVA cannot be defined as global environment variables in the operating sys-
tem, then they can be defined in either /etc/default/dcache or /etc/dcache.env.
These two files are sourced by the init script and allow JAVA_HOME, JAVA and DCACHE_HOME
to be defined.

Starting dCache

All configured components can now be started with dcache start.

[root] # dcache start
Starting dCacheDomain Done (pid=7574)
Starting namespaceDomain Done (pid=7647)
Starting gPlazmaDomain Done (pid=8002)
Starting srmDomain Done (pid=8081)

Installing dCache

11

Now you can have a look at your dCache via The Web Interface, see the section called
“The Web Interface for Monitoring dCache”: http://httpd.example.org:2288/, where
httpd.example.org is the node on which your httpd service is running. For a single node dCache
this is the machine on which your dCache is running.

Running dCache as a non-root user
For security reasons you might want to run dCache as a non-root user. This needs to be configured
in /etc/dcache/dcache.conf and the ownership of the pools and the billing directories need to
be changed.

In this example we explain how to configure dCache to run as user dcache.

First of all create the user dcache and a new directory /var/log/dcache, owned by dcache

[root] #useradd dcache
[root] #mkdir /var/log/dcache
[root] #chown dcache /var/log/dcache

and add two lines to /etc/dcache/dcache.conf.

dcache.user=dcache
dcache.paths.billing=/var/log/dcache

Change the ownership of the files /etc/grid-security/hostcert.pem and /etc/grid-
security/hostkey.pem

[root] #chown dcache /etc/grid-security/hostcert.pem
[root] #chown dcache /etc/grid-security/hostkey.pem

In the layout file /etc/dcache/layouts/mylayout.conf a pool was defined.

[${host.name}Domain/pool]
name=pool1
path=/path/to/pool1
maxDiskSpace=2T

Change the ownership of the directory of the pool.

[root] #chown -R dcache /path/to/pool1

Moreover, if dCache has been running as root the files /tmp/createDDL.jdbc and /tmp/
dropDDL.jdbc need to be removed as they are owned by the user root.

[root] #rm -f /tmp/createDDL.jdbc /tmp/dropDDL.jdbc

Important

If you switched the portmap daemon off the domain in which the NFS server is running needs
to be running as root. This needs to be set in the layout file.

[namespaceDomain]
dcache.user=root
[namespaceDomain/pnfsmanager]

Installing dCache

12

[namespaceDomain/cleaner]
[namespaceDomain/acl]
[namespaceDomain/nfsv3]

Now you can start dCache as user dcache

[root] #dcache start
Starting dCacheDomain done
Starting namespaceDomain done
Starting gPlazmaDomain done
Starting srmDomain done

and verifiy that dCache is running as dcache and the NFS server is running as root.

[root] #dcache status
DOMAIN STATUS PID USER
dCacheDomain running 11040 dcache
namespaceDomain running 11117 root
gPlazmaDomain running 11125 dcache
srmDomain running 11182 dcache

Installing dCache on several nodes
Installing dCache on several nodes is not much more complicated than installing it on a single node.
Think about how dCache should be organised regarding services and domains. Then adapt the lay-
out files, as described in the section called “Defining domains and services”, to the layout that
you have in mind. The files /etc/dcache/layouts/head.conf and /etc/dcache/lay-
outs/pool.conf contain examples for a dCache head-node and a dCache pool respectively.

Important

You must configure a domain called dCacheDomain but the other domain names can be cho-
sen freely.

Please make sure that the domain names that you choose are unique. Having the same domain
names in different layout files on different nodes may result in an error.

On any other nodes than the head node, the property broker.host has to be added to the file /etc/
dcache/dcache.conf. broker.host should point to the host running your dCache broker. Usu-
ally that is the host containing the special domain dCacheDomain, because that domain acts implicitly
as a broker.

Tip

On dCache nodes running only pool services you do not need to install PostgreSQL. If your
current node hosts only these services, the installation of PostgreSQL can be skipped.

Upgrading a dCache Instance
Important

Always read the release notes carefully before upgrading!

Upgrading to bugfix releases within one supported branch (e.g. from 1.9.12-1 to 1.9.12-2) may be done
by upgrading the packages with

Installing dCache

13

[root] # rpm -Uvh packageName

Now dCache needs to be started again.

Please use The Ultimate Golden Release Upgrade Guide I [http://www.dcache.org/manuals/2011/goet-
tingen/upgradeguide/upgrade-guide.html] to upgrade from 1.9.5 to 1.9.12.

http://www.dcache.org/manuals/2011/goettingen/upgradeguide/upgrade-guide.html
http://www.dcache.org/manuals/2011/goettingen/upgradeguide/upgrade-guide.html
http://www.dcache.org/manuals/2011/goettingen/upgradeguide/upgrade-guide.html

14

Chapter 3. Getting in Touch with
dCache
This section is a guide for exploring a newly installed dCache system. The confidence obtained by this
exploration will prove very helpful when encountering problems in the running system. This forms the
basis for the more detailed stuff in the later parts of this book. The starting point is a fresh installation
according to the the section called “Installing a dCache instance”.

Checking the Functionality
Reading and writing data to and from a dCache instance can be done with a number of protocols. After
a standard installation, these protocols are dCap, GSIdCap, and GridFTP. In addition dCache comes
with an implementation of the SRM protocol which negotiates the actual data transfer protocol.

dCache without mounted namespace
Create the root of the Chimera namespace and a world-writable directory by

[root] # /usr/bin/chimera-cli mkdir /data
[root] # /usr/bin/chimera-cli mkdir /data/world-writable
[root] # /usr/bin/chimera-cli chmod /data/world-writable 777

WebDAV

To use WebDAV you need to define a WebDAV service in your layout file. You can define this service
in an extra domain, e.g. [webdavDomain] or add it to another domain.

[webdavDomain]
[webdavDomain/webdav]
webdavAnonymousAccess=FULL

to the file /etc/dcache/layouts/mylayout.conf.

Note

Depending on the client you might need to set webdav.redirect.on-read=false and/
or webdav.redirect.on-write=false.

---- Whether to redirect GET requests to a pool
#
If true, WebDAV doors will respond with a 302 redirect pointing to
a pool holding the file. This requires that a pool can accept
incoming TCP connections and that the client follows the
redirect. If false, data is relayed through the door. The door
will establish a TCP connection to the pool.
#
(one-of?true|false)webdav.redirect.on-read=true

---- Whether to redirect PUT requests to a pool
#
If true, WebDAV doors will respond with a 307 redirect pointing to
a pool to which to upload the file. This requires that a pool can
accept incoming TCP connections and that the client follows the
redirect. If false, data is relayed through the door. The door

Getting in Touch with dCache

15

will establish a TCP connection to the pool. Only clients that send
a Expect: 100-Continue header will be redirected - other requests
will always be proxied through the door.
#
(one-of?true|false)webdav.redirect.on-write=true

Now you can start the WebDAV domain

[root] # dcache start webdavDomain

and access your files via http://webdav-door.example.org:2880 with your browser.

You can connect the webdav server to your file manager and copy a file into your dCache.

To use curl to copy a file into your dCache you will need to set webdav.redirect.on-
write=false.

Write the file test.txt

[root] # curl -T test.txt http://webdav-door.example.org:2880/data/world-writable/curl-
testfile.txt

and read it

[root] # curl http://webdav-door.example.org:2880/data/world-writable/curl-testfile.txt

Using dCache with a mounted filesystem
dCache can also be used with a mounted file system. Before mounting the name space you need to edit
the /etc/exports file. Add the lines

/ localhost(rw)
/data

stop the portmapper

[root] # /etc/init.d/portmap stop
Stopping portmap: portmap

and restart dCache.

[root] # dcache restart

Now you can mount Chimera.

[root] # mount localhost:/ /mnt

With the root of the namespace mounted you can establish wormhole files so dCap clients can discover
the dCap doors.

[root] # mkdir /mnt/admin/etc/config/dCache
[root] # touch /mnt/admin/etc/config/dCache/dcache.conf
[root] # touch /mnt/admin/etc/config/dCache/'.(fset)(dcache.conf)(io)(on)'
[root] # echo "dcache.example.org:22125" > /mnt/admin/etc/config/dCache/dcache.conf

Getting in Touch with dCache

16

Create the directory in which the users are going to store their data and change to this directory.

[root] # mkdir -p /mnt/data
[root] # cd /mnt/data

dCap

To be able to use dCap you need to have the dCap door running in a domain.

[dCacheDomain]
[dCacheDomain/dcap]

For this tutorial install dCap on your worker node. This can be the machine where your dCache is
running.

Get the gLite repository (which contains dCap) and install dCap using yum.

[root] # cd /etc/yum.repos.d/
[root] # wget http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/glite-UI.repo
[root] # yum install dcap

dCap without mounted namespace

Create the root of the Chimera namespace and a world-writable directory for dCap to write into by

[root] # /usr/bin/chimera-cli mkdir /data
[root] # /usr/bin/chimera-cli mkdir /data/world-writable
[root] # /usr/bin/chimera-cli chmod /data/world-writable 777

Copy the data (here /bin/sh is used as example data) using the dccp command and the dCap protocol
describing the location of the file using a URL, where dcache.example.org is the host on which
the dCache is running

[root] # dccp -H /bin/sh dcap://dcache.example.org/data/world-writable/my-test-file-1
[##] 100%
 718 kiB
735004 bytes (718 kiB) in 0 seconds

and copy the file back.

[root] # dccp -H dcap://dcache.example.org/data/world-writable/my-test-file-1 /tmp/mytestfile1
[##] 100%
 718 kiB
735004 bytes (718 kiB) in 0 seconds

To remove the file you will need to mount the namespace.

Using dCap with a mounted filesystem

dCap can also be used with a mounted file system. Before mounting the name space you need to edit
the /etc/exports file. Add the lines

/ localhost(rw)

Getting in Touch with dCache

17

/data

stop the portmapper

[root] # /etc/init.d/portmap stop
Stopping portmap: portmap

and restart dCache.

[root] # dcache restart

Now you can mount Chimera.

[root] # mount localhost:/ /mnt

With the root of the namespace mounted you can establish wormhole files so dCap clients can discover
the dCap doors.

[root] # mkdir /mnt/admin/etc/config/dCache
[root] # touch /mnt/admin/etc/config/dCache/dcache.conf
[root] # touch /mnt/admin/etc/config/dCache/'.(fset)(dcache.conf)(io)(on)'
[root] # echo "dcache.example.org:22125" > /mnt/admin/etc/config/dCache/dcache.conf

Create the directory in which the users are going to store their data and change to this directory.

[root] # mkdir -p /mnt/data
[root] # cd /mnt/data

Now you can copy a file into your dCache

[root] # dccp /bin/sh my-test-file-2
735004 bytes (718 kiB) in 0 seconds

and copy the data back using the dccp command.

[root] # dccp my-test-file-2 /tmp/mytestfile2
735004 bytes (718 kiB) in 0 seconds

The file has been transferred succesfully.

Now remove the file from the dCache.

[root] # rm my-test-file-2

Authentication and Authorization in
dCache
In dCache digital certificates are used for authentication and authorisation. To be able to verify the chain
of trust when using the non-commercial grid-certificates you should install the list of certificates of grid
Certification Authorities (CAs). In case you are using commercial certificates you will find the list of
CAs in your browser.

Getting in Touch with dCache

18

[root] # wget http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/lcg-CA.repo
--2011-02-10 10:26:10-- http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/lcg-
CA.repo
Resolving grid-deployment.web.cern.ch... 137.138.142.33, 137.138.139.19
Connecting to grid-deployment.web.cern.ch|137.138.142.33|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 449 [text/plain]
Saving to: `lcg-CA.repo'

100%[==>] 449 --.-K/s
 in 0s

2011-02-10 10:26:10 (61.2 MB/s) - `lcg-CA.repo' saved [449/449]
[root] # mv lcg-CA.repo /etc/yum.repos.d/
[root] # yum install lcg-CA
Loaded plugins: allowdowngrade, changelog, kernel-module
CA | 951 B
 00:00
CA/primary | 15 kB
 00:00
CA
...

You will need a server certificate for the host on which your dCache is running and a user certificate.
The host certificate needs to be copied to the directory /etc/grid-security/ on your server and
converted to hostcert.pem and hostkey.pem as described in Using X.509 Certificates. Your user
certificate is usually located in .globus. If it is not there you should copy it from your browser to
.globus and convert the *.p12 file to usercert.pem and userkey.pem.

If you have the clients installed on the machine on which your dCache is running you will need to add
a user to that machine in order to be able to execute the voms-proxy-init command and execute voms-
proxy-init as this user.

[root] # useradd johndoe

Change the password of the new user in order to be able to copy files to this account.

[root] # passwd johndoe
Changing password for user johndoe.
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.
[root] # su johndoe
[user] $ cd
[user] $ mkdir .globus

Copy your key files from your local machine to the new user on the machine where the dCache is running.

[user] $ scp .globus/user*.pem johndoe@dcache.example.org:.globus

Install glite-security-voms-clients (contained in the gLite-UI).

[root] # yum install glite-security-voms-clients

Generate a proxy certificate using the command voms-proxy-init.

[user] $ voms-proxy-init
Enter GRID pass phrase:
Your identity: /C=DE/O=GermanGrid/OU=DESY/CN=John Doe

Creating proxy .. Done

Getting in Touch with dCache

19

Your proxy is valid until Mon Mar 7 22:06:15 2011

With voms-proxy-init -voms yourVO you can add VOMS attributes to the proxy. A user’s roles (Fully
Qualified Attribute Names) are read from the certificate chain found within the proxy. These attributes
are signed by the user’s VOMS server when the proxy is created. For the voms-proxy-init -voms com-
mand you need to have the file /etc/vomses which contains entries about the VOMS servers like

"desy" "grid-voms.desy.de" "15104" "/C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de" "desy"
 "24"
"atlas" "voms.cern.ch" "15001" "/DC=ch/DC=cern/OU=computers/CN=voms.cern.ch" "atlas" "24"
"dteam" "lcg-voms.cern.ch" "15004" "/DC=ch/DC=cern/OU=computers/CN=lcg-voms.cern.ch" "dteam" "24"
"dteam" "voms.cern.ch" "15004" "/DC=ch/DC=cern/OU=computers/CN=voms.cern.ch" "dteam" "24"

Now you can generate your voms proxy containing your VO.

[user] $ voms-proxy-init -voms desy
Enter GRID pass phrase:
Your identity: /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
Creating temporary proxy Done
Contacting grid-voms.desy.de:15104 [/C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de] "desy"
 Done
Creating proxy Done
Your proxy is valid until Thu Mar 31 21:49:06 2011

Authentication and authorization in dCache is done by the gplazma service. Define this service in the
layout file.

[gPlazmaDomain]
[gPlazmaDomain/gplazma]

In this tutorial we will use the gplazmalite-vorole-mapping plugin. To this end you need to edit the
/etc/grid-security/grid-vorolemap and the /etc/grid-security/storage-au-
thzdb as well as the /etc/dcache/dcachesrm-gplazma.policy.

The /etc/grid-security/grid-vorolemap:

"/C=DE/O=GermanGrid/OU=DESY/CN=John Doe" "/desy" doegroup

The /etc/grid-security/storage-authzdb:

version 2.1

authorize doegroup read-write 12345 1234 / / /

The /etc/dcache/dcachesrm-gplazma.policy:

Switches
xacml-vo-mapping="OFF"
saml-vo-mapping="OFF"
kpwd="OFF"
grid-mapfile="OFF"
gplazmalite-vorole-mapping="ON"

Priorities
xacml-vo-mapping-priority="5"
saml-vo-mapping-priority="2"
kpwd-priority="3"
grid-mapfile-priority="4"
gplazmalite-vorole-mapping-priority="1"

Getting in Touch with dCache

20

How to work with secured dCache
If you want to copy files into dCache with GSIdCap, SRM or WebDAV with certificates you need to
follow the instructions in the section above.

GSIdCap

To use GSIdCap you must run a GSIdCap door. This is achieved by including the gsidcap service
in your layout file on the machine you wish to host the door.

[gsidcapDomain]
[gsidcapDomain/gsidcap]

In addition, you need to have libdcap-tunnel-gsi installed on your worker node, which is contained in
the gLite-UI.

Note

As ScientificLinux 5 32bit is not supported by gLite there is no libdcap-tunnel-gsi for SL5 32bit.

[root] # yum install libdcap-tunnel-gsi

It is also available on the dCap downloads page [http://www.dcache.org/downloads/dcap/].

[root] # rpm -i http://www.dcache.org/repository/yum/sl5/x86_64/RPMS.stable//libdcap-tunnel-
gsi-2.47.5-0.x86_64.rpm

The machine running the GSIdCap door needs to have a host certificate and you need to have a valid
user certificate. In addition, you should have created a voms proxy as mentioned above.

Now you can copy a file into your dCache using GSIdCap

[user] $ dccp /bin/sh gsidcap://dcache.example.org:22128/data/world-writable/my-test-file3
801512 bytes in 0 seconds

and copy it back

[user] $ dccp gsidcap://dcache.example.org:22128/data/world-writable/my-test-file3 /tmp/
mytestfile3.tmp
801512 bytes in 0 seconds

SRM

To use the SRM you need to define the srm service in your layout file.

[srmDomain]
[srmDomain/srm]

In addition, the user needs to install an SRM client for example the dcache-srmclient, which is
contained in the gLite-UI, on the worker node and set the PATH environment variable.

http://www.dcache.org/downloads/dcap/
http://www.dcache.org/downloads/dcap/

Getting in Touch with dCache

21

[root] # yum install dcache-srmclient

You can now copy a file into your dCache using the SRM,

[user] $ srmcp -2 file:////bin/sh srm://dcache.example.org:8443/data/world-writable/my-test-file4

copy it back

[user] $ srmcp -2 srm://dcache.example.org:8443/data/world-writable/my-test-file4 file:////tmp/
mytestfile4.tmp

and delete it

[user] $ srmrm -2 srm://dcache.example.org:8443/data/world-writable/my-test-file4

If the grid functionality is not required the file can be deleted with the NFS mount of the Chimera
namespace:

[user] $ rm /data/world-writable/my-test-file4

WebDAV with certificates
To use WebDAV with certificates you change the entry in /etc/dcache/lay-
outs/mylayout.conf from

[webdavDomain]
[webdavDomain/webdav]
webdavAnonymousAccess=FULL
webdavRootPath=/data/world-writable

to

[webdavDomain]
[webdavDomain/webdav]
webdavAnonymousAccess=NONE
webdavRootPath=/data/world-writable
webdavProtocol=https

Then you will need to import the host certificate into the dCache keystore using the command

[root] # dcache import hostcert

and initialise your truststore by

[root] # dcache import cacerts

Now you need to restart the WebDAV domain

[root] # dcache restart webdavDomain

and access your files via https://dcache.example.org:2880 with your browser.

Getting in Touch with dCache

22

Important

If the host certificate contains an extended key usage extension, it must include the extended
usage for server authentication. Therefore you have to make sure that your host certificate is
either unrestricted or it is explicitly allowed as a certificate for TLS Web Server Authen-
tication.

Allowing authenticated and non-authenticated access with
WebDAV

You can also choose to have secure and insecure access to your files at the same time. You might for
example allow access without authentication for reading and access with authentication for reading and
writing.

[webdavDomain]
[webdavDomain/webdav]
webdavRootPath=/data/world-writable
webdavAnonymousAccess=READONLY
port=2880
webdavProtocol=https

You can access your files via https://dcache.example.org:2880 with your browser.

The Web Interface for Monitoring dCache
In the standard configuration the dCache web interface is started on the head node (meaning that the
domain hosting the httpd service is running on the head node) and can be reached via port 2288.
Point a web browser to http://head-node.example.org:2288/ to get to the main menu of
the dCache web interface. The contents of the web interface are self-explanatory and are the primary
source for most monitoring and trouble-shooting tasks.

The “Cell Services” page displays the status of some important cells of the dCache instance.

The “Pool Usage” page gives a good overview of the current space usage of the whole dCache instance.
In the graphs, free space is marked yellow, space occupied by cached files (which may be deleted when
space is needed) is marked green, and space occupied by precious files, which cannot be deleted is
marked red. Other states (e.g., files which are currently written) are marked purple.

The page “Pool Request Queues” (or “Pool Transfer Queues”) gives information about the number of
current requests handled by each pool. “Actions Log” keeps track of all the transfers performed by the
pools up to now.

The remaining pages are only relevant with more advanced configurations: The page “Pools” (or “Pool
Attraction Configuration”) can be used to analyze the current configuration of the pool selection unit in
the pool manager. The remaining pages are relevant only if a tertiary storage system (HSM) is connected
to the dCache instance.

Files
In this section we will have a look at the configuration and log files of dCache.

The dCache software is installed in various directories according to the Filesystem Hierarchy Standard.
All configuration files can be found in /etc/dcache.

Getting in Touch with dCache

23

In the previous section we have already seen how a domain is restarted:

[root] # dcache restart domainName

Log files of domains are by default stored in /var/log/dcache/domainName.log. We strongly
encourage to configure logrotate to rotate the dCache log files to avoid filling up the log file system.
This can typically be achieved by creating the file /etc/logrotate.d/dcache with the following
content:

/var/log/dcache/*.log {
 compress
 rotate 100
 missingok
 copytruncate
}

More details about domains and cells can be found in Chapter 6, The Cell Package.

The most central component of a dCache instance is the PoolManager cell. It reads additional con-
figuration information from the file /var/lib/dcache/config/poolmanager.conf at start-
up. However, it is not necessary to restart the domain when changing the file. We will see an example
of this below.

Similar to /var/lib/dcache/config/poolmanager.conf, pools read their configuration
from poolDir/pool/setup at startup.

The Admin Interface
Just use commands that are documented here

Only commands described in this documentation should be used for the administration of a
dCache system.

First steps

Note

If you attempt to log into the admin interface without generating the ssh-keys you will get an
error message.

[user] $ ssh -c blowfish -p 22223 -l admin headnode.example.org
Connection closed by 192.0.2.11

See the section called “Generating ssh-keys”.

dCache has a powerful administration interface. It is accessed with the ssh protocol. The server is part
of the adminDoor domain. Connect to it with

[user] $ ssh -c blowfish -p 22223 -l admin headnode.example.org

The initial password is “dickerelch” (which is German for “fat elk”) and you will be greeted by
the prompt

Getting in Touch with dCache

24

 dCache Admin (VII) (user=admin)

(local) admin >

The password can now be changed with

(local) admin > cd acm
(acm) admin > create user admin
(acm) admin > set passwd -user=admin newPasswd newPasswd
(acm) admin > ..
(local) admin > logoff

This already illustrates how to navigate within the administration interface:

Starting from the local prompt ((local) admin >) the command cd takes you to the specified cell
(here acm, the access control manager). There two commands are executed. The escape sequence .. takes
you back to the local prompt and logoff exits the admin shell.

There also is the command help for listing all commands the cell knows and their parameters. However,
many of the commands are only used for debugging and development purposes.

Note

If the cells are well-known, they can be accessed without adding the domain-scope. See Chap-
ter 6, The Cell Package for more information.

The domains that are running on the dCache-instance, can be viewed in the layout-configuration (see
Chapter 2, Installing dCache). Additionally, there is the topo cell, which keeps track of the instance’s
domain topology. If it is running, it can be used to obtain the list of domains the following way:

(local) admin > cd topo
(topo) admin > ls
adminDoorDomain
gsidcapDomain
dcapDomain
utilityDomain
gPlazmaDomain
webdavDomain
gridftpDomain
srmDomain
dCacheDomain
httpdDomain
namespaceDomain
poolDomain

Note

The topo cell rescans periodically which domains are running, so it can take some time until
ls displays the full domain list.

If you want to find out which cells are running on a certain domain, you can issue the command ps in
the System cell of the domain.

For example, if you want to list the cells running on the poolDomain, cd to its System cell and issue
the ps command.

(topo) admin > ..
(local) admin > cd System@poolDomain

Getting in Touch with dCache

25

(System@poolDomain) admin > ps
 Cell List

c-dCacheDomain-101-102
System
pool_2
c-dCacheDomain-101
pool_1
RoutingMgr
lm

The cells in the domain can be accessed using cd together with the cell-name scoped by the domain-name.
So first, one has to get back to the local prompt, as the cd command will not work otherwise.

Note

Note that cd only works from the local prompt. If the cell you are trying to access does not exist,
the cd command will complain.

(local) admin > cd nonsense
java.lang.IllegalArgumentException: Cannot cd to this cell as it doesn't exist

Type .. to return to the (local) admin > prompt.

Login to the routing manager of the dCacheDomain to get a list of all well-known cells you can directly
cd to without having to add the domain.

(System@poolDomain) admin > ..
(local) admin > cd RoutingMgr@dCacheDomain
(RoutingMgr@dCacheDoorDomain) admin > ls
Our routing knowledge :
 Local : [PoolManager, topo, broadcast, LoginBroker, info]
 adminDoorDomain : [pam]
 gsidcapDomain : [DCap-gsi-example.dcache.org]
 dcapDomain : [DCap-example.dcache.org]
 utilityDomain : [gsi-pam, PinManager]
 gPlazmaDomain : [gPlazma]
 webdavDomain : [WebDAV-example.dcache.org]
 gridftpDomain : [GFTP-example.dcache.org]
 srmDomain : [RemoteTransferManager, CopyManager, SrmSpaceManager, SRM-example.dcache.org]
 httpdDomain : [billing, srm-LoginBroker, TransferObserver]
 poolDomain : [pool_2, pool_1]
 namespaceDomain : [PnfsManager, dirLookupPool, cleaner]

All cells know the commands info for general information about the cell and show pinboard for listing
the last lines of the pinboard of the cell. The output of these commands contains useful information for
solving problems.

It is a good idea to get aquainted with the normal output in the following cells: PoolManager, Pnf-
sManager, and the pool cells (e.g., poolHostname_1).

The most useful command of the pool cells is rep ls. To execute this command cd into the pool. It lists
the files which are stored in the pool by their pnfs IDs:

(RoutingMgr@dCacheDoorDomain) admin > ..
(pool_1) admin > rep ls
000100000000000000001120 <-P---------(0)[0]> 485212 si={myStore:STRING}
000100000000000000001230 <C----------(0)[0]> 1222287360 si={myStore:STRING}

Each file in a pool has one of the 4 primary states: “cached” (<C---), “precious” (<-P--), “from client”
(<--C-), and “from store” (<---S).

Getting in Touch with dCache

26

See the section called “How to Store-/Restore files via the Admin Interface” for more information about
rep ls.

The most important commands in the PoolManager are: rc ls and cm ls -r.

rc ls lists the requests currently handled by the PoolManager. A typical line of output for a read
request with an error condition is (all in one line):

(pool_1) admin > ..
(local) admin > cd PoolManager
(PoolManager) admin > rc ls
000100000000000000001230@0.0.0.0/0.0.0.0 m=1 r=1 [<unknown>]
[Waiting 08.28 19:14:16]
{149,No pool candidates available or configured for 'staging'}

As the error message at the end of the line indicates, no pool was found containing the file and no pool
could be used for staging the file from a tertiary storage system.

See the section called “Obtain information via the dCache Command Line Admin Interface” for more
information about the command rc ls

Finally, cm ls with the option -r gives the information about the pools currently stored in the cost
module of the pool manager. A typical output is:

(PoolManager) admin > cm ls -r
pool_1={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
 (...continues...) SP={t=2147483648;f=924711076;p=1222772572;r=0;lru=0;{g=20000000;b=0.5}}}
pool_1={Tag={{hostname=example.org}};size=0;SC=0.16221282938326134;CC=0.0;}
pool_2={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
 (...continues...) SP={t=2147483648;f=2147483648;p=0;r=0;lru=0;{g=4294967296;b=250.0}}}
pool_2={Tag={{hostname=example.org}};size=0;SC=2.7939677238464355E-4;CC=0.0;}

While the first line for each pool gives the information stored in the cache of the cost module, the second
line gives the costs (SC: space cost, CC: performance cost) calculated for a (hypothetical) file of zero
size. For details on how these are calculated and their meaning, see the section called “The Cost Module”.

Create a new user
To create a new user, new-user and set a new password for the user cd from the local prompt ((lo-
cal) admin >) to the acm, the access control manager, and run following command sequence:

(local) admin > cd acm
(acm) admin > create user new-user
(acm) admin > set passwd -user=new-user newPasswd newPasswd

For the new created users there will be an entry in the directory /etc/dcache/admin/users/
meta.

Note

As the initial user admin has not been created with the above command you will not find him
in the directory /etc/dcache/admin/users/meta.

Give the new user access to a particular cell:

(acm) admin > create acl cell.cellName.execute

Getting in Touch with dCache

27

(acm) admin > add access -allowed cell.cellName.execute new-user

Give the new user access to the PnfsManager.

(acm) admin > create acl cell.PnfsManager.execute
(acm) admin > add access -allowed cell.PnfsManager.execute new-user

Now you can check the permissions by:

(acm) admin > check cell.PnfsManager.execute new-user
Allowed
(acm) admin > show acl cell.PnfsManager.execute
<noinheritance>
<new-user> -> true

The following commands allow access to every cell for a user new-user:

(acm) admin > create acl cell.*.execute
(acm) admin > add access -allowed cell.*.execute new-user

The following command makes a user as powerful as admin (dCache’s equivalent to the root user):

(acm) admin > create acl *.*.*
(acm) admin > add access -allowed *.*.* new-user

Use of the ssh Admin Interface by scripts
The ssh admin interface can be used non-interactively by scripts. For this the dCache-internal ssh
server uses public/private key pairs.

The file /etc/dcache/authorized_keys contains one line per user. The file has the same
format as ~/.ssh/authorized_keys which is used by sshd. The keys in /etc/dcache/
authorized_keys have to be of type RSA1 as dCache only supports SSH protocol 1. Such a key
is generated with

[user] $ ssh-keygen -t rsa1 -C 'SSH1 key of user'
Generating public/private rsa1 key pair.
Enter file in which to save the key (/home/user/.ssh/identity):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/user/.ssh/identity.
Your public key has been saved in /home/user/.ssh/identity.pub.
The key fingerprint is:
c1:95:03:6a:66:21:3c:f3:ee:1b:8d:cb:46:f4:29:6a SSH1 key of user

The passphrase is used to encrypt the private key (now stored in /home/user/.ssh/identity).
If you do not want to enter the passphrase every time the private key is used, you can use ssh-add to add
it to a running ssh-agent. If no agent is running start it with

[user] $ if [-S $SSH_AUTH_SOCK] ; then echo "Already running" ; else eval `ssh-agent` ; fi

and add the key to it with

[user] $ ssh-add
Enter passphrase for SSH1 key of user:
Identity added: /home/user/.ssh/identity (SSH1 key of user)

Getting in Touch with dCache

28

Now, insert the public key ~/.ssh/identity.pub as a separate line into /etc/dcache/
authorized_keys. The comment field in this line “SSH1 key of user” has to be changed to the
dCache user name. An example file is:

1024 35 141939124(... many more numbers ...)15331 admin

Using ssh-add -L >> /etc/dcache/authorized_keys will not work, because the line added is
not correct. The key manager within dCache will read this file every minute.

Now, the ssh program should not ask for a password anymore. This is still quite secure, since the
unencrypted private key is only held in the memory of the ssh-agent. It can be removed from it with

[user] $ ssh-add -d
Identity removed: /home/user/.ssh/identity (RSA1 key of user)

In scripts, one can use a “Here Document” to list the commands, or supply them to ssh as standard-input
(stdin). The following demonstrates using a Here Document:

#!/bin/sh
#
Script to automate dCache administrative activity

outfile=/tmp/$(basename $0).$$.out

ssh -c blowfish -p 22223 admin@adminNode > $outfile << EOF
cd PoolManager
cm ls -r
(more commands here)
logoff
EOF

or, the equivalent as stdin.

#!/bin/bash
#
Script to automate dCache administrative activity.

echo -e 'cd pool_1\nrep ls\n(more commands here)\nlogoff' \
 | ssh -c blowfish -p 22223 admin@adminNode \
 | tr -d '\r' > rep_ls.out

Part II. Configuration of dCache

Table of Contents
4. Chimera .. 31

Mounting Chimera through NFS .. 31
Communicating with Chimera ... 33
IDs ... 33
Directory Tags .. 34

5. pnfs ... 39
The Use of pnfs in dCache ... 39
Communicating with the pnfs Server ... 39
pnfsIDs ... 40
Directory Tags .. 41
Global Configuration with Wormholes ... 42
Deleted Files in pnfs ... 43
Access Control .. 43
The Databases of pnfs .. 44

6. The Cell Package .. 46
7. The replica Service (Replica Manager) ... 47

The Basic Setup .. 47
Operation .. 48
Properties of the replica service .. 52

8. The poolmanager Service ... 55
The Pool Selection Mechanism .. 55
The Cost Module .. 64

9. The dCache Tertiary Storage System Interface .. 67
Introduction .. 67
Scope of this chapter ... 67
Requirements for a Tertiary Storage System ... 67
How dCache interacts with a Tertiary Storage System ... 68
Details on the TSS-support executable ... 68
Configuring pools to interact with a Tertiary Storage System ... 72
How to Store-/Restore files via the Admin Interface ... 74
How to monitor what’s going on ... 75
Example of an executable to simulate a tape backend ... 78

10. File Hopping ... 83
File Hopping on arrival from outside dCache ... 83

11. dCache Partitioning ... 90
Parameters, partitions and inheritance .. 90
Partition Parameters .. 91
Partitions and Links .. 93
Examples .. 94

12. Authorization in dCache .. 96
Basics ... 96
gPlazma1 ... 96
gPlazma2 ... 99
Using X.509 Certificates .. 102
Configuration files .. 105
gPlazma specific dCache configuration .. 111

13. dCache as xRootd-Server ... 114
Setting up ... 114
Quick tests .. 115
xrootd security ... 116

14. dCache Storage Resource Manager ... 120
Introduction .. 120
Configuring the srm service .. 120
Utilization of Space Reservations for Data Storage ... 122
dCache specific concepts ... 123
SpaceManager configuration for Explicit Space Reservations .. 125
Configuring the PostgreSQL Database .. 137
General SRM Concepts (for developers) .. 138

15. The statistics Service .. 142
The Basic Setup .. 142
The Statistics Web Page .. 142
Explanation of the File Format of the xxx.raw Files ... 143

16. dCache Webadmin-Interface .. 145
Installation .. 145

17. ACLs in dCache .. 147
Introduction .. 147
Database configuration .. 148
Configuring ACL support .. 148
Administrating ACLs .. 149

18. GLUE Info Provider .. 156
Internal collection of information ... 156
Configuring the info provider .. 158
Testing the info provider ... 159
Decommissioning the old info provider .. 160
Publishing dCache information .. 160
Troubleshooting BDII problems ... 162
Updating information .. 163

19. Stage Protection .. 164
Configuration of Stage Protection .. 164
Definition of the White List ... 164

This part contains descriptions of the components of dCache, their role, functionality within the frame-
work. In short, all information necessary for configuring them.

31

Chapter 4. Chimera
dCache is a distributed storage system, nevertheless it provides a single-rooted file system view. While
dCache supports multiple namespace providers, Chimera is the recommended provider and is used by
default.

The inner dCache components talk to the namespace via a module called PnfsManager, which in turn
communicates with the Chimera database using a thin Java layer, which in turn communicates directly
with the Chimera database. Chimera allows direct access to the namespace by providing an NFSv3 and
NFSv4.1 server. Clients can NFS-mount the namespace locally. This offers the opportunity to use OS-
level tools like ls, mkdir, mv for Chimera. Direct I/O-operations like cp and cat are possible with the
NFSv4.1 door.

The properties of Chimera are defined in /usr/share/dcache/de-
faults/chimera.properties. For customisation the files /etc/dcache/lay-
outs/mylayout.conf or /etc/dcache/dcache.conf should be modified (see the section
called “Defining domains and services”).

This example shows an extract of the /etc/dcache/layouts/mylayout.conf file in order to
run dCache with NFSv3.

[namespaceDomain]
[namespaceDomain/pnfsmanager]
[namespaceDomain/nfsv3]

If you want to run the NFSv4.1 server you need to add the corresponding nfsv41 service to a domain
in the /etc/dcache/layouts/mylayout.conf file and start this domain.

[namespaceDomain]
[namespaceDomain/pnfsmanager]
[namespaceDomain/nfsv41]

If you wish dCache to access your Chimera with a PostgreSQL user other than chimera then you must
specify the username and password in /etc/dcache/dcache.conf.

chimera.db.user=myuser
chimera.db.password=secret

Important

Do not update configuration values in /usr/share/dcache/de-
faults/chimera.properties, since changes to this file will be overwritten by updates.

Mounting Chimera through NFS
dCache does not need the Chimera filesystem to be mounted but a mounted file system is convenient for
administrative access. This offers the opportunity to use OS-level tools like ls and mkdir for Chimera.
However, direct I/O-operations like cp are not possible, since the NFSv3 interface provides the name-
space part only. This section describes how to start the Chimera NFSv3 server and mount the name space.

If you want to mount Chimera for easier administrative access, you need to edit the /etc/exports
file as the Chimera NFS server uses it to manage exports. If this file doesn’t exist it must be created.
The typical exports file looks like this:

Chimera

32

/ localhost(rw)
/data
or
/data *.my.domain(rw)

As any RPC service Chimera NFS requires the rpcbind service to run on the host. Nevertheless
rpcbind has to be configured to accept requests from Chimera NFS.

On RHEL6 based systems you need to add

RPCBIND_ARGS="-i"

into /etc/sysconfig/rpcbind and restart rpcbind. Check your OS manual for details.

[root] # service rpcbind restart
Stopping rpcbind: [OK]
Starting rpcbind: [OK]

If your OS does not provide rpcbind Chimera NFS can use an embedded rpcbind. This requires to
disable the portmap service if it exists.

[root] # /etc/init.d/portmap stop
Stopping portmap: portmap

and restart the domain in which the NFS server is running.

[root] # dcache restart namespaceDomain

Now you can mount Chimera by

[root] # mount localhost:/ /mnt

and create the root of the Chimera namespace which you can call data:

[root] # mkdir -p /mnt/data

If you don’t want to mount chimera you can create the root of the Chimera namespace by

[root] # /usr/bin/chimera-cli Mkdir /data

You can now add directory tags. For more information on tags see the section called “Directory Tags”.

[root] # echo "chimera" | /usr/bin/chimera-cli Writetag /data sGroup
[root] # echo "StoreName sql" | /usr/bin/chimera-cli Writetag /data OSMTemplate

Using dCap with a mounted file system
If you plan to use dCap with a mounted file system instead of the URL-syntax (e.g. dccp /da-
ta/file1 /tmp/file1), you need to mount the root of Chimera locally (remote mounts are not al-
lowed yet). This will allow us to establish wormhole files so dCap clients can discover the dCap doors.

[root] # mount localhost:/ /mnt

Chimera

33

[root] # mkdir /mnt/admin/etc/config/dCache
[root] # touch /mnt/admin/etc/config/dCache/dcache.conf
[root] # touch /mnt/admin/etc/config/dCache/'.(fset)(dcache.conf)(io)(on)'
[root] # echo "door host:port" > /mnt/admin/etc/config/dCache/dcache.conf

The default values for ports can be found in Chapter 29, dCache Default Port Values (for dCap the
default port is 22125) and in the file /usr/share/dcache/defaults/dcache.properties.
They can be altered in /etc/dcache/dcache.conf

When the configuration is complete you can unmount Chimera:

[root] # umount /mnt

Note

Please note that whenever you need to change the configuration, you have to remount the root
localhost:/ to a temporary location like /mnt.

Communicating with Chimera
Many configuration parameters of Chimera and the application specific meta data is accessed by reading,
writing, or creating files of the form .(command)(para). For example, the following prints the
ChimeraID of the file /data/some/dir/file.dat:

[user] $ cat /data/any/sub/directory/'.(id)(file.dat)'
0004000000000000002320B8 [user] $

From the point of view of the NFS protocol, the file .(id)(file.dat) in the directory /da-
ta/some/dir/ is read. However, Chimera interprets it as the command id with the parameter
file.dat executed in the directory /data/some/dir/. The quotes are important, because the shell
would otherwise try to interpret the parentheses.

Some of these command files have a second parameter in a third pair of parentheses. Note, that files of
the form .(command)(para) are not really files. They are not shown when listing directories with
ls. However, the command files are listed when they appear in the argument list of ls as in

[user] $ ls -l '.(tag)(sGroup)'
-rw-r--r-- 11 root root 7 Aug 6 2010 .(tag)(sGroup)

Only a subset of file operations are allowed on these special command files. Any other operation will
result in an appropriate error. Beware, that files with names of this form might accidentally be created
by typos. They will then be shown when listing the directory.

IDs
Each file in Chimera has a unique 18 byte long ID. It is referred to as ChimeraID or as pnfsID. This is
comparable to the inode number in other filesystems. The ID used for a file will never be reused, even
if the file is deleted. dCache uses the ID for all internal references to a file.

The ID of the file example.org/data/examplefile can be obtained by reading the com-
mand-file .(id)(examplefile) in the directory of the file.

[user] $ cat /example.org/data/'.(id)(examplefile)'

Chimera

34

0000917F4A82369F4BA98E38DBC5687A031D

A file in Chimera can be referred to by the ID for most operations.

The name of a file can be obtained from the ID with the command nameof as follows:

[user] $ cd /example.org/data/
[user] $ cat '.(nameof)(0000917F4A82369F4BA98E38DBC5687A031D)'
examplefile

And the ID of the directory it resides in is obtained by:

[user] $ cat '.(parent)(0000917F4A82369F4BA98E38DBC5687A031D)'
0000595ABA40B31A469C87754CD79E0C08F2

This way, the complete path of a file may be obtained starting from the ID.

Directory Tags
In the Chimera namespace, each directory can have a number of tags. These directory tags may be used
within dCache to control the file placement policy in the pools (see the section called “The Pool Selection
Mechanism”). They might also be used by a tertiary storage system for similar purposes (e.g. controlling
the set of tapes used for the files in the directory).

Note

Directory tags are not needed to control the behaviour of dCache. dCache works well without
directory tags.

Create, List and Read Directory Tags if the Name-
space is not Mounted
You can create tags with

[user] $ echo "content" | /usr/bin/chimera-cli writetag directory tagName

list tags with

[user] $ /usr/bin/chimera-cli lstag directory

and read tags with

[user] $ /usr/bin/chimera-cli readtag directory tagName

Create tags for the directory data with

[user] $ echo "myGroup" | /usr/bin/chimera-cli writetag /data sGroup
[user] $ echo "StoreName myStore" | /usr/bin/chimera-cli writetag /data OSMTemplate

list the existing tags with

[user] $ /usr/bin/chimera-cli lstag /data

Chimera

35

Total: 2
OSMTemplate
sGroup

and their content with

[user] $ /usr/bin/chimera-cli readtag /data OSMTemplate
StoreName myStore
[user] $ /usr/bin/chimera-cli readtag /data sGroup
myGroup

Create, List and Read Directory Tags if the Name-
space is Mounted
If the namespace is mounted, change to the directory for which the tag should be set and create a tag with

[user] $ cd directory
[user] $ echo 'content1' > '.(tag)(tagName1)'
[user] $ echo 'content2' > '.(tag)(tagName2)'

Then the existing tags may be listed with

[user] $ cat '.(tags)()'
.(tag)(tagname1)
.(tag)(tagname2)

and the content of a tag can be read with

[user] $ cat '.(tag)(tagname1)'
content1
[user] $ cat '.(tag)(tagName2)'
content2

Create tags for the directory data with

[user] $ cd data
[user] $ echo 'StoreName myStore' > '.(tag)(OSMTemplate)'
[user] $ echo 'myGroup' > '.(tag)(sGroup)'

list the existing tags with

[user] $ cat '.(tags)()'
.(tag)(OSMTemplate)
.(tag)(sGroup)

and their content with

[user] $ cat '.(tag)(OSMTemplate)'
StoreName myStore
[user] $ cat '.(tag)(sGroup)'
 myGroup

A nice trick to list all tags with their contents is

[user] $ grep "" $(cat ".(tags)()")
.(tag)(OSMTemplate):StoreName myStore

Chimera

36

.(tag)(sGroup):myGroup

Directory Tags and Command Files
When creating or changing directory tags by writing to the command file as in

[user] $ echo 'content' > '.(tag)(tagName)'

one has to take care not to treat the command files in the same way as regular files, because tags are
different from files in the following aspects:

1. The tagName is limited to 62 characters and the content to 512 bytes. Writing more to the com-
mand file, will be silently ignored.

2. If a tag which does not exist in a directory is created by writing to it, it is called a primary tag.

3. Tags are inherited from the parent directory by a newly created directory. Changing a primary tag in
one directory will change the tags inherited from it in the same way. Creating a new primary tag in
a directory will not create an inherited tag in its subdirectories.

Moving a directory within the Chimera namespace will not change the inheritance. Therefore, a di-
rectory does not necessarily inherit tags from its parent directory. Removing an inherited tag does
not have any effect.

4. Empty tags are ignored.

Directory Tags for dCache
The following directory tags appear in the dCache context:

OSMTemplate Must contain a line of the form “StoreName storeName” and specifies the name
of the store that is used by dCache to construct the storage class if the HSM Type
is osm.

HSMType The HSMType tag is normally determined from the other existing tags. E.g., if the
tag OSMTemplate exists, HSMType=osm is assumed. With this tag it can be set
explicitly. A class implementing that HSM type has to exist. Currently the only im-
plementations are osm and enstore.

sGroup The storage group is also used to construct the storage class if the HSMType is osm.

cacheClass The cache class is only used to control on which pools the files in a directory may be
stored, while the storage class (constructed from the two above tags) might also be
used by the HSM. The cache class is only needed if the above two tags are already
fixed by HSM usage and more flexibility is needed.

hsmInstance If not set, the hsmInstance tag will be the same as the HSMType tag. Setting this
tag will only change the name as used in the storage class and in the pool commands.

Storage Class and Directory Tags
The storage class is a string of the form StoreName:StorageGroup@hsm-type, where Store-
Name is given by the OSMTemplate tag, StorageGroup by the sGroup tag and hsm-type by

Chimera

37

the HSMType tag. As mentioned above the HSMType tag is assumed to be osm if the tag OSMTem-
plate exists.

In the examples above two tags have been created.

[user] $ /usr/bin/chimera-cli lstag /data
Total: 2
OSMTemplate
sGroup

As the tag OSMTemplate was created the tag HSMType is assumed to be osm.

The storage class of the files which are copied into the directory /data after the tags have been set will
be myStore:myGroup@osm.

If directory tags are used to control the behaviour of dCache and/or a tertiary storage system, it is a good
idea to plan the directory structure in advance, thereby considering the necessary tags and how they
should be set up. Moving directories should be done with great care or even not at all. Inherited tags can
only be created by creating a new directory.

Assume that data of two experiments, experiment-a and experiment-b is written into a name-
space tree with subdirectories /data/experiment-a and /data/experiment-b. As some
pools of the dCache are financed by experiment-a and others by experiment-b they probably
do not like it if they are also used by the other group. To avoid this the directories of experiment-a
and experiment-b can be tagged.

[user] $ echo "StoreName exp-a" | /usr/bin/chimera-cli writetag /data/experiment-a OSMTemplate
[user] $ echo "StoreName exp-b" | /usr/bin/chimera-cli writetag /data/experiment-b OSMTemplate

Data from experiment-a taken in 2010 shall be written into the directory /data/experi-
ment-a/2010 and data from experiment-a taken in 2011 shall be written into /data/exper-
iment-a/2011. Data from experiment-b shall be written into /data/experiment-b. Tag
the directories correspondingly.

[user] $ echo "run2010" | /usr/bin/chimera-cli writetag /data/experiment-a/2010 sGroup
[user] $ echo "run2011" | /usr/bin/chimera-cli writetag /data/experiment-a/2011 sGroup
[user] $ echo "alldata" | /usr/bin/chimera-cli writetag /data/experiment-b sGroup

List the content of the tags by

[user] $ /usr/bin/chimera-cli readtag /data/experiment-a/2010 OSMTemplate
StoreName exp-a
[user] $ /usr/bin/chimera-cli readtag /data/experiment-a/2010 sGroup
run2010
[user] $ /usr/bin/chimera-cli readtag /data/experiment-a/2011 OSMTemplate
StoreName exp-a
[user] $ /usr/bin/chimera-cli readtag /data/experiment-a/2011 sGroup
run2011
[user] $ /usr/bin/chimera-cli readtag /data/experiment-b/2011 OSMTemplate
StoreName exp-b
[user] $ /usr/bin/chimera-cli readtag /data/experiment-b/2011 sGroup
alldata

As the tag OSMTemplate was created the HSMType is assumed to be osm.

The storage classes of the files which are copied into these directories after the tags have been set will be

• exp-a:run2010@osm for the files in /data/experiment-a/2010

Chimera

38

• exp-a:run2011@osm for the files in /data/experiment-a/2011

• exp-b:alldata@osm for the files in /data/experiment-b

To see how storage classes are used for pool selection have a look at the example ’Reserving Pools for
Storage and Cache Classes’ in the PoolManager chapter.

There are more tags used by dCache if the HSMType is enstore.

39

Chapter 5. pnfs
Important
This chapter is for existing installations. New installations should use Chimera and not pnfs.

This chapter gives background information about pnfs. pnfs is the filesystem, dCache used to be based
on. Only the aspects of pnfs relevant to dCache will be explained here. A complete set of documentation
is available from the pnfs homepage [http://www-pnfs.desy.de/].

The Use of pnfs in dCache
dCache uses pnfs as a filesystem and for storing meta-data. pnfs is a filesystem not designed for
storage of actual files. Instead, pnfs manages the filesystem hierarchy and standard meta-data of a
UNIX filesystem. In addition, other applications (as for example dCache) can use it to store their meta-
data. pnfs keeps the complete information in a database.

pnfs implements an NFS server. All the meta-data can be accessed with a standard NFS client, like the
one in the Linux kernel. After mounting, normal filesystem operations work fine. However, IO operations
on the actual files in the pnfs will normally result in an error.

As a minimum, the pnfs filesystem needs to be mounted only by the server running the dCache core
services. In fact, the pnfs server has to run on the same system. For details see (has to be written).

The pnfs filesystem may also be mounted by clients. This should be done by

[root] # mount -o intr,hard,rw pnfs-server:/pnfs /pnfs/site.de

(assuming the system is configured as described in the installation instructions). Users may then access
the meta-data with regular filesystem operations, like ls -l, and by the pnfs-specific operations described
in the following sections. The files themselves may then be accessed with the dCap protocol (see dCache
Book Client Access and Protocols).

Mounting the pnfs filesystem is not necessary for client access to the dCache system if URLs are used
to refer to files. In the grid context this is the preferred usage.

Communicating with the pnfs Server
Many configuration parameters of pnfs and the application-specific meta-data is accessed by reading,
writing, or creating files of the form .(command)(para). For example, the following prints the
pnfsID of the file /pnfs/site.de/some/dir/file.dat:

[user] $ cat /pnfs/site.de/any/sub/directory/'.(id)(file.dat)'
0004000000000000002320B8
[user] $

From the point of view of the NFS protocol, the file .(id)(file.dat) in the directory /pn-
fs/site.de/some/dir/ is read. However, pnfs interprets it as the command id with the para-
meter file.dat executed in the directory /pnfs/site.de/some/dir/. The quotes are impor-
tant, because the shell would otherwise try to interpret the parentheses.

Some of these command-files have a second parameter in a third pair of parentheses. Note, that files of
the form .(command)(para) are not really files. They are not shown when listing directories with
ls. However, the command-files are listed when they appear in the argument list of ls as in

http://www-pnfs.desy.de/
http://www-pnfs.desy.de/

pnfs

40

[user] $ ls -l '.(tag)(sGroup)'
-rw-r--r-- 11 root root 7 Aug 6 2004 .(tag)(sGroup)

Only a subset of file operations are allowed on these special command-files. Any other operation will
result in an appropriate error. Beware, that files with names of this form might accidentally be created
by typos. They will then be shown when listing the directory.

pnfsIDs
Each file in pnfs has a unique 12 byte long pnfsID. This is comparable to the inode number in other
filesystems. The pnfsID used for a file will never be reused, even if the file is deleted. dCache uses the
pnfsID for all internal references to a file.

The pnfsID of the file filename can be obtained by reading the command-file .(id)(filename)
in the directory of the file.

A file in pnfs can be referred to by pnfsID for most operations. For example, the name of a file can be
obtained from the pnfsID with the command nameof as follows:

[user] $ cd /pnfs/site.de/any/sub/directory/
[user] $ cat '.(nameof)(0004000000000000002320B8)'
file.dat

And the pnfsID of the directory it resides in is obtained by:

[user] $ cat '.(parent)(0004000000000000002320B8)'
0004000000000000001DC9E8

This way, the complete path of a file may be obtained starting from the pnfsID. Precisely this is done
by the tool pathfinder:

[user] $. /usr/etc/pnfsSetup
[user] $ PATH=$PATH:$pnfs/tools
[user] $ cd /pnfs/site.de/another/dir/
[user] $ pathfinder 0004000000000000002320B8
0004000000000000002320B8 file.dat
0004000000000000001DC9E8 directory
000400000000000000001060 sub
000100000000000000001060 any
000000000000000000001080 usr
000000000000000000001040 fs
000000000000000000001020 root
000000000000000000001000 -
000000000000000000000100 -
000000000000000000000000 -
/root/fs/usr/any/sub/directory/file.dat

The first two lines configure the pnfs-tools correctly. The path obtained by pathfinder does not agree
with the local path, since the latter depends on the mountpoint (in the example /pnfs/site.de/).
The pnfsID corresponding to the mountpoint may be obtained with

[user] $ cat '.(get)(cursor)'
dirID=0004000000000000001DC9E8
dirPerm=0000001400000020
mountID=000000000000000000001080

The dirID is the pnfsID of the current directory and mountID that of the mountpoint. In the example,
the pnfs server path /root/fs/usr/ is mounted on /pnfs/site.de/.

pnfs

41

Directory Tags
In the pnfs filesystem, each directory has a number of tags. The existing tags may be listed with

[user] $ cat '.(tags)()'
.(tag)(OSMTemplate)
.(tag)(sGroup)

and the content of a tag can be read with

[user] $ cat '.(tag)(OSMTemplate)'
StoreName myStore

A nice trick to list all tags with their contents is

[user] $ grep "" $(cat ".(tags)()")
.(tag)(OSMTemplate):StoreName myStore
.(tag)(sGroup):STRING

Directory tags may be used within dCache to control which pools are used for storing the files in the
directory (see the section called “The Pool Selection Mechanism”). They might also be used by a tertiary
storage system for similar purposes (e.g. controlling the set of tapes used for the files in the directory).

Even if the directory tags are not used to control the bahaviour of dCache, some tags have to be set for the
directories where dCache files are stored. The installation procedure takes care of this: In the directory
/pnfs/site.de/data/ two tags are set to default values:

[user] $ cd /pnfs/site.de/data/
[user] $ grep "" $(cat ".(tags)()")
.(tag)(OSMTemplate):StoreName myStore
.(tag)(sGroup):STRING

The following directory tags appear in the dCache context:

Directory Tags for dCache

OSMTemplate Contains one line of the form “StoreName storeName” and specifies the name of
the store that is used by dCache to construct the storage class if the HSM type is osm.

hsmType The HSM type is normally determined from the other existing tags. E.g., if the tag
OSMTemplate exists, HSM type osm is assumed. With this tag it can be set ex-
plicitly. An class implementing that HSM type has to exist. Currently the only im-
plementations are osm and enstore.

sGroup The storage group is also used to construct the storage Class if the HSM type is osm.

cacheClass The cache class is only used to control on which pools the files in a directory may be
stored, while the storage class (constructed from the two above tags) might also be
used by the HSM. The cache class is only needed if the above two tags are already
fixed by HSM usage and more flexibility is needed.

hsmInstance If not set, the HSM instance will be the same as the HSM type. Setting this tag will
only change the name as used in the storage class and in the pool commands.

pnfs

42

There are more tags used by dCache if the HSM type enstore is used.

When creating or changing directory tags by writing to the command-file as in

[user] $ echo 'content' > '.(tag)(tagName)'

one has to take care not to treat the command-files in the same way as regular files, because tags are
different from files in the following aspects:

1. The tagName is limited to 62 characters and the content to 512 bytes. Writing more to the com-
mand-file, will be silently ignored.

2. If a tag which does not exist in a directory is created by writing to it, it is called a primary tag.

Removing a primary tag invalidates this tag. An invalidated tag behaves as if it does not exist. All
filesystem IO operations on that tag produce an “File not found” error. However, a lookup operation
(e.g. ls) will show this tag with a 0 byte size. An invalidated tag can be revalidated with the help of
the tool repairTag.sh in the tools/ directory of the pnfs distribution. It has to be called in the
directory where the primary tag was with the tag name as argument.

3. Tags are inherited from the parent directory by a newly created directory. Changing a primary tag in
one directory will change the tags inherited from it in the same way, even if it is invalidated or reval-
idated. Creating a new primary tag in a directory will not create a inherited tag in its subdirectories.

Moving a directory within the pnfs filesystem will not change the inheritance. Therefore, a directory
does not necessarily inherit tags from its parent directory. Removing an inherited tag does not have
any effect.

4. Writing to an inherited tag in the subdirectory will break the inheritance-link. A pseudo-primary tag
will be created. The directories which inherited the old (inherited) tag will inherit the pseudo-primary
tag. A pseudo-primary tag behaves exactly like a primary tag, except that the original inherited tag
will be restored if the pseude-primary tag is removed.

If directory tags are used to control the behaviour of dCache and/or a tertiary storage system, it is a good
idea to plan the directory structure in advance, thereby considering the necessary tags and how they
should be set up. Moving directories should be done with great care or even not at all. Inherited tags can
only be created by creating a new directory.

Global Configuration with Wormholes
pnfs provides a way to distribute configuration information to all directories in the pnfs filesystem.
It can be accessed in a subdirectory .(config)() of any pnfs-directory. It behaves similar to a
hardlink. In the default configuration this link points to /pnfs/fs/admin/etc/config/. In it are
three files: '.(config)()'/serverId contains the domain name of the site, '.(config)()'/
serverName the fully qualified name of the pnfs server, and '.(config)()'/serverRoot
should contain “000000000000000000001080 .”.

The dCache specific configuration can be found in '.(config)()'/dCache/dcache.conf. This
file contains one line of the format hostname:port per dCap door which may be used by dCap
clients when not using URLs. The dccp program will choose randomly between the doors listed here.

Normally, reading from files in pnfs is disabled. Therefore it is necessary to switch on I/O access to
the files in '.(config)()'/ by e.g.:

pnfs

43

[root] # touch '.(config)()/.(fset)(serverRoot)(io)(on)'

After that, you will notice that the file is empty. Therefore, take care, to rewrite the information.

Deleted Files in pnfs
When a file in the pnfs filesystem is deleted the server stores information about is in the subdirectories
of /opt/pnfsdb/pnfs/trash/. For dCache, the cleaner cell in the pnfsDomain is responsi-
ble for deleting the actual files from the pools asyncronously. It uses the files in the directory /opt/
pnfsdb/pnfs/trash/2/. It contains a file with the pnfs ID of the deleted file as name. If a pool
containing that file is down at the time the cleaner tries to remove it, it will retry for a while. After that,
the file /opt/pnfsdb/pnfs/trash/2/current/failed.poolName will contain the pnfs
IDs which have not been removed from that pool. The cleaner will still retry the removal with a lower
frequency.

Access Control
The files /pnfs/fs/admin/etc/exports/hostIP and /pnfs/fs/admin/etc/ex-
ports/netMask..netPart are used to control the host-based access to the pnfs filesystem via
mount points. They have to contain one line per NFS mount point. The lines are made of the following
four space-separated fields fields:

• Mount point for NFS (the part after the colon in e.g. host:/mountpoint)

• The virtual PNFS path which is mounted

• Permission: 0 means all permissions and 30 means disabled I/O.

• Options (should always be nooptions)

In the initial configuration there is one file /pnfs/fs/admin/etc/ex-
ports/0.0.0.0..0.0.0.0 containing

/pnfs /0/root/fs/usr/ 30 nooptions

thereby allowing all hosts to mount the part of the pnfs filesystem containing the user data. There also
is a file /pnfs/fs/admin/etc/exports/127.0.0.1 containing

/fs /0/root/fs 0 nooptions
/admin /0/root/fs/admin 0 nooptions

The first line is the mountpoint used by the admin node. If the pnfs mount is not needed for client
operations (e.g. in the grid context) and if no tertiary storage system (HSM) is connected, the file /
pnfs/fs/admin/etc/exports/0.0.0.0..0.0.0.0 may be deleted. With an HSM, the pools
which write files into the HSM have to mount the pnfs filesystem and suitable export files have to
be created.

In general, the user ID 0 of the root user on a client mounting the pnfs filesystem will be mapped to
nobody (not to the user nobody). For the hosts whose IP addresses are the file names in the directory
/pnfs/fs/admin/etc/exports/trusted/ this is not the case. The files have to contain only
the number 15.

pnfs

44

The Databases of pnfs
pnfs stores all the information in GNU dbm database files. Since each operation will lock the database
file used globally and since GNU dbm cannot handle database files larger than 2GB, it is advisable to
“split” them sutably to future usage. Each database stores the information of a sub-tree of the pnfs
filesystem namespace. Which database is responsible for a directory and subsequent subdirectories is
determined at creation time of the directory. The following procedure will create a new database and
connect a new subdirectory to it.

Each database is handled by a separate server process. The maximum number of servers is set by the
variable shmservers in file /usr/etc/pnfsSetup. Therefore, take care that this number is al-
ways higher than the number of databases that will be used (restart pnfs services, if changed).

Prepare the environment with

[root] # . /usr/etc/pnfsSetup
[root] # PATH=${pnfs}/tools:$PATH

To get a list of currently existing databases, issue

[root] # mdb show
ID Name Type Status Path

0 admin r enabled (r) /opt/pnfsdb/pnfs/databases/admin
1 data1 r enabled (r) /opt/pnfsdb/pnfs/databases/data1

Choose a new database name databaseName and a location for the database file database-
FilePath (just a placeholder for the PostgreSQL version of pnfs) and create it with

[root] # mdb create databaseName databaseFilePath

e.g.

[root] # mdb create data2 /opt/pnfsdb/pnfs/databases/data2

Make sure the file databaseFilePath exists with

[root] # touch databaseFilePath

This might seem a little strange. The reason is that the PostgreSQL version of the pnfs server only uses
the file as reference and stores the actual data in the PostgreSQL server.

In order to refresh database information run

[root] # mdb update
Starting data2

Running command mdb show shows the new database:

[root] # mdb show
ID Name Type Status Path

0 admin r enabled (r) /opt/pnfsdb/pnfs/databases/admin
1 data1 r enabled (r) /opt/pnfsdb/pnfs/databases/data1
2 data2 r enabled (r) /opt/pnfsdb/pnfs/databases/data2

pnfs

45

In the pnfs filesystem tree, create the new directory in the following way

[root] # cd /pnfs/site.de/some/sub/dir/
[root] # mkdir '.(newDbID)(newDirectory)'

where newDbID is the ID of the new database as listed in the output of mdb show and newDirectory
is the name of the new directory. E.g.

[root] # cd /pnfs/desy.de/data/zeus/
[root] # mkdir '.(2)(mcdata)'

The new database does not know anything about the wormhole '.(config)()', yet. For this, the
pnfs ID of the wormhole directory (/pnfs/fs/admin/etc/config/) has to be specified. It can
be found out with

[root] # sclient getroot ${shmkey} 0
0 000000000000000000001000 wormholePnfsId

The last pnfsID is the one of the wormhole directory of the database with ID 0 (already set correctly).
Now you can set this ID with

[root] # sclient getroot ${shmkey} newDbID wormholePnfsId
newDbID 000000000000000000001000 wormholePnfsId

For example, do the following

[root] # sclient getroot ${shmkey} 0
0 000000000000000000001000 0000000000000000000010E0
[root] # sclient getroot ${shmkey} 2 0000000000000000000010E0
2 000000000000000000001000 0000000000000000000010E0

Finally, add directory tags for the new directories. The default tags are added by

[root] # cd /pnfs/site.de/some/sub/dir/newDirectory
[root] # echo 'StoreName myStore' > '.(tag)(OSMTemplate)'
[root] # echo 'STRING' > '.(tag)(sGroup)'

46

Chapter 6. The Cell Package
All of dCache makes use of the cell package. It is a framework for a distributed and scalable server system
in Java. The dCache system is divided into cells which communicate with each other via messages.
Several cells run simultaneously in one domain.

Each domain runs in a separate Java virtual machine and each cell is run as a separate thread therein.
Domain names have to be unique. The domains communicate with each other via TCP using connec-
tions that are established at start-up. The topology is controlled by the location manager service. In the
standard configuration, all domains connect with the dCacheDomain, which routes all messages to
the appropriate domains. This forms a star topology.

Only for message communication

The TCP communication controlled by the location manager service is for the short control
messages sent between cells. Any transfer of the data stored within dCache does not use these
connections; instead, dedicated TCP connections are established as needed.

A single node provides the location-manager service. For a single-host dCache instance, this is local-
host; for multi-host dCache instances, the hostname of the node providing this service must be config-
ured using the serviceLocatorHost property.

The domain that hosts the location manager service is also configurable. By default, the service runs
within the dCacheDomain domain; however, this may be changed by setting the broker.domain
property. The port that the location manager listens on is also configurable, using the serviceLoca-
torPort property; however, most sites may leave this property unaltered and use the default value.

Within this framework, cells send messages to other cells addressing them in the form
cellName@domainName. This way, cells can communicate without knowledge about the host they
run on. Some cells are well known, i.e. they can be addressed just by their name without @domainName.
Evidently, this can only work properly if the name of the cell is unique throughout the whole system.
If two well known cells with the same name are present, the system will behave in an undefined way.
Therefore it is wise to take care when starting, naming, or renaming the well known cells. In particular
this is true for pools, which are well known cells.

A domain is started with a shell script bin/dcache start domainName. The routing manager and
location manager cells are started in each domain and are part of the underlying cell package structure.
Each domain will contain at least one cell in addition to them.

47

Chapter 7. The replica Service
(Replica Manager)
The replica service (which is also referred to as Replica Manager) controls the number of replicas of
a file on the pools. If no tertiary storage system is connected to a dCache instance (i.e., it is configured
as a large file store), there might be only one copy of each file on disk. (At least the precious replica.) If
a higher security and/or availability is required, the resilience feature of dCache can be used: If running
in the default configuration, the replica service will make sure that the number of replicas of a file
will be at least 2 and not more than 3. If only one replica is present it will be copied to another pool by
a pool to pool transfer. If four or more replicas exist, some of them will be deleted.

The Basic Setup
The standard configuration assumes that the database server is installed on the same machine as the
replica service — usually the admin node of the dCache instance. If this is not the case you need to
set the property replicaManagerDatabaseHost.

To create and configure the database replicas used by the replica service in the database server do:

[root] # createdb -U srmdcache replicas
[root] # psql -U srmdcache -d replicas -f /usr/share/dcache/replica/psql_install_replicas.sql

To activate the replica service you need to

1. Enable the replica service in a layout file.

[someDomain]
...

[someDomain/replica]

2. Configure the service in the /etc/dcache/dcache.conf file on the node with the dCache-
Domain and on the node on which the pnfsmanager is running.

replicaManager=yes

Note

It will not work properly if you defined the replica service in one of the layout files and
set this property to no on the node with the dCacheDomain or on the node on which the
pnfsmanager is running.

3. Define a pool group for the resilient pools if necessary.

4. Start the replica service.

In the default configuration, all pools of the dCache instance which have been created with the command
dcache pool create will be managed. These pools are in the pool group named default which does
exist by default. The replica service will keep the number of replicas between 2 and 3 (including).
At each restart of the replica service the pool configuration in the database will be recreated.

The replica Ser-
vice (Replica Manager)

48

This is a simple example to get started with. All your pools are assumed to be in the pool group default.

1. In your layout file in the directory /etc/dcache/layouts define the replica service.

[dCacheDomain]
...

[replicaDomain]
[replicaDomain/replica]

2. In the file /etc/dcache/dcache.conf set the value for the property replicaManager to
yes and the resilientGroupName to default.

replicaManager=yes
resilientGroupName=default

3. The pool group default exists by default and does not need to be defined.

4. To start the replica service restart dCache.

[root] # dcache restart

Define a poolgroup for resilient pools
For more complex installations of dCache you might want to define a pool group for the resilient pools.

Define the resilient pool group in the /var/lib/dcache/config/poolmanager.conf file on
the host running the poolmanager service. Only pools defined in the resilient pool group will be
managed by the replica service.

Login to the admin interface and cd to the PoolManager. Define a poolgroup for resilient pools and
add pools to that poolgroup.

(local) admin > cd PoolManager
(PoolManager) admin > psu create pgroup ResilientPools
(PoolManager) admin > psu create pool pool3
(PoolManager) admin > psu create pool pool4
(PoolManager) admin > psu addto pgroup ResilientPools pool3
(PoolManager) admin > psu addto pgroup ResilientPools pool4
(PoolManager) admin > save

By default the pool group named ResilientPools is used for replication.

To use another pool group defined in /var/lib/dcache/config/poolmanager.conf for
replication, please specify the group name in the etc/dcache.conf file.

resilientGroupName=NameOfResilientPoolGroup.

Operation
When a file is transfered into dCache its replica is copied into one of the pools. Since this is the only
replica and normally the required range is higher (e.g., by default at least 2 and at most 3), this file will
be replicated to other pools.

The replica Ser-
vice (Replica Manager)

49

When some pools go down, the replica count for the files in these pools may fall below the valid range
and these files will be replicated. Replicas of the file with replica count below the valid range and which
need replication are called deficient replicas.

Later on some of the failed pools can come up and bring online more valid replicas. If there are too many
replicas for some file these extra replicas are called redundant replicas and they will be “reduced”. Extra
replicas will be deleted from pools.

The replica service counts the number of replicas for each file in the pools which can be used on-
line (see Pool States below) and keeps the number of replicas within the valid range (replicaMin,
replicaMax).

Pool States

The possible states of a pool are online, down, offline, offline-prepare and drainoff.
They can be set by the admin through the admin interface. (See the section called “Commands for the
admin interface”.)

Figure 7.1. Pool State Diagram

online Normal operation.

Replicas in this state are readable and can be counted. Files can be written
(copied) to this pool.

down A pool can be down because

• the admin stopped the domain in which the pool was running.

• the admin set the state value via the admin interface.

• the pool crashed

To confirm that it is safe to turn pool down there is the command ls unique in
the admin interface to check number of files which can be locked in this pool.
(See the section called “Commands for the admin interface”.)

The replica Ser-
vice (Replica Manager)

50

Replicas in pools which are down are not counted, so when a pool crashes the
number of online replicas for some files is reduced. The crash of a pool (pool
departure) may trigger replication of multiple files.

On startup, the pool comes briefly to the online state, and then it goes down
to do pool “Inventory” to cleanup files which broke when the pool crashed
during transfer. When the pool comes online again, the replica service will
update the list of replicas in the pool and store it in the database.

Pool recovery (arrival) may trigger massive deletion of file replicas, not nec-
essarily in this pool.

offline The admin can set the pool state to be offline. This state was introduced to
avoid unnecessary massive replication if the operator wants to bring the pool
down briefly without triggering massive replication.

Replicas in this pool are counted, therefore it does not matter for replication
purpose if an offline pool goes down or up.

When a pool comes online from an offline state replicas in the pool will
be inventoried to make sure we know the real list of replicas in the pool.

offline-prepare This is a transient state betweeen online and offline.

The admin will set the pool state to be offline-prepare if he wants to
change the pool state and does not want to trigger massive replication.

Unique files will be evacuated — at least one replica for each unique file will
be copied out. It is unlikely that a file will be locked out when a single pool
goes down as normally a few replicas are online. But when several pools go
down or set drainoff or offline file lockout might happen.

Now the admin can set the pool state offline and then down and no file
replication will be triggered.

drainoff This is a transient state betweeen online and down.

The admin will set the pool state to be drainoff if he needs to set a pool or
a set of pools permanently out of operation and wants to make sure that there
are no replicas “locked out”.

Unique files will be evacuated — at least one replica for each unique file will
be copied out. It is unlikely that a file will be locked out when a single pool
goes down as normally a few replicas are online. But when several pools go
down or set drainoff or offline file lockout might happen.

Now the admin can set the pool state down. Files from other pools might be
replicated now, depending on the values of replicaMin and replicaMax.

Startup
When the replica service starts it cleans up the database. Then it waits for some time to give a chance
to most of the pools in the system to connect. Otherwise unnecessary massive replication would start.
Currently this is implemented by some delay to start adjustments to give the pools a chance to connect.

The replica Ser-
vice (Replica Manager)

51

Cold Start

Normally (during Cold Start) all information in the database is cleaned up and recreated again by polling
pools which are online shortly after some minimum delay after the replica service starts. The
replica service starts to track the pools’ state (pool up/down messages and polling list of online pools)
and updates the list of replicas in the pools which came online. This process lasts for about 10-15 minutes
to make sure all pools came up online and/or got connected. Pools which once get connected to the
replica service are in online or down state.

It can be annoying to wait for some large period of time until all known “good” pools get connected.
There is a “Hot Restart” option to accelerate the restart of the system after the crash of the head node.

Hot Restart

On Hot Restart the replica service retrieves information about the pools’ states before the crash from
the database and saves the pools’ states to some internal structure. When a pool gets connected the
replica service checks the old pool state and registers the old pool’s state in the database again if
the state was offline, offline-prepare or drainoff state. The replica service also checks
if the pool was online before the crash. When all pools which were online get connected once,
the replica service supposes it recovered its old configuration and the replica service starts ad-
justments. If some pools went down during the connection process they were already accounted and
adjustment would take care of it.

Suppose we have ten pools in the system, where eight pools were online and two were offline
before a crash. The replica service does not care about the two offline pools to get connected
to start adjustments. For the other eight pools which were online, suppose one pool gets connected
and then it goes down while the other pools try to connect. The replica service considers this pool
in known state, and when the other seven pools get connected it can start adjustments and does not wait
any more.

If the system was in equilibrium state before the crash, the replica service may find some deficient
replicas because of the crashed pool and start replication right away.

Avoid replicas on the same host
For security reasons you might want to spread your replicas such that they are not on the same host, or in
the same building or even in the same town. To configure this you need to set the tag.hostname label
for your pools and check the properties replicaCheckPoolHost and replicaEnableSame-
HostReplica.

We assume that some pools of your dCache are in Hamburg and some are in Berlin. In the layout files
where the respective pools are defined you can set

[poolDomain]
[poolDomain/pool1]
name=pool1
path=/srv/dcache/p1
maxDiskSpace=500G
waitForFiles=${path}/data
tag.hostname=Hamburg

and

[poolDomain]
[poolDomain/pool2]

The replica Ser-
vice (Replica Manager)

52

name=pool2
path=/srv/dcache/p2
maxDiskSpace=500G
waitForFiles=${path}/data
tag.hostname=Berlin

By default the property replicaCheckPoolHost is true and replicaEnableSame-
HostReplica is false. This means that the tag.hostname will be checked and the replication
to a pool with the same tag.hostname is not allowed.

Hybrid dCache
A hybrid dCache operates on a combination of pools (maybe connected to tape) which are not in a
resilient pool group and the set of resilient pools. The replica service takes care only of the subset of
pools configured in the pool group for resilient pools and ignores all other pools.

Note

If a file in a resilient pool is marked precious and the pool were connected to a tape system, then
it would be flushed to tape. Therefore, the pools in the resilient pool group are not allowed to
be connected to tape.

Commands for the admin interface
If you are an advanced user, have proper privileges and you know how to issue a command to the admin
interface you may connect to the ReplicaManager cell and issue the following commands. You
may find more commands in online help which are for debug only — do not use them as they can stop
replica service operating properly.

set pool poolstate set pool state

show pool pool show pool state

ls unique pool Reports number of unique replicas in this pool.

exclude pnfsId exclude pnfsId from adjustments

release pnfsId removes transaction/BAD status for pnfsId

debug true | false enable/disable DEBUG messages in the log file

Properties of the replica service
replica/cell.name Default: replicaManager

Cell name of the replica service

replicaManager Default: no

Set this value to yes if you want to use the replica service.

resilientGroupName Default: ResilientPools

If you want to use another pool group for the resilient pools set
this value to the name of the resilient pool group.

The replica Ser-
vice (Replica Manager)

53

replicaManagerDatabaseHost Default: localhost

Set this value to the name of host of the replica service data-
base.

replicaDbName Default: replicas

Name of the replica database table.

replicaDbUser Default: srmdcache

Change if the replicas database was created with a user other
than srmdcache.

replicaPasswordFile Default: no password

replicaDbJdbcDriver Default: org.postgresql.Driver

replica service was tested with PostgreSQL only.

replicaPoolWatchDogPeriod Default: 600 (10 min)

Pools Watch Dog poll period. Poll the pools with this period to
find if some pool went south without sending a notice (messages).
Can not be too short because a pool can have a high load and not
send pings for some time. Can not be less than pool ping period.

replicaExcludedFilesExpira-
tionTimeout

Default: 43200 (12 hours)

replicaDelayDBStartTimeout Default: 1200 (20 min)

On first start it might take some time for the pools to get con-
nected. If replication started right away, it would lead to massive
replications when not all pools were connected yet. Therefore the
database init thread sleeps some time to give a chance to the pools
to get connected.

replicaAdjustStartTimeout Default: 1200 (20 min)

Normally Adjuster waits for database init thread to finish. If by
some abnormal reason it cannot find a database thread then it will
sleep for this delay.

replicaWaitReplicateTimeout Default: 43200 (12 hours)

Timeout for pool-to-pool replica copy transfer.

replicaWaitReduceTimeout Default: 43200 (12 hours)

Timeout to delete replica from the pool.

replicaDebug Default: false

Disable / enable debug messages in the log file.

replicaMaxWorkers Default: 6

The replica Ser-
vice (Replica Manager)

54

Number of worker threads to do the replication. The same number
of worker threads is used for reduction. Must be more for larger
systems but avoid situation when requests get queued in the pool.

replicaMin Default: 2

Minimum number of replicas in pools which are online or of-
fline.

replicaMax Default: 3

Maximum number of replicas in pools which are online or of-
fline.

replicaCheckPoolHost Default: true

Checks tag.hostname which can be specified in the layout
file for each pool.

Set this property to false if you do not want to perform this
check.

replicaEnableSameHostReplica Default: false

If set to true you allow files to be copied to a pool, which has
the same tag.hostname as the source pool.

Note
The property replicaCheckPoolHost needs to be
set to true if replicaEnableSameHostReplica
is set to false.

55

Chapter 8. The poolmanager Service
The heart of a dCache system is the poolmanager. When a user performs an action on a file - reading
or writing - a transfer request is sent to the dCache system. The poolmanager then decides how to
handle this request.

If a file the user wishes to read resides on one of the storage-pools within the dCache system, it will be
transferred from that pool to the user. If it resides on several pools, the file will be retrieved from the
pool which is least busy. If all pools the file is stored on are busy, a new copy of the file on an idle pool
will be created and this pool will answer the request.

A new copy can either be created by a pool to pool transfer (p2p) or by fetching it from a connected
tertiary storage system (sometimes called HSM - hierarchical storage manager). Fetching a file from a
tertiary storage system is called staging. It is also performed if the file is not present on any of the pools
in the dCache system. The pool manager has to decide on which pool the new copy will be created, i.e.
staged or p2p-copied.

The behaviour of the poolmanager service is highly configurable. In order to exploit the full potential
of the software it is essential to understand the mechanisms used and how they are configured. The
poolmanager service creates the PoolManager cell, which is a unique cell in dCache and consists
of several sub-modules: The important ones are the pool selection unit (PSU) and the cost manager (CM).

The poolmanager can be configured by either directly editing the file /var/lib/dcache/con-
fig/poolmanager.conf or via the Admin Interface. Changes made via the Admin Interface will be
saved in the file /var/lib/dcache/config/poolmanager.conf by the save command. This
file will be parsed, whenever the dCache starts up. It is a simple text file containing the corresponding
Admin Interface commands. It can therefore also be edited before the system is started. It can also be
loaded into a running system with the reload command. In this chapter we will describe this file.

The PSU is responsible for finding the pool which will be used for a specific transfer-request based on the
information from the CM. By telling the PSU which pools are permitted for which type of transfer-re-
quest, the administrator of the dCache system can adjust the system to any kind of scenario: Separate
organizations served by separate pools, special pools for writing the data to a tertiary storage system,
pools in a DMZ which serves only a certain kind of data (e.g., for the grid). The following section ex-
plains the mechanism employed by the PSU and shows how to configure it with several examples.

The Pool Selection Mechanism
The PSU generates a list of allowed storage-pools for each incoming transfer-request. The PSU con-
figuration described below tells the PSU which combinations of transfer-request and storage-pool are
allowed. Imagine a two-dimensional table with a row for each possible transfer-request and a column
for each pool - each field in the table containing either “yes” or “no”. For an incoming transfer-request
the PSU will return a list of all pools with “yes” in the corresponding row.

Instead of “yes” and “no” the table really contains a preference - a non-negative integer. However, the
PSU configuration is easier to understand if this is ignored.

Actually maintaining such a table in memory (and as user in a configuration file) would be quite ineffi-
cient, because there are many possibilities for the transfer-requests. Instead, the PSU consults a set of
rules in order to generate the list of allowed pools. Each such rule is called a link because it links a set
of transfer-requests to a group of pools.

The poolmanager Service

56

Links
A link consists of a set of unit groups and a list of pools. If all the unit groups are matched, the pools
belonging to the link are added to the list of allowable pools.

A link is defined in the file /var/lib/dcache/config/poolmanager.conf by

psu create link link unitgroup psu set link link -readpref=rpref -
writepref=wpref -cachepref=cpref -p2ppref=ppref psu add link link pool-
group

For the preference values see the section called “Preference Values for Type of Transfer”.

The main task is to understand how the unit groups in a link are defined. After we have dealt with that,
the preference values will be discussed and a few examples will follow.

The four properties of a transfer request, which are relevant for the PSU, are the following:

Location of the File The location of the file in the file system is not used directly. Each
file has the following two properties which can be set per directory:

• Storage Class. The storage class is a string. It is used by a
tertiary storage system to decide where to store the file (i.e. on
which set of tapes) and dCache can use the storage class for a
similar purpose (i.e. on which pools the file can be stored.). A
detailed description of the syntax and how to set the storage class
of a directory in the namespace is given in the section called
“Storage Classes”.

• Cache Class. The cache class is a string with essentially the
same functionality as the storage class, except that it is not used
by a tertiary storage system. It is used in cases, where the stor-
age class does not provide enough flexibility. It should only be
used, if an existing configuration using storage classes does not
provide sufficient flexibility.

IP Address The IP address of the requesting host.

Protocol / Type of Door The protocol respectively the type of door used by the transfer.

Type of Transfer The type of transfer is either read, write, p2p request or
cache.

A request for reading a file which is not on a read pool will trigger a
p2p request and a subsequent read request. These will be treated
as two separate requests.

A request for reading a file which is not stored on disk, but has to
be staged from a connected tertiary storage system will trigger a
cache request to fetch the file from the tertiary storage system and
a subsequent read request. These will be treated as two separate
requests.

Each link contains one or more unit groups, all of which have to be matched by the transfer request. Each
unit group in turn contains several units. The unit group is matched if at least one of the units is matched.

The poolmanager Service

57

Types of Units

There are four types of units: network (-net), protocol (-protocol), storage class (-store) and
cache class (-dcache) units. Each type imposes a condition on the IP address, the protocol, the storage
class and the cache class respectively.

For each transfer at most one of each of the four unit types will match. If more than one unit of the same
type could match the request then the most restrictive unit matches.

The unit that matches is selected from all units defined in dCache, not just those for a particular unit
group. This means that, if a unit group has a unit that could match a request but this request also matches
a more restrictive unit defined elsewhere then the less restrictive unit will not match.

Network Unit A network unit consists of an IP address and a net mask written as IP-
address/net mask, say 111.111.111.0/255.255.255.0. It
is satisfied, if the request is coming from a host with IP address within the
subnet given by the address/netmask pair.

psu create ugroup name-of-unitgroup
psu create unit -net IP-address/net mask
psu addto ugroup name-of-unitgroup IP-address/net mask

Protocol Unit A protocol unit consists of the name of the protocol and the version number
written as protocol-name/version-number, e.g., xrootd/3.

psu create ugroup name-of-unitgroup
psu create unit -protocol protocol-name/version-number
psu addto ugroup name-of-unitgroup protocol-name/version-number

Storage Class Unit A storage class unit is given by a storage class. It is satisfied if the request-
ed file has this storage class. Simple wild cards are allowed: for this it is
important to know that a storage class must always contain exactly one @-
symbol as will be explained in the section called “Storage Classes”. In a
storage class unit, either the part before the @-symbol or both parts may
be replaced by a *-symbol; for example, *@osm and *@* are both valid
storage class units whereas something@* is invalid. The *-symbol rep-
resents a limited wildcard: any string that doesn’t contain an @-symbol will
match.

psu create ugroup name-of-unitgroup
psu create unit -store StoreName:StorageGroup@type-of-storage-system
psu addto ugroup name-of-unitgroup StoreName:StorageGroup@type-of-
storage-system

Cache Class Unit A cache class unit is given by a cache class. It is satisfied, if the cache class
of the requested file agrees with it.

psu create ugroup name-of-unitgroup
psu create unit -dcache name-of-cache-class
psu addto ugroup name-of-unitgroup name-of-cache-class

Preference Values for Type of Transfer

The conditions for the type of transfer are not specified with units. Instead, each link contains four
attributes -readpref, -writepref, -p2ppref and -cachepref, which specify a preference

The poolmanager Service

58

value for the respective types of transfer. If all the unit groups in the link are matched, the corresponding
preference is assigned to each pool the link points to. Since we are ignoring different preference values
at the moment, a preference of 0 stands for no and a non-zero preference stands for yes. A negative
value for -p2ppref means, that the value for -p2ppref should equal the one for the -readpref.

Multiple non-zero Preference Values

Note

This explanation of the preference values can be skipped at first reading. It will not be relevant,
if all non-zero preference values are the same. If you want to try configuring the pool manager
right now without bothering about the preferences, you should only use 0 (for no) and, say, 10
(for yes) as preferences. You can choose -p2ppref=-1 if it should match the value for -
readpref. The first examples below are of this type.

If several different non-zero preference values are used, the PSU will not generate a single list but a set
of lists, each containing pools with the same preference. The Cost Manager will use the list of pools
with highest preference and select the one with the lowest cost for the transfer. Only if all pools with the
highest preference are offline, the next list will be considered by the Cost Manager. This can be used to
configure a set of fall-back pools which are used if none of the other pools are available.

Pool Groups

Pools can be grouped together to pool groups.

psu create pgroup name-of-poolgroup
psu create pool name-of-pool
psu addto pgroup name-of-poolgroup name-of-pool

Consider a host pool1 with two pools, pool1_1 and pool1_2, and a host pool2 with one pool
pool2_1. If you want to treat them in the same way, you would create a pool group and put all of
them in it:

psu create pgroup normal-pools
psu create pool pool1_1
psu addto pgroup normal-pools pool1_1
psu create pool pool1_2
psu addto pgroup normal-pools pool1_2
psu create pool pool2_1
psu addto pgroup normal-pools pool2_1

If you later want to treat pool1_2 differently from the others, you would remove it from this pool
group and add it to a new one:

psu removefrom pgroup normal-pools pool1_2
psu create pgroup special-pools
psu addto pgroup special-pools pool1_2

In the following, we will assume that the necessary pool groups already exist. All names ending with
-pools will denote pool groups.

Note that a pool-node will register itself with the PoolManager: The pool will be created within
the PSU and added to the pool group default, if that exists. This is why the dCache system will
automatically use any new pool-nodes in the standard configuration: All pools are in default and can
therefore handle any request.

The poolmanager Service

59

Define a link

Now we have everything we need to define a link.

psu create ugroup name-of-unitgroup
psu create unit - type unit
psu addto ugroup name-of-unitgroup unit

psu create pgroup poolgroup
psu create pool pool
psu addto pgroup poolgroup pool

psu create link link name-of-unitgroup
psu set link link -readpref=10 -writepref=0 -cachepref=10-p2ppref=-1
psu add link link poolgroup

Examples
Find some examples for the configuration of the PSU below.

Separate Write and Read Pools

The dCache we are going to configure receives data from a running experiment, stores the data onto a
tertiary storage system, and serves as a read cache for users who want to analyze the data. While the new
data from the experiment should be stored on highly reliable and therefore expensive systems, the cache
functionality may be provided by inexpensive hardware. It is therefore desirable to have a set of pools
dedicated for writing the new data and a separate set for reading.

The simplest configuration for such a setup would consist of two links “write-link” and “read-link”. The
configuration is as follows:

psu create pgroup read-pools
psu create pool pool1
psu addto pgroup read-pools pool1
psu create pgroup write-pools
psu create pool pool2
psu addto pgroup write-pools pool2

psu create unit -net 0.0.0.0/0.0.0.0
psu create ugroup allnet-cond
psu addto ugroup allnet-cond 0.0.0.0/0.0.0.0

psu create link read-link allnet-cond
psu set link read-link -readpref=10 -writepref=0 -cachepref=10
psu add link read-link read-pools

psu create link write-link allnet-cond
psu set link write-link -readpref=0 -writepref=10 -cachepref=0
psu add link write-link write-pools

Why is the unit group allnet-cond necessary? It is used as a condition which is always true in both
links. This is needed, because each link must contain at least one unit group.

Restricted Access by IP Address

You might not want to give access to the pools for the whole network, as in the previous example (the
section called “Separate Write and Read Pools”), though.

Assume, the experiment data is copied into the cache from the hosts with IP 111.111.111.201,
111.111.111.202, and 111.111.111.203. As you might guess, the subnet of the site is

The poolmanager Service

60

111.111.111.0/255.255.255.0. Access from outside should be denied. Then you would mod-
ify the above configuration as follows:

psu create pgroup read-pools
psu create pool pool1
psu addto pgroup read-pools pool1
psu create pgroup write-pools
psu create pool pool2
psu addto pgroup write-pools pool2

psu create unit -store *@*

psu create unit -net 111.111.111.0/255.255.255.0
psu create unit -net 111.111.111.201/255.255.255.255
psu create unit -net 111.111.111.202/255.255.255.255
psu create unit -net 111.111.111.203/255.255.255.255

psu create ugroup write-cond
psu addto ugroup write-cond 111.111.111.201/255.255.255.255
psu addto ugroup write-cond 111.111.111.202/255.255.255.255
psu addto ugroup write-cond 111.111.111.203/255.255.255.255

psu create ugroup read-cond
psu addto ugroup read-cond 111.111.111.0/255.255.255.0
psu addto ugroup read-cond 111.111.111.201/255.255.255.255
psu addto ugroup read-cond 111.111.111.202/255.255.255.255
psu addto ugroup read-cond 111.111.111.203/255.255.255.255

psu create link read-link read-cond
psu set link read-link -readpref=10 -writepref=0 -cachepref=10
psu add link read-link read-pools

psu create link write-link write-cond
psu set link write-link -readpref=0 -writepref=10 -cachepref=0
psu add link write-link write-pools

Important

For a given transfer exactly zero or one storage class unit, cache class unit, net
unit and protocol unit will match. As always the most restrictive one will match,
the IP 111.111.111.201 will match the 111.111.111.201/255.255.255.255
unit and not the 111.111.111.0/255.255.255.0 unit. Therefore if you only add
111.111.111.0/255.255.255.0 to the unit group “read-cond”, the transfer request com-
ing from the IP 111.111.111.201 will only be allowed to write and not to read. The same
is true for transfer requests from 111.111.111.202 and 111.111.111.203.

Reserving Pools for Storage and Cache Classes

If pools are financed by one experimental group, they probably do not like it if they are also used by
another group. The best way to restrict data belonging to one experiment to a set of pools is with the
help of storage class conditions. If more flexibility is needed, cache class conditions can be used for
the same purpose.

Assume, data of experiment A obtained in 2010 is written into subdirectories in the namespace tree which
are tagged with the storage class exp-a:run2010@osm, and similarly for the other years. (How this
is done is described in the section called “Storage Classes”.) Experiment B uses the storage class exp-
b:alldata@osm for all its data. Especially important data is tagged with the cache class important.
(This is described in the section called “Cache Class”.) A suitable setup would be

psu create pgroup exp-a-pools
psu create pool pool1
psu addto pgroup exp-a-pools pool1

psu create pgroup exp-b-pools

The poolmanager Service

61

psu create pool pool2
psu addto pgroup exp-b-pools pool2

psu create pgroup exp-b-imp-pools
psu create pool pool3
psu addto pgroup exp-b-imp-pools pool3

psu create unit -net 111.111.111.0/255.255.255.0
psu create ugroup allnet-cond
psu addto ugroup allnet-cond 111.111.111.0/255.255.255.0

psu create ugroup exp-a-cond
psu create unit -store exp-a:run2011@osm
psu addto ugroup exp-a-cond exp-a:run2011@osm
psu create unit -store exp-a:run2010@osm
psu addto ugroup exp-a-cond exp-a:run2010@osm

psu create link exp-a-link allnet-cond exp-a-cond
psu set link exp-a-link -readpref=10 -writepref=10 -cachepref=10
psu add link exp-a-link exp-a-pools

psu create ugroup exp-b-cond
psu create unit -store exp-b:alldata@osm
psu addto ugroup exp-b-cond exp-b:alldata@osm

psu create ugroup imp-cond
psu create unit -dcache important
psu addto ugroup imp-cond important

psu create link exp-b-link allnet-cond exp-b-cond
psu set link exp-b-link -readpref=10 -writepref=10 -cachepref=10
psu add link exp-b-link exp-b-pools

psu create link exp-b-imp-link allnet-cond exp-b-cond imp-cond
psu set link exp-b-imp-link -readpref=20 -writepref=20 -cachepref=20
psu add link exp-b-link exp-b-imp-pools

Data tagged with cache class “important” will always be written and read from pools in the pool
group exp-b-imp-pools, except when all pools in this group cannot be reached. Then the pools in
exp-a-pools will be used.

Note again that these will never be used otherwise. Not even, if all pools in exp-b-imp-pools are
very busy and some pools in exp-a-pools have nothing to do and lots of free space.

The central IT department might also want to set up a few pools, which are used as fall-back, if none of
the pools of the experiments are functioning. These will also be used for internal testing. The following
would have to be added to the previous setup:

psu create pgroup it-pools
psu create pool pool_it
psu addto pgroup it-pools pool_it

psu create link fallback-link allnet-cond
psu set link fallback-link -readpref=5 -writepref=5 -cachepref=5
psu add link fallback-link it-pools

Note again that these will only be used, if none of the experiments pools can be reached, or if
the storage class is not of the form exp-a:run2009@osm, exp-a:run2010@osm, or exp-
b:alldata@osm. If the administrator fails to create the unit exp-a:run2005@osm and add it to
the unit group exp-a-cond, the fall-back pools will be used eventually.

Storage Classes
The storage class is a string of the form StoreName:StorageGroup@type-of-stor-
age-system, where type-of-storage-system denotes the type of storage system in use, and

The poolmanager Service

62

StoreName:StorageGroup is a string describing the storage class in a syntax which depends on the
storage system. In general use type-of-storage-system=osm.

Consider for example the following setup:

[root] # /usr/bin/chimera-cli lstag /data/experiment-a
Total: 2
OSMTemplate
sGroup
[root] # /usr/bin/chimera-cli readtag /data/experiment-a OSMTemplate
StoreName myStore
[root] # /usr/bin/chimera-cli readtag /data/experiment-a sGroup
STRING

This is the setup after a fresh installation and it will lead to the storage class myStore:STRING@osm.
An adjustment to more sensible values will look like

[root] # echo "StoreName exp-a" | /usr/bin/chimera-cli Writetag /data/experiment-a OSMTemplate
[root] # echo "run2010" | /usr/bin/chimera-cli Writetag /data/experiment-a sGroup

and will result in the storage class exp-a:run2010@osm. To summarize: The storage class will de-
pend on the directory the data is stored in and is configurable.

Cache Class
Storage classes might already be in use for the configuration of a tertiary storage system. In most cases
they should be flexible enough to configure the PSU. However, in rare cases the existing configuration
and convention for storage classes might not be flexible enough.

Consider for example a situation, where data produced by an experiment always has the same storage
class exp-a:alldata@osm. This is good for the tertiary storage system, since all data is supposed
to go to the same tape set sequentially. However, the data also contains a relatively small amount of
meta-data, which is accessed much more often by analysis jobs than the rest of the data. You would like
to keep the meta-data on a dedicated set of dCache pools. However, the storage class does not provide
means to accomplish that.

The cache class of a directory is set by the tag cacheClass as follows:

[root] # echo "metaData" > ".(tag)(cacheClass)"

In the above example the meta-data is stored in directories which are tagged in this way.

There is a nice trick for easy checking of the existing tags in one directory:

[root] # grep '' `cat '.(tags)()'`
.(tag)(OSMTemplate):StoreName exp-a
.(tag)(sGroup):run2010
.(tag)(cacheClass):metaData

This only works, if the quote-symbols are used correctly. (tick, tick, back-tick, tick, tick, back-tick).

Tags are inherited by sub-directories: Changing a tag of a directory will change the tag of each sub-
directory, if the tag has never been changed for this sub-directory directly. Changing tags breaks these
inheritance links. Directories in namespace should never be moved, since this will mess up the inheri-
tance structure and eventually break the whole system.

The poolmanager Service

63

Link Groups
The PoolManager supports a type of objects called link groups. These link groups are used by the
SRM SpaceManager to make reservations against space. Each link group corresponds to a number of
dCache pools in the following way: A link group is a collection of links and each link points to a set
of pools. Each link group knows about the size of its available space, which is the sum of all sizes of
available space in all the pools included in this link group.

To create a new link group login to the Admin Interface and cd to the PoolManager.

(local) admin > cd PoolManager
(PoolManager) admin > psu create linkGroup linkgroup
(PoolManager) admin > psu addto linkGroup linkgroup link
(PoolManager) admin > save

With save the changes will be saved to the file /etc/dcache/PoolManager.conf.

Note

You can also edit the file /etc/dcache/PoolManager.conf to create a new link group.
Please make sure that it already exists. Otherwise you will have to create it first via the Admin
Interface by

(PoolManager) admin > save

Edit the file /etc/dcache/PoolManager.conf

psu create linkGroup linkgroup
psu addto linkGroup linkgroup link

After editing this file you will have to restart the domain which contains the PoolManager
cell to apply the changes.

Note

Administrators will have to take care, that a pool is not present in more than one link group.

Properties of space reservation. The dCache administrator can specify a RetentionPolicy and
an AccessLatency for the space reservation, where RetentionPolicy describes the quality of
the storage service that will be provided for the data (files) stored in this space reservation and Access-
Latency describes the availability of this data.

A link group has five boolean properties called replicaAllowed, outputAllowed, custodi-
alAllowed, onlineAllowed and nearlineAllowed. The values of these properties (true
or false) can be configured via the Admin Interface or directly in the file /opt/d-cache/con-
fig/PoolManager.conf.

The link groups contained in a space reservation match the RetentionPolicy and the AccessLa-
tency of the space reservation.

(PoolManager) admin > psu set linkGroup custodialAllowed linkgroup true|false
(PoolManager) admin > psu set linkGroup outputAllowed linkgroup true|false
(PoolManager) admin > psu set linkGroup replicaAllowed linkgroup true|false
(PoolManager) admin > psu set linkGroup onlineAllowed linkgroup true|false

The poolmanager Service

64

(PoolManager) admin > psu set linkGroup nearlineAllowed linkgroup true|false

Moreover an attribute can be assigned to a link group.

(PoolManager) admin > psu set linkGroup attribute linkgroup key=value

Possible assignments for attributes are:

(PoolManager) admin > psu set linkGroup attribute name-of-LinkGroup VO=dteam001
(PoolManager) admin > psu set linkGroup attribute name-of-LinkGroup VO=cms001
(PoolManager) admin > psu set linkGroup attribute name-of-LinkGroup HSM=osm

Note

Please note that that it is up to administrators that the link groups’ attributes are specified cor-
rectly.

For example dCache will not complain if the link group that does not support tape backend will
be declared as one that supports custodial.

The Cost Module
From the allowable pools as determined by the pool selection unit, the pool manager determines the pool
used for storing or reading a file by calculating a cost value for each pool. The pool with the lowest
cost is used.

If a client requests to read a file which is stored on more than one allowable pool, the performance costs
are calculated for these pools. In short, this cost value describes how much the pool is currently occupied
with transfers.

If a pool has to be selected for storing a file, which is either written by a client or restored from a tape
backend, this performance cost is combined with a space cost value to a total cost value for the decision.
The space cost describes how much it “hurts” to free space on the pool for the file.

The cost module is responsible for calculating the cost values for all pools. The pools regularly send all
necessary information about space usage and request queue lengths to the cost module. It can be regarded
as a cache for all this information. This way it is not necessary to send “get cost” requests to the pools
for each client request. The cost module interpolates the expected costs until a new precise information
package is coming from the pools. This mechanism prevents clumping of requests.

Calculating the cost for a data transfer is done in two steps. First, the cost module merges all information
about space and transfer queues of the pools to calucate the performance and space costs separately.
Second, in the case of a write or stage request, these two numbers are merged to build the total cost
for each pool. The first step is isolated within a separate loadable class. The second step is done by the
cost module.

The Performance Cost
The load of a pool is determined by comparing the current number of active and waiting transfers to the
maximum number of concurrent transfers allowed. This is done separately for each of the transfer types
(store, restore, pool-to-pool client, pool-to-pool server, and client request) with the following equation:

perfCost(per Type) = (activeTransfers + waitingTransfers) / maxAllowed .

The poolmanager Service

65

The maximum number of concurrent transfers (maxAllowed) can be configured with the commands st
set max active (store), rh set max active (restore), mover set max active (client request), mover set
max active -queue=p2p (pool-to-pool server), and pp set max active (pool-to-pool client).

Then the average is taken for each mover type where maxAllowed is not zero. For a pool where store,
restore and client transfers are allowed, e.g.,

perfCost(total) = (perfCost(store) + perfCost(restore) + perfCost(client)) / 3 ,

and for a read only pool:

perfCost(total) = (perfCost(restore) + perfCost(client)) / 2 .

For a well balanced system, the performance cost should not exceed 1.0.

The Space Cost
In this section only the new scheme for calculating the space cost will be described. Be aware, that the
old scheme will be used if the breakeven parameter of a pool is larger or equal 1.0.

The cost value used for determining a pool for storing a file depends either on the free space on the pool
or on the age of the least recently used (LRU) file, which whould have to be deleted.

The space cost is calculated as follows:

If freeSpace > gapPara then spaceCost = 3 * newFileSize / freeSpace

If freeSpace <= gapPara and lruAge < 60 then spaceCost = 1 + costForMinute

If freeSpace <= gapPara and lruAge >= 60 then spaceCost = 1 + costForMinute * 60 /
lruAge

where the variable names have the following meanings:

freeSpace The free space left on the pool

newFileSize The size of the file to be written to one of the pools, and at least 50MB.

lruAge The age of the least recently used file on the pool.

gapPara The gap parameter. Default is 4GB. The size of free space below which it will be
assumed that the pool is full and consequently the least recently used file has to
be removed. If, on the other hand, the free space is greater than gapPara, it will
be expensive to store a file on the pool which exceeds the free space.

It can be set per pool with the set gap command. This has to be done in the pool
cell and not in the pool manager cell. Nevertheless it only influences the cost cal-
culation scheme within the pool manager and not the bahaviour of the pool itself.

costForMinute A parameter which fixes the space cost of a one-minute-old LRU file to (1 +
costForMinute). It can be set with the set breakeven, where

costForMinute = breakeven * 7 * 24 * 60.

I.e. the the space cost of a one-week-old LRU file will be (1 + breakeven). Note
again, that all this only applies if breakeven < 1.0

The poolmanager Service

66

The prescription above can be stated a little differently as follows:

If freeSpace > gapPara then spaceCost = 3 * newFileSize / freeSpace

If freeSpace <= gapPara then spaceCost = 1 + breakeven * 7 * 24 * 60 * 60 / lruAge ,

where newFileSize is at least 50MB and lruAge at least one minute.

Rationale

As the last version of the formula suggests, a pool can be in two states: Either freeSpace > gapPara
or freeSpace <= gapPara - either there is free space left to store files without deleting cached files or
there isn’t.

Therefore, gapPara should be around the size of the smallest files which frequently might be written
to the pool. If files smaller than gapPara appear very seldom or never, the pool might get stuck in the
first of the two cases with a high cost.

If the LRU file is smaller than the new file, other files might have to be deleted. If these are much younger
than the LRU file, this space cost calculation scheme might not lead to a selection of the optimal pool.
However, in praxis this happens very seldomly and this scheme turns out to be very efficient.

The Total Cost
The total cost is a linear combination of the performance and space cost. I.e. totalCost = ccf * perfCost
+ scf * spaceCost , where ccf and scf are configurable with the command set pool decision. E.g.,

(PoolManager) admin > set pool decision -spacecostfactor=3 -cpucostfactor=1

will give the space cost three times the weight of the performance cost.

67

Chapter 9. The dCache Tertiary
Storage System Interface

Introduction
One of the features dCache provides is the ability to migrate files from its disk repository to one or more
connected Tertiary Storage Systems (TSS) and to move them back to disk when necessary. Although
the interface between dCache and the TSS is kept simple, dCache assumes to interact with an intelligent
TSS. dCache does not drive tape robots or tape drives by itself. More detailed requirements to the storage
system are described in one of the subsequent paragraphs.

Scope of this chapter
This document describes how to enable a standard dCache installation to interact with a Tertiary Storage
System. In this description we assume that

• every dCache disk pool is connected to only one TSS instance.

• all dCache disk pools are connected to the same TSS instance.

• the dCache instance has not yet been populated with data, or only with a negligible amount of files.

In general, not all pools need to be configured to interact with the same Tertiary Storage System or with
a storage system at all. Furthermore pools can be configured to have more than one Tertiary Storage
System attached, but all those cases are not in the scope of the document.

Requirements for a Tertiary Storage Sys-
tem
dCache can only drive intelligent Tertiary Storage Systems. This essentially means that tape robot and
tape drive operations must be done by the TSS itself and that there is some simple way to abstract the
file PUT, GET and REMOVE operation.

Migrating Tertiary Storage Systems with a file
system interface.

Most migrating storage systems provide a regular POSIX file system interface. Based on rules, data is
migrated from primary to tertiary storage (mostly tape systems). Examples for migrating storage systems
are:

• HPSS [http://www.hpss-collaboration.org/] (High Performance Storage System)

• DMF [http://www.sgi.com/products/storage/software/dmf.html] (Data Migration Facility)

http://www.hpss-collaboration.org/
http://www.hpss-collaboration.org/
http://www.sgi.com/products/storage/software/dmf.html
http://www.sgi.com/products/storage/software/dmf.html

The dCache Tertiary Stor-
age System Interface

68

Tertiary Storage Systems with a minimalistic PUT,
GET and REMOVE interface
Some tape systems provide a simple PUT, GET, REMOVE interface. Typically, a copy-like application
writes a disk file into the TSS and returns an identifier which uniquely identifies the written file within
the Tertiary Storage System. The identifier is sufficient to get the file back to disk or to remove the file
from the TSS. Examples are:

• OSM [http://www.qstar.com/qstar-products/qstar-object-storage-manager] (Object Storage Manager)

• Enstore [http://www-ccf.fnal.gov/enstore/] (FERMIlab)

How dCache interacts with a Tertiary
Storage System
Whenever dCache decides to copy a file from disk to tertiary storage a user-provided executable
which can be either a script or a binary is automatically started on the pool where the file is located.
That executable is expected to write the file into the Backend Storage System and to return a URI,
uniquely identifying the file within that storage system. The format of the URI as well as the arguments
to the executable, are described later in this document. The unique part of the URI can either be
provided by the storage element, in return of the STORE FILE operation, or can be taken from dCache.
A non-error return code from the executable lets dCache assume that the file has been successfully
stored and, depending on the properties of the file, dCache can decide to remove the disk copy if space
is running short on that pool. On a non-zero return from the executable, the file doesn’t change its
state and the operation is retried or an error flag is set on the file, depending on the error return code
from the executable.

If dCache needs to restore a file to disk the same executable is launched with a different set of
arguments, including the URI, provided when the file was written to tape. It is in the responsibility of the
executable to fetch the file back from tape based on the provided URI and to return 0 if the FETCH
FILE operation was successful or non-zero otherwise. In case of a failure the pool retries the operation
or dCache decides to fetch the file from tape using a different pool.

Details on the TSS-support executable
Summary of command line options
This part explains the syntax of calling the executable that supports STORE FILE, FETCH FILE
and REMOVE FILE operations.

put pnfsID filename -si=storage-information [other-options...]

get pnfsID filename -si=storage-information -uri=storage-uri [other-op-
tions...]

remove -uri=storage-uri [other-options...]

• put / get / remove: these keywords indicate the operation to be performed.

• put: copy file from disk to TSS.

• get: copy file back from TSS to disk.

http://www.qstar.com/qstar-products/qstar-object-storage-manager
http://www.qstar.com/qstar-products/qstar-object-storage-manager
http://www-ccf.fnal.gov/enstore/
http://www-ccf.fnal.gov/enstore/

The dCache Tertiary Stor-
age System Interface

69

• remove: remove the file from TSS.

• pnfsID: The internal identifier (i-node) of the file within dCache. The pnfsID is unique within a
single dCache instance and globally unique with a very high probability.

• filename: is the full path of the local file to be copied to the TSS (for put) and respectively into
which the file from the TSS should be copied (for get).

• storage-information: the storage information of the file, as explained below.

• storage-uri: the URI, which was returned by the executable, after the file was written to
tertiary storage. In order to get the file back from the TSS the information of the URI is preferred over
the information in the storage-information.

• other-options: -key = value pairs taken from the TSS configuration commands of the pool
'setup' file. One of the options, always provided is the option -command=full path of this
executable.

Storage Information

The storage-information is a string in the format

-si=size=bytes;new=true/false;stored=true/false;sClass=StorageClass;\
cClass0CacheClass;hsm=StorageType;key=value;[key=value;[...]]

-si=size=1048576000;new=true;stored=false;sClass=desy:cms-sc3;cClass=-;hsm=osm;Host=desy;

Mandatory storage information’s keys

• size: Size of the file in bytes

• new: False if file already in the dCache; True otherwise

• stored: True if file already stored in the TSS; False otherwise

• sClass: HSM depended, is used by the poolmanager for pool attraction.

• cClass: Parent directory tag (cacheClass). Used by the poolmanager for pool attraction. May
be '-'.

• hsm: Storage manager name (enstore/osm). Can be overwritten by the parent directory tag (hsmType).

OSM specific storage information’s keys

• group: The storage group of the file to be stored as specified in the ".(tag)(sGroup)" tag of the parent
directory of the file to be stored.

• store: The store name of the file to be stored as specified in the ".(tag)(OSMTemplate)" tag of the
parent directory of the file to be stored.

• bfid: Bitfile ID (get and remove only) (e.g. 000451243.2542452542.25424524)

Enstore specific storage information’s keys

• group: The storage group (e.g. cdf, cms ...)

• family: The file family (e.g. sgi2test, h6nxl8, ...)

The dCache Tertiary Stor-
age System Interface

70

• bfid: Bitfile ID (get only) (e.g. B0MS105746894100000)

• volume: Tape Volume (get only) (e.g. IA6912)

• location: Location on tape (get only) (e.g. : 0000_000000000_0000117)

There might be more key values pairs which are used by the dCache internally and which should not
affect the behaviour of the executable.

Storage URI

The storage-uri is formatted as follows:

hsmType://hsmInstance/?store=storename&group=groupname&bfid=bfid

• hsmType: The type of the Tertiary Storage System

• hsmInstance: The name of the instance

• storename and groupname : The store and group name of the file as provided by the arguments
to this executable.

• bfid: The unique identifier needed to restore or remove the file if necessary.

A storage-uri:

osm://osm/?store=sql&group=chimera&bfid=3434.0.994.1188400818542

Summary of return codes
Return Code Meaning Behaviour for PUT

FILE
Behaviour for GET
FILE

30 <= rc < 40 User defined Deactivates request Reports problem to
poolmanager

41 No space left on device Pool retries Disables pool and re-
ports problem to pool-
manager

42 Disk read I/O error Pool retries Disables pool and re-
ports problem to pool-
manager

43 Disk write I/O error Pool retries Disables pool and re-
ports problem to pool-
manager

other - Pool retries Reports problem to
poolmanager

The executable and the STORE FILE operation
Whenever a disk file needs to be copied to a Tertiary Storage System dCache automatically launches an
executable on the pool containing the file to be copied. Exactly one instance of the executable
is started for each file. Multiple instances of the executable may run concurrently for different files.
The maximum number of concurrent instances of the executables per pool as well as the full path

The dCache Tertiary Stor-
age System Interface

71

of the executable can be configured in the ’setup’ file of the pool as described in the section called
“The pool ’setup’ file”.

The following arguments are given to the executable of a STORE FILE operation on startup.

put pnfsID filename -si=storage-information more options
Details on the meaning of certain arguments are described in the section called “Summary of command
line options”.

With the arguments provided the executable is supposed to copy the file into the Tertiary Storage
System. The executable must not terminate before the transfer of the file was either successful or
failed.

Success must be indicated by a 0 return of the executable. All non-zero values are interpreted as a
failure which means, dCache assumes that the file has not been copied to tape.

In case of a 0 return code the executable has to return a valid storage URI to dCache in formate:

hsmType://hsmInstance/?store=storename&group=groupname&bfid=bfid

Details on the meaning of certain parameters are described above.

The bfid can either be provided by the TSS as result of the STORE FILE operation or the pnfsID
may be used. The latter assumes that the file has to be stored with exactly that pnfsID within the TSS.
Whatever URI is chosen, it must allow to uniquely identify the file within the Tertiary Storage System.

Note

Only the URI must be printed to stdout by the executable. Additional information printed
either before or after the URI will result in an error. stderr can be used for additional debug
information or error messages.

The executable and the FETCH FILE operation
Whenever a disk file needs to be restored from a Tertiary Storage System dCache automatically launches
an executable on the pool containing the file to be copied. Exactly one instance of the executable
is started for each file. Multiple instances of the executable may run concurrently for different files.
The maximum number of concurrent instances of the executable per pool as well as the full path
of the executable can be configured in the ’setup’ file of the pool as described in the section called
“The pool ’setup’ file”.

The following arguments are given to the executable of a FETCH FILE operation on startup:

get pnfsID filename -si=storage-information -uri=storage-uri more options
Details on the meaning of certain arguments are described in the section called “Summary of command
line options”. For return codes see the section called “Summary of return codes”.

The executable and the REMOVE FILE operation
Whenever a file is removed from the dCache namespace (file system) a process inside dCache makes sure
that all copies of the file are removed from all internal and external media. The pool which is connected to
the TSS which stores the file is activating the executable with the following command line options:

remove -uri=storage-uri more options
Details on the meaning of certain arguments are described in the section called “Summary of command
line options”. For return codes see the section called “Summary of return codes”.

The dCache Tertiary Stor-
age System Interface

72

The executable is supposed to remove the file from the TSS and report a zero return code. If a non-
zero error code is returned, the dCache will call the script again at a later point in time.

Configuring pools to interact with a Ter-
tiary Storage System
The executable interacting with the Tertiary Storage System (TSS), as described in the chapter
above, has to be provided to dCache on all pools connected to the TSS. The executable, either a
script or a binary, has to be made “executable” for the user, dCache is running as, on that host.

The following files have to be modified to allow dCache to interact with the TSS.

• The /var/lib/dcache/config/poolmanager.conf file (one per system)

• The pool layout file (one per pool host)

• The pool 'setup' file (one per pool)

• The namespaceDomain layout file (one per system)

After the layout files and the various ’setup’ files have been corrected, the following domains have to
be restarted :

• pool services

• dCacheDomain

• namespaceDomain

The dCache layout files

The /var/lib/dcache/config/poolmanager.conf file

To be able to read a file from the tape in case the cached file has been deleted from all pools, enable
the restore-option. The best way to do this is to log in to the Admin Interface and run the following
commands:

[example.dcache.org] (local) admin > cd PoolManager
[example.dcache.org] (PoolManager) admin > pm set -stage-allowed=yes
[example.dcache.org] (PoolManager) admin > save

A restart of the dCacheDomain is not necessary in this case.

Alternatively, if the file /var/lib/dcache/config/poolmanager.conf already exists then
you can add the entry

pm set -stage allowed=yes

and restart the dCacheDomain.

Warning
Do not create the file /var/lib/dcache/config/poolmanager.conf with this single
entry! This will result in an error.

The dCache Tertiary Stor-
age System Interface

73

The pool layout
The dCache layout file must be modified for each pool node connected to a TSS. If your pool nodes have
been configured correctly to work without TSS, you will find the entry lfs=precious in the layout
file (that is located in /etc/dcache/layouts and in the file /etc/dcache/dcache.conf re-
spectively) for each pool service. This entry is a disk-only-option and has to be removed for each pool
which should be connected to a TSS. This will default the lfs parameter to hsm which is exactly what
we need.

The pool ’setup’ file
The pool ’setup’ file is the file $poolHomeDir/$poolName/setup. It mainly defines 3 details
related to TSS connectivity.

• Pointer to the executable which is launched on storing and fetching files.

• The maximum number of concurrent STORE FILE requests allowed per pool.

• The maximum number of concurrent FETCH FILE requests allowed per pool.

Define the executable and Set the maximum number of concurrent PUT and GET operations:

hsm set hsmType [hsmInstanceName] [-command=/path/to/executable] [-key=value]

#
PUT operations
set the maximum number of active PUT operations >= 1
#
st set max active numberOfConcurrentPUTS

#
GET operations
set the maximum number of active GET operations >= 1
#
rh set max active numberOfConcurrentGETs

• hsmType: the type ot the TSS system. Must be set to “osm” for basic setups.

• hsmInstanceName: the instance name of the TSS system. Must be set to “osm” for basic setups.

• /path/to/executable: the full path to the executable which should be launched for each
TSS operation.

Setting the maximum number of concurrent PUT and GET operations.

Both numbers must be non zero to allow the pool to perform transfers.

We provide a script to simulate a connection to a TSS. To use this script place it in the directory /usr/
share/dcache/lib, and create a directory to simulate the base of the TSS.

[root] # mkdir -p /hsmTape/data

Login to the Admin Interface to change the entry of the pool ’setup’ file for a pool named pool_1.

(local) admin > cd pool_1
(pool_1) admin > hsm set osm osm
(pool_1) admin > hsm set osm -command=/usr/share/dcache/lib/hsmscript.sh
(pool_1) admin > hsm set osm -hsmBase=/hsmTape
(pool_1) admin > st set max active 5
(pool_1) admin > rh set max active 5
(pool_1) admin > save

The dCache Tertiary Stor-
age System Interface

74

The namespace layout

In order to allow dCache to remove files from attached TSSes, the “cleaner.hsm = enabled” must be
added immediately underneath the [namespaceDomain/cleaner] service declaration:

[namespaceDomain]
 ... other services ...
[namespaceDomain/cleaner]
cleaner.hsm = enabled
.. more ...

What happens next
After restarting the necessary dCache domains, pools, already containing files, will start transferring
them into the TSS as those files only have a disk copy so far. The number of transfers is determined by
the configuration in the pool ’setup’ file as described above in the section called “The pool ’setup’ file”.

How to Store-/Restore files via the Admin
Interface
In order to see the state of files within a pool, login into the pool in the admin interface and run the
command rep ls.

[example.dcache.org] (poolname) admin > rep ls

The output will have the following format:

PNFSID <MODE-BITS(LOCK-TIME)[OPEN-COUNT]> SIZE si={STORAGE-CLASS}

• PNFSID: The pnfsID of the file

• MODE-BITS:

 CPCScsRDXEL
 |||||||||||
 ||||||||||+-- (L) File is locked (currently in use)
 |||||||||+--- (E) File is in error state
 ||||||||+---- (X) File is pinned (aka "sticky")
 |||||||+----- (D) File is in process of being destroyed
 ||||||+------ (R) File is in process of being removed
 |||||+------- (s) File sends data to back end store
 ||||+-------- (c) File sends data to client (dCap,FTP...)
 |||+--------- (S) File receives data from back end store
 ||+---------- (C) File receives data from client (dCap,FTP)
 |+----------- (P) File is precious, i.e., it is only on disk
 +------------ (C) File is on tape and only cached on disk.

• LOCK-TIME: The number of milli-seconds this file will still be locked. Please note that this is an
internal lock and not the pin-time (SRM).

• OPEN-COUNT: Number of clients currently reading this file.

• SIZE: File size

• STORAGE-CLASS: The storage class of this file.

The dCache Tertiary Stor-
age System Interface

75

[example.dcache.org] (pool_1) admin > rep ls
00008F276A952099472FAD619548F47EF972 <-P---------L(0)[0]> 291910 si={dteam:STATIC}
00002A9282C2D7A147C68A327208173B81A6 <-P---------L(0)[0]> 2011264 si={dteam:STATIC}
0000EE298D5BF6BB4867968B88AE16BA86B0 <C----------L(0)[0]> 1976 si={dteam:STATIC}

In order to flush a file to the tape run the command flush pnfsid.

[example.dcache.org] (poolname) admin > flush pnfsid pnfsid

[example.dcache.org] (pool_1) admin > flush pnfsid 00002A9282C2D7A147C68A327208173B81A6
Flush Initiated

A file that has been flushed to tape gets the flag ’C’.

[example.dcache.org] (pool_1) admin > rep ls
00008F276A952099472FAD619548F47EF972 <-P---------L(0)[0]> 291910 si={dteam:STATIC}
00002A9282C2D7A147C68A327208173B81A6 <C----------L(0)[0]> 2011264 si={dteam:STATIC}
0000EE298D5BF6BB4867968B88AE16BA86B0 <C----------L(0)[0]> 1976 si={dteam:STATIC}

To remove such a file from the repository run the command rep rm.

[example.dcache.org] (poolname) admin > rep rm pnfsid

[example.dcache.org] (pool_1) admin > rep rm 00002A9282C2D7A147C68A327208173B81A6
Removed 00002A9282C2D7A147C68A327208173B81A6

In this case the file will be restored when requested.

To restore a file from the tape you can simply request it by initializing a reading transfer or you can
fetch it by running the command rh restore.

[example.dcache.org] (poolname) admin > rh restore [-block] pnfsid

[example.dcache.org] (pool_1) admin > rh restore 00002A9282C2D7A147C68A327208173B81A6
Fetch request queued

How to monitor what’s going on
This section briefly describes the commands and mechanisms to monitor the TSS PUT, GET and REMOVE
operations. dCache provides a configurable logging facility and a Command Line Admin Interface to
query and manipulate transfer and waiting queues.

Log Files
By default dCache is configured to only log information if something unexpected happens. However,
to get familiar with Tertiary Storage System interactions you might be interested in more details. This
section provides advice on how to obtain this kind of information.

The executable log file
Since you provide the executable, interfacing dCache and the TSS, it is in your responsibility to
ensure sufficient logging information to be able to trace possible problems with either dCache or the
TSS. Each request should be printed with the full set of parameters it receives, together with a timestamp.
Furthermore information returned to dCache should be reported.

The dCache Tertiary Stor-
age System Interface

76

dCache log files in general

In dCache, each domain (e.g. dCacheDomain, poolDomain etc) prints logging information into its
own log file named after the domain. The location of those log files it typically the /var/log or /var/
log/dCache directory depending on the individual configuration. In the default logging setup only
errors are reported. This behavior can be changed by either modifying /etc/dcache/logback.xml
or using the dCache CLI to increase the log level of particular components as described below.

Increase the dCache log level by changes in /etc/dcache/
logback.xml

If you intend to increase the log level of all components on a particular host you would need to change
the /etc/dcache/logback.xml file as described below. dCache components need to be restarted
to activate the changes.

<threshold>
 <appender>stdout</appender>
 <logger>root</logger>
 <level>warn</level>
 </threshold>

needs to be changed to

<threshold>
 <appender>stdout</appender>
 <logger>root</logger>
 <level>info</level>
 </threshold>

Important

The change might result in a significant increase in log messages. So don’t forget to change back
before starting production operation. The next section describes how to change the log level in
a running system.

Increase the dCache log level via the Command Line Admin Interface

Login into the dCache Command Line Admin Interface and increase the log level of a particular service,
for instance for the poolmanager service:

[example.dcache.org] (local) admin > cd PoolManager
[example.dcache.org] (PoolManager) admin > log set stdout ROOT INFO
[example.dcache.org] (PoolManager) admin > log ls
stdout:
 ROOT=INFO
 dmg.cells.nucleus=WARN*
 logger.org.dcache.cells.messages=ERROR*
.....

Obtain information via the dCache Command Line
Admin Interface
The dCache Command Line Admin Interface gives access to information describing the process of stor-
ing and fetching files to and from the TSS, as there are:

The dCache Tertiary Stor-
age System Interface

77

• The Pool Manager Restore Queue. A list of all requests which have been issued to all pools for a
FETCH FILE operation from the TSS (rc ls)

• The Pool Collector Queue. A list of files, per pool and storage group, which will be scheduled for a
STORE FILE operation as soon as the configured trigger criteria match.

• The Pool STORE FILE Queue. A list of files per pool, scheduled for the STORE FILE operation.
A configurable amount of requests within this queue are active, which is equivalent to the number of
concurrent store processes, the rest is inactive, waiting to become active.

• The Pool FETCH FILE Queue. A list of files per pool, scheduled for the FETCH FILE operation.
A configurable amount of requests within this queue are active, which is equivalent to the number of
concurrent fetch processes, the rest is inactive, waiting to become active.

For evaluation purposes, the pinboard of each component can be used to track down dCache behavior.
The pinboard only keeps the most recent 200 lines of log information but reports not only errors but
informational messages as well.

Check the pinboard of a service, here the poolmanager service.

[example.dcache.org] (local) admin > cd PoolManager
[example.dcache.org] (PoolManager) admin > show pinboard 100
08.30.45 [Thread-7] [pool_1 PoolManagerPoolUp] sendPoolStatusRelay: ...
08.30.59 [writeHandler] [NFSv41-dcachetogo PoolMgrSelectWritePool ...
....

The PoolManager Restore Queue. Remove the file test.root with the pnfs-ID
00002A9282C2D7A147C68A327208173B81A6.

[example.dcache.org] (pool_1) admin > rep rm 00002A9282C2D7A147C68A327208173B81A6

Request the file test.root

[user] $ dccp dcap://example.dcache.org:/data/test.root test.root

Check the PoolManager Restore Queue:

[example.dcache.org] (local) admin > cd PoolManager
[example.dcache.org] (PoolManager) admin > rc ls
0000AB1260F474554142BA976D0ADAF78C6C@0.0.0.0/0.0.0.0-*/* m=1 r=0 [pool_1] [Staging 08.15 17:52:16]
 {0,}

The Pool Collector Queue.

[example.dcache.org] (local) admin > cd pool_1
[example.dcache.org] (pool_1) admin > queue ls -l queue
 Name: chimera:alpha
 Class@Hsm: chimera:alpha@osm
 Expiration rest/defined: -39 / 0 seconds
 Pending rest/defined: 1 / 0
 Size rest/defined: 877480 / 0
 Active Store Procs. : 0
 00001BC6D76570A74534969FD72220C31D5D

[example.dcache.org] (pool_1) admin > flush ls
Class Active Error Last/min Requests Failed
dteam:STATIC@osm 0 0 0 1 0

The pool STORE FILE Queue.

The dCache Tertiary Stor-
age System Interface

78

[example.dcache.org] (local) admin > cd pool_1
[example.dcache.org] (pool_1) admin > st ls
0000EC3A4BFCA8E14755AE4E3B5639B155F9 1 Fri Aug 12 15:35:58 CEST 2011

The pool FETCH FILE Queue.

[example.dcache.org] (local) admin > cd pool_1
[example.dcache.org] (pool_1) admin > rh ls
0000B56B7AFE71C14BDA9426BBF1384CA4B0 0 Fri Aug 12 15:38:33 CEST 2011

To check the repository on the pools run the command rep ls that is described in the beginning of the
section called “How to Store-/Restore files via the Admin Interface”.

Example of an executable to simulate a
tape backend
#!/bin/sh
#
#set -x
#
logFile=/tmp/hsm.log
#
##
#
Some helper functions
#
##...
#
print usage
#
usage() {
 echo "Usage : put|get <pnfsId> <filePath> [-si=<storageInfo>] [-key[=value] ...]" 1>&2
}
##...
#
#
printout() {
#---------
 echo "$pnfsid : $1" >>${logFile}
 return 0
}
##...
#
print error into log file and to stdout.
#
printerror() {
#---------

 if [-z "$pnfsid"] ; then
pp="000000000000000000000000000000000000"
 pp="------------------------------------"
 else
 pp=$pnfsid
 fi

 echo "$pp : (E) : $*" >>${logFile}
 echo "$pp : $*" 1>&2

}
##...
#
find a key in the storage info
#
findKeyInStorageInfo() {
#-------------------

The dCache Tertiary Stor-
age System Interface

79

 result=`echo $si | awk -v hallo=$1 -F\; '{ for(i=1;i<=NF;i++){ split($i,a,"=") ; if(a[1] ==
 hallo)print a[2]} }'`
 if [-z "$result"] ; then return 1 ; fi
 echo $result
 exit 0

}
##...
#
find a key in the storage info
#
printStorageInfo() {
#-------------------
 printout "storageinfo.StoreName : $storeName"
 printout "storageinfo.store : $store"
 printout "storageinfo.group : $group"
 printout "storageinfo.hsm : $hsmName"
 printout "storageinfo.accessLatency : $accessLatency"
 printout "storageinfo.retentionPolicy : $retentionPolicy"
 return 0
}
##...
#
assign storage info the keywords
#
assignStorageInfo() {
#-------------------

 store=`findKeyInStorageInfo "store"`
 group=`findKeyInStorageInfo "group"`
 storeName=`findKeyInStorageInfo "StoreName"`
 hsmName=`findKeyInStorageInfo "hsm"`
 accessLatency=`findKeyInStorageInfo "accessLatency"`
 retentionPolicy=`findKeyInStorageInfo "retentionPolicy"`
 return 0
}
##...
#
split the arguments into the options -<key>=<value> and the
positional arguments.
#
splitArguments() {
#----------------
#
 args=""
 while [$# -gt 0] ; do
 if expr "$1" : "-.*" >/dev/null ; then
 a=`expr "$1" : "-\(.*\)" 2>/dev/null`
 key=`echo "$a" | awk -F= '{print $1}' 2>/dev/null`
 value=`echo "$a" | awk -F= '{for(i=2;i<NF;i++)x=x $i "=" ; x=x $NF ; print x }' 2>/dev/
null`
 if [-z "$value"] ; then a="${key}=" ; fi
 eval "${key}=\"${value}\""
 a="export ${key}"
 eval "$a"
 else
 args="${args} $1"
 fi
 shift 1
 done
 if [! -z "$args"] ; then
 set `echo "$args" | awk '{ for(i=1;i<=NF;i++)print $i }'`
 fi
 return 0
}
#
#
##...
#
splitUri() {
#----------------
#
 uri_hsmName=`expr "$1" : "\(.*\)\:.*"`
 uri_hsmInstance=`expr "$1" : ".*\:\/\/\(.*\)\/.*"`
 uri_store=`expr "$1" : ".*\/\?store=\(.*\)&group.*"`

The dCache Tertiary Stor-
age System Interface

80

 uri_group=`expr "$1" : ".*group=\(.*\)&bfid.*"`
 uri_bfid=`expr "$1" : ".*bfid=\(.*\)"`
#
 if [\(-z "${uri_store}" \) -o \(-z "${uri_group}" \) -o \(-z "${uri_bfid}" \) \
 -o \(-z "${uri_hsmName}" \) -o \(-z "${uri_hsmInstance}" \)] ; then
 printerror "Illegal URI formal : $1"
 return 1
 fi
 return 0

}
###
#
echo "--------- $* `date`" >>${logFile}
#
###
#
createEnvironment() {

 if [-z "${hsmBase}"] ; then
 printerror "hsmBase not set, can't continue"
 return 1
 fi
 BASE=${hsmBase}/data
 if [! -d ${BASE}] ; then
 printerror "${BASE} is not a directory or doesn't exist"
 return 1
 fi
}
##
#--
doTheGetFile() {

 splitUri $1
 [$? -ne 0] && return 1

 createEnvironment
 [$? -ne 0] && return 1

 pnfsdir=${BASE}/$uri_hsmName/${uri_store}/${uri_group}
 pnfsfile=${pnfsdir}/$pnfsid

 cp $pnfsfile $filename 2>/dev/null
 if [$? -ne 0] ; then
 printerror "Couldn't copy file $pnfsfile to $filename"
 return 1
 fi

 return 0
}
##
#--
doTheStoreFile() {

 splitUri $1
 [$? -ne 0] && return 1

 createEnvironment
 [$? -ne 0] && return 1

 pnfsdir=${BASE}/$hsmName/${store}/${group}
 mkdir -p ${pnfsdir} 2>/dev/null
 if [$? -ne 0] ; then
 printerror "Couldn't create $pnfsdir"
 return 1
 fi
 pnfsfile=${pnfsdir}/$pnfsid

 cp $filename $pnfsfile 2>/dev/null
 if [$? -ne 0] ; then
 printerror "Couldn't copy file $filename to $pnfsfile"
 return 1
 fi

 return 0

The dCache Tertiary Stor-
age System Interface

81

}
##
#--
doTheRemoveFile() {

 splitUri $1
 [$? -ne 0] && return 1

 createEnvironment
 [$? -ne 0] && return 1

 pnfsdir=${BASE}/$uri_hsmName/${uri_store}/${uri_group}
 pnfsfile=${pnfsdir}/$uri_bfid

 rm $pnfsfile 2>/dev/null
 if [$? -ne 0] ; then
 printerror "Couldn't remove file $pnfsfile"
 return 1
 fi

 return 0
}
###
#
split arguments
#
 args=""
 while [$# -gt 0] ; do
 if expr "$1" : "-.*" >/dev/null ; then
 a=`expr "$1" : "-\(.*\)" 2>/dev/null`
 key=`echo "$a" | awk -F= '{print $1}' 2>/dev/null`
 value=`echo "$a" | awk -F= '{for(i=2;i<NF;i++)x=x $i "=" ; x=x $NF ; print x }' 2>/dev/
null`
 if [-z "$value"] ; then a="${key}=" ; fi
 eval "${key}=\"${value}\""
 a="export ${key}"
 eval "$a"
 else
 args="${args} $1"
 fi
 shift 1
 done
 if [! -z "$args"] ; then
 set `echo "$args" | awk '{ for(i=1;i<=NF;i++)print $i }'`
 fi
#
#
if [$# -lt 1] ; then
 printerror "Not enough arguments : ... put/get/remove ..."
 exit 1
fi
#
command=$1
pnfsid=$2
#
!!!!!! Hides a bug in the dCache HSM remove
#
if ["$command" = "remove"] ; then pnfsid="000000000000000000000000000000000000" ; fi
#
#
printout "Request for $command started `date`"
#
##
#
if ["$command" = "put"] ; then
#
##
#
 filename=$3
#
 if [-z "$si"] ; then
 printerror "StorageInfo (si) not found in put command"
 exit 5
 fi

The dCache Tertiary Stor-
age System Interface

82

#
 assignStorageInfo
#
 printStorageInfo
#
 if [\(-z "${store}" \) -o \(-z "${group}" \) -o \(-z "${hsmName}" \)] ; then
 printerror "Didn't get enough information to flush : hsmName = $hsmName store=$store group=
$group pnfsid=$pnfsid "
 exit 3
 fi
#
 uri="$hsmName://$hsmName/?store=${store}&group=${group}&bfid=${pnfsid}"

 printout "Created identifier : $uri"

 doTheStoreFile $uri
 rc=$?
 if [$rc -eq 0] ; then echo $uri ; fi

 printout "Request 'put' finished at `date` with return code $rc"
 exit $rc
#
#
##
#
elif ["$command" = "get"] ; then
#
##
#
 filename=$3
 if [-z "$uri"] ; then
 printerror "Uri not found in arguments"
 exit 3
 fi
#
 printout "Got identifier : $uri"
#
 doTheGetFile $uri
 rc=$?
 printout "Request 'get' finished at `date` with return code $rc"
 exit $rc
#
##
#
elif ["$command" = "remove"] ; then
#
##
#
 if [-z "$uri"] ; then
 printerror "Illegal Argument error : URI not specified"
 exit 4
 fi
#
 printout "Remove uri = $uri"
 doTheRemoveFile $uri
 rc=$?
#
 printout "Request 'remove' finished at `date` with return code $rc"
 exit $rc
#
else
#
 printerror "Expected command : put/get/remove , found : $command"
 exit 1
#
fi

83

Chapter 10. File Hopping
File hopping is a collective term in dCache, summarizing the possibility of having files being transferred
between dCache pools triggered by a variety of conditions. The most prominent examples are:

• If a file is requested by a client but the file resides on a pool from which this client, by configuration,
is not allowed to read data, the dataset is transferred to an “allowed” pool first.

• If a pool encounters a steady high load, the system may, if configured, decide to replicate files to other
pools to achieve an equal load distribution.

• HSM restore operations may be split into two steps. The first one reads data from tertiary storage to
an “HSM connected” pool and the second step takes care that the file is replicated to a general read
pool. Under some conditions this separation of HSM and non-HSM pools might become necessary
for performance reasons.

• If a dataset has been written into dCache it might become necessary to have this file replicated instant-
ly. The reasons can be, to either have a second, safe copy, or to make sure that clients don’t access
the file for reading on the write pools.

File Hopping on arrival from outside
dCache
File Hopping on arrival is a term, denoting the possibility of initiating a pool to pool transfer as the
result of a file successfully arriving on a pool from some external client. Files restored from HSM or
arriving on a pool as the result of a pool to pool transfer will not yet be forwarded.

Forwarding of incoming files can be enabled by setting the replicateOnArrival property in the /
etc/dcache/dcache.conf file or per pool in the layout file. It can be set to on, PoolManager
or HoppingManager, where on does the same as PoolManager.

The pool is requested to send a replicateFile message to either the PoolManager or to the
HoppingManager, if available. The different approaches are briefly described below and in more
detail in the subsequent sections.

• The replicateFile message is sent to the PoolManager. This happens for all files arriving
at that pool from outside (no restore or p2p). No intermediate HoppingManager is needed. The
restrictions are

• All files are replicated. No pre-selection, e.g. on the storage class can be done.

• The mode of the replicated file is determined by the destination pool and cannot be overwritten.
See the section called “File mode of replicated files”

• The replicateFile message is sent to the HoppingManager. The HoppingManager can be
configured to replicate certain storage classes only and to set the mode of the replicated file according
to rules. The file mode of the source file cannot be modified.

File mode of replicated files
The mode of a replicated file can either be determined by settings in the destination pool or by the
HoppingManager. It can be cached or precious.

File Hopping

84

• If the PoolManager is used for replication, the mode of the replicated file is determined by the
destination pool. The default setting is cached.

• If a HoppingManager is used for file replication, the mode of the replicated file is determined by
the HoppingManager rule responsible for this particular replication. If the destination mode is set
to keep in the rule, the mode of the destination pool determines the final mode of the replicated file.

File Hopping managed by the PoolManager
To enable replication on arrival by the PoolManager set the property replicateOnArrival to
on for the particular pool

[exampleDomain]
[exampleDomain/pool]
...
replicateOnArrival=on

or for several pools in the /etc/dcache/dcache.conf file.

...
replicateOnArrival=on

File hopping configuration instructs a pool to send a replicateFile request to the PoolManager
as the result of a file arriving on that pool from some external client. All arriving files will be treated the
same. The PoolManager will process this transfer request by trying to find a matching link (Please
find detailed information at Chapter 8, The poolmanager Service.

It is possible to configure the PoolManager such that files are replicated from this pool to a special
set of destination pools.

Assume that we want to have all files, arriving on pool ocean to be immediately replicated to a subset
of read pools. This subset of pools is described by the poolgroup ocean-copies. No other pool is
member of the poolgroup ocean-copies.

Other than that, files arriving at the pool mountain should be replicated to all read pools from which
farm nodes on the 131.169.10.0/24 subnet are allowed to read.

The layout file defining the pools ocean and mountain should read like this:

[exampleDomain]
[exampleDomain/pool]

name=ocean
path=/path/to/pool-ocean
waitForFiles=${path}/data
replicateOnArrival=on

name=mountain
path=/path/to/pool-mountain
waitForFiles=${path}/data
replicateOnArrival=on

In the layout file it is defined that all files arriving on the pools ocean or mountain should be repli-
cated immediately. The following PoolManager.conf file contains instructions for the PoolMan-
ager how to replicate these files. Files arriving at the ocean pool will be replicated to the ocean-
copies subset of the read pools and files arriving at the pool mountain will be replicated to all read
pools from which farm nodes on the 131.169.10.0/24 subnet are allowed to read.

#

File Hopping

85

define the units
#
psu create unit -protocol */*
psu create unit -net 0.0.0.0/0.0.0.0
psu create unit -net 131.169.10.0/255.255.255.0
create the faked net unit
psu create unit -net 192.1.1.1/255.255.255.255
psu create unit -store *@*
psu create unit -store ocean:raw@osm
#
#
define unit groups
#
psu create ugroup any-protocol
psu create ugroup any-store
psu create ugroup ocean-copy-store
psu create ugroup farm-network
psu create ugroup ocean-copy-network
#
psu addto ugroup any-protocol */*
psu addto ugroup any-store *@*
psu addto ugroup ocean-copy-store ocean:raw@osm
psu addto ugroup farm-network 131.169.10.0/255.255.255.0
psu addto ugroup ocean-copy-network 192.1.1.1/255.255.255.255
psu addto ugroup allnet-cond 0.0.0.0/0.0.0.0
psu addto ugroup allnet-cond 131.169.10.0/255.255.255.0
psu addto ugroup allnet-cond 192.1.1.1/255.255.255.255
#
#
define the write-pools
#
psu create pool ocean
psu create pool mountain
#
#
define the write-pools poolgroup
#
psu create pgroup write-pools
psu addto pgroup write-pools ocean
psu addto pgroup write-pools mountain
#
#
define the write-pools-link, add write pools and set transfer preferences
#
psu create link write-pools-link any-store any-protocol allnet-cond
psu addto link write-pools-link write-pools
psu set link farm-read-link -readpref=0 -writepref=10 -cachepref=0 -p2ppref=-1
#
#
define the read-pools
#
psu create pool read-pool-1
psu create pool read-pool-2
psu create pool read-pool-3
psu create pool read-pool-4
#
#
define the farm-read-pools poolgroup and add pool members
#
psu create pgroup farm-read-pools
psu addto pgroup farm-read-pools read-pool-1
psu addto pgroup farm-read-pools read-pool-2
psu addto pgroup farm-read-pools read-pool-3
psu addto pgroup farm-read-pools read-pool-4
#
#
define the ocean-copy-pools poolgroup and add a pool
#
psu create pgroup ocean-copy-pools
psu addto pgroup ocean-copy-pools read-pool-1
#
#
define the farm-read-link, add farm-read-pools and set transfer preferences
#
psu create link farm-read-link any-store any-protocol farm-network

File Hopping

86

psu addto link farm-read-link farm-read-pools
psu set link farm-read-link -readpref=10 -writepref=0 -cachepref=10 -p2ppref=-1
#
#
define the ocean-copy-link, add ocean-copy-pools and set transfer preferences
#
psu create link ocean-copy-link ocean-copy-store any-protocol ocean-copy-network
psu addto link ocean-copy-link ocean-copy-pools
psu set link ocean-copy-link -readpref=10 -writepref=0 -cachepref=10 -p2ppref=-1
#
#

While 131.169.10.1 is a legal IP address e.g. of one of your farm nodes, the 192.1.1.1 IP address
must not exist anywhere at your site.

File Hopping managed by the HoppingManager

With the HoppingManager you have several configuration options for file hopping on ar-
rival, e.g.:

• With the HoppingManager you can define a rule such that only the files with a specific storage
class should be replicated.

• You can specify the protocol the replicated files can be accessed with.

• You can specify from which ip-adresses it should be possible to access the files.

Starting the FileHopping Manager service

Add the hopping service to a domain in your layout file and restart the domain.

[DomainName]
[DomainName/hopping]

Initially no rules are configured for the HoppingManager. You may add rules by either ed-
it the file /var/lib/dcache/config/HoppingManager.conf and restart the hopping
service, or use the admin interface and save the modifications by the save command into the
HoppingManager.conf

Configuring pools to use the HoppingManager

To enable replication on arrival by the HoppingManager set the property replicateOnArrival
to HoppingManager for the particular pool

[exampleDomain]
[exampleDomain/pool]
...
replicateOnArrival=HoppingManager

or for several pools in the /etc/dcache/dcache.conf file.

...
replicateOnArrival=HoppingManager

File Hopping

87

HoppingManager Configuration Introduction

• The HoppingManager essentially receives replicateFile messages from pools, configured
to support file hopping, and either discards or modifies and forwards them to the PoolManager,
depending on rules described below.

• The HoppingManager decides on the action to perform, based on a set of configurable rules. Each
rule has a name. Rules are checked in alphabetic order concerning their names.

• A rule it triggered if the storage class matches the storage class pattern assigned to that rule. If a rule is
triggered, it is processed and no further rule checking is performed. If no rule is found for this request
the file is not replicated.

• If for whatever reason, a file cannot be replicated, NO RETRY is being performed.

• Processing a triggered rule can be :

• The message is discarded. No replication is done for this particular storage class.

• The rule modifies the replicateFile message, before it is forwarded to the PoolManager.

An ip-number of a farm-node of the farm that should be allowed to read the file can be added to
the replicateFile message.

The mode of the replicated file can be specified. This can either be precious, cached or keep.
keep means that the pool mode of the source pool determines the replicated file mode.

The requested protocol can be specified.

HoppingManager Configuration Reference

 define hop OPTIONS name pattern precious|cached|keep
 OPTIONS
 -destination=cellDestination # default : PoolManager
 -overwrite
 -continue
 -source=write|restore|* # !!!! for experts only StorageInfoOptions
 -host=destinationHostIp
 -protType=dCap|ftp...
 -protMinor=minorProtocolVersion
 -protMajor=majorProtocolVersion

name This is the name of the hopping rule. Rules are checked in alpha-
betic order concerning their names.

pattern pattern is a storage class pattern. If the incoming storage class
matches this pattern, this rule is processed.

precious|cached|keep precious|cached|keep determines the mode of the repli-
cated file. With keep the mode of the file will be determined by
the mode of the destination pool.

-destination This defines which cell to use for the pool to pool transfer. By
default this is the PoolManager and this should not be changed.

-overwrite In case, a rule with the same name already exists, it is overwritten.

File Hopping

88

-continue If a rule has been triggered and the corresponding action has been
performed, no other rules are checked. If the continue option is
specified, rule checking continues. This is for debugging purposes
only.

-source -source defines the event on the pool which has triggered the
hopping. Possible values are restore and write. restore
means that the rule should be triggered if the file was restored
from a tape and write means that it should be triggered if the
file was written by a client.

-host Choose the id of a node of the farm of worker-nodes that should
be allowed to access the file. Configure the poolmanager re-
spectively.

-protType, -protMajor, -protMinor Specify the protocol which should be used to access the replicated
files.

HoppingManager configuration examples

In order to instruct a particular pool to send a replicateFile message to the hopping service, you
need to add the line replicateOnArrival=HoppingManager to the layout file.

[exampleDomain]
[exampleDomain/pool]

name=write-pool
path=/path/to/write-pool-exp-a
waitForFiles=${path}/data
replicateOnArrival=HoppingManager
...

Assume that all files of experiment-a will be written to an expensive write pool and subsequently flushed
to tape. Now some of these files need to be accessed without delay. The files that need fast acceess
possibility will be given the storage class exp-a:need-fast-access@osm.

In this example we will configure the file hopping such that a user who wants to access a file that has
the above storage info with the NFSv4.1 protocol will be able to do so.

Define a rule for hopping in the /var/lib/dcache/config/HoppingManager.conf file.

define hop nfs-hop exp-a:need-fast-access@osm cached -protType=nfs -protMajor=4 -protMinor=1

This assumes that the storage class of the file is exp-a:nfs@osm. The mode of the file, which was
precious on the write pool will have to be changed to cached on the read pool.

The corresponding /var/lib/dcache/config/poolmanager.conf file could read like this:

#
define the units
#
psu create unit -protocol */*
psu create unit -net 0.0.0.0/0.0.0.0
psu create unit -store exp-a:need-fast-access@osm
#
#
define unit groups
#

File Hopping

89

psu create ugroup any-protocol
psu create ugroup exp-a-copy-store
psu create ugroup allnet-cond
#
psu addto ugroup any-protocol */*
psu addto ugroup exp-a-copy-store exp-a:need-fast-access@osm
psu addto ugroup allnet-cond 0.0.0.0/0.0.0.0
#
#
define the write-pool
#
psu create pool write-pool
#
#
define the read-pool
#
psu create pool read-pool
#
#
define the exp-a-read-pools poolgroup and add a pool
#
psu create pgroup exp-a-read-pools
psu addto pgroup exp-a-read-pools read-pool
#
#
define the exp-a-write-pools poolgroup and add a pool
#
psu create pgroup exp-a-write-pools
psu addto pgroup exp-a-write-pools write-pool
#
#
define the exp-a-read-link, add exp-a-read-pools and set transfer preferences
#
psu create link exp-a-read-link exp-a-copy-store any-protocol allnet-cond
psu addto link exp-a-read-link exp-a-read-pools
psu set link exp-a-read-link -readpref=10 -writepref=0 -cachepref=10 -p2ppref=-1
#
#
define the exp-a-write-link, add exp-a-write-pools and set transfer preferences
#
psu create link exp-a-write-link exp-a-copy-store any-protocol allnet-cond
psu addto link exp-a-write-link exp-a-write-pools
psu set link exp-a-write-link -readpref=0 -writepref=10 -cachepref=0 -p2ppref=-1
#
#
#

90

Chapter 11. dCache Partitioning
There are various parameters in the dCache PoolManager subsystem, determining the system behav-
iour on particular events. These are for example the cost threshold at which the PoolManager initiates
pool to pool transfers to smooth the overall system load, or the balance between performance and disk
space related costs to optimize request distribution among data pools. A defined set of parameters can
have different values for different partitions of the complete dCache instance. dCache provides a web
page, listing partitions, assigned parameters and inheritance information.

Parameters, partitions and inheritance
Parameters, currently part of the partitioning scheme, are listed within the next paragraph, together with
a way of assigning values. Each of those parameters may be set to different values for different, so called
dCache partitions.

The only partition, existing without being created, is the default partition. All partitions can be created
or modified. If only a subset of parameters of a non default partition is defined, the residual parameters
of this partition are inherited from the default partition. So, changing a parameter in the default partition,
will change the same parameter of all other partitions for which this particular parameter has not been
overwritten.

Commands related to dCache partitioning :

• pm create [partitionName]
creates a new partition.

• pm set [partitionName] -parameterName [=value|off]
sets a parameter parameterName to a new value. If partitionName is omitted, the default
partition is used.

If partitionName doesn’t exist yet, it is (silently) created.

Warning
This can cause problems: If you want to set a value for a partition and misspell the partition
name a new partition will be created. Therefore this feature will be removed.

If a parameter is set to off this parameter is no longer overwritten and is inherited from the default
partition. Setting a value to off for the default partition does not have any effect.

• pm ls [-l] [partitionName]
lists a single or all partitions. Except for the default, only those parameters are shown which are
explicitly set. Parameters, not shown, are inherited from the default partition.

• pm destroy partitionName
completely removes a partition from dCache.

In the Web Interface you can find a web page listing partitions and more information. You will find a page
summarizing the partition status of the system. This is essentially the output of the command pm ls -l.

For your dCache on example.org the address is

http://dcache.example.org:2288/poolInfo/parameterHandler/set/
matrix/*

dCache Partitioning

91

Partition Parameters
The following list describes which parameters may be used in conjunction with dCache partitioning.

Recall that the total cost of a pool is a linear combination of the performance and space cost. It is
calculated by

totalCost = ccf * perfCost + scf * spaceCost

where the cpu cost factor ccf and the space cost factor scf are configurable with
the command pm set.

pm set -spacecostfactor=value -cpucostfactor=value

Note

Using the command pm set without specifying a partition leads to changes in the default par-
tition.

To set these and more values see the table below.

value = 0.0 implies that the feature is disabled.

value = off implies that the value is inherited from the default section.

Command Meaning Type

pm set [partitionName]
-spacecostfactor=scf

Sets the space cost factor for the partition.

The default value is 1.0.

float

pm set [partitionName]
-cpucostfactor=ccf

Sets the cpu cost factor for the partition.

The default value is 1.0.

float

pm set [partitionName]
-idle=idle-value

The concept of the idle value will be turned on if idle-
value > 0.0.

A pool is idle if its performance cost is smaller than the
idle-value. Otherwise it is not idle.

If one or more pools that satisfy the read request are idle
then only one of them is chosen for a particular file irre-
spective of total cost. I.e. if the same file is requested more
than once it will always be taken from the same pool. This
allowes the copies on the other pools to age and be garbage
collected.

The default value is 0.0, which disables this feature.

float

pm set [partitionName]
-p2p=p2p-value

Sets the static replication threshold for the partition.

If the performance cost on the best pool exceeds p2p-
value and the value for slope = 0.0 then this pool is
called hot and a pool to pool replication may be triggered.

The default value is 0.0, which disables this feature.

float

dCache Partitioning

92

Command Meaning Type

pm set [partitionName]
-alert=value

Sets the alert value for the partition.

If the best pool’s performance cost exceeds the p2p value
and the alert value then no pool to pool copy is triggered
and a message will be logged stating that no pool to pool
copy will be made.

The default value is 0.0, which disables this feature.

float

pm set [partitionName]
-panic=value

Sets the panic cost cut level for the partition.

If the performance cost of the best pool exceeds the panic
cost cut level the request will fail.

The default value is 0.0, which disables this feature.

float

pm set [partitionName]
-fallback=value

Sets the fallback cost cut level for the partition.

If the best pool’s performance cost exceeds the fallback
cost cut level then a pool of the next level will be chosen.
This means for example that instead of choosing a pool
with readpref = 20 a pool with readpref < 20 will be
chosen.

The default value is 0.0, which disables this feature.

float

pm set [partitionName]
-slope=slope

Sets the dynamic replication threshold value for the parti-
tion.

If slope> 0.01 then the product of best pool’s perfor-
mance cost and slope is used as threshold for pool to
pool replication.

If the performance cost on the best pool exceeds this
threshold then this pool is called hot.

The default value is 0.0, which disables this feature.

float

pm set [partitionName]
-p2p-allowed=value

This value can be specified if an HSM is attached to the
dCache.

If a partition has no HSM connected, then this option is
overridden. This means that no matter which value is set
for p2p-allowed the pool to pool replication will al-
ways be allowed.

By setting value = off the values for p2p-allowed,
p2p-oncost and p2p-fortransfer will take over
the value of the default partition.

If value = yes then pool to pool replication is allowed.

As a side effect of setting value = no the values for
p2p-oncost and p2p-fortransfer will also be set
to no.

boolean

dCache Partitioning

93

Command Meaning Type
The default value is yes.

pm set [partitionName]
-p2p-oncost=value

Determines whether pool to pool replication is allowed if
the best pool for a read request is hot.

The default value is no.

boolean

pm set [partitionName]
-p2p-fortransfer=value

If the best pool is hot and the requested file will be copied
either from the hot pool or from tape to another pool, then
the requested file will be read from the pool where it just
had been copied to if value = yes. If value = no then
the requested file will be read from the hot pool.

The default value is no.

boolean

pm set [partitionName]
-stage-allowed=value

Set the stage allowed value to yes if a tape system is con-
nected and to no otherwise.

As a side effect, setting the value for stage-allowed to
no changes the value for stage-oncost to no.

The default value is no.

boolean

pm set [partitionName]
-stage-oncost=value

If the best pool is hot, p2p-oncost is disabled and an HSM
is connected to a pool then this parameter determines
whether to stage the requested file to a different pool.

The default value is no.

boolean

pm set [partitionName]
-max-copies=copies

Sets the maximal number of replicas of one file. If the
maximum is reached no more replicas will be created.

The default value is 500.

integer

Partitions and Links
A partition, so far, is just a set of parameters which may or may not differ from the default set. To let a
partition relate to a part of the dCache, links are used. Each link may be assigned to exactly one partition.
If not set, or the assigned partition doesn’t exist, the link defaults to the default partition.

psu set link [linkName] -section=partitionName [other-options...]

Whenever this link is chosen for pool selection, the associated parameters of the assigned partition will
become active for further processing.

Warning

Depending on the way links are setup it may very well happen that more than just one link is
triggered for a particular dCache request. This is not illegal but leads to an ambiguity in select-
ing an appropriate dCache partition. If only one of the selected links has a partition assigned,
this partition is chosen. Otherwise, if different links point to different partitions, the result is
indeterminate. This issue is not yet solved and we recommend to clean up the poolmanager
configuration to eliminate links with the same preferences for the same type of requests.

dCache Partitioning

94

Examples
For the subsequent examples we assume a basic poolmanager setup :

#
define the units
#
psu create -protocol */*
psu create -protocol xrootd/*
psu create -net 0.0.0.0/0.0.0.0
psu create -net 131.169.0.0/255.255.0.0
psu create -store *@*
#
define unit groups
#
psu create ugroup any-protocol
psu create ugroup any-store
psu create ugroup world-net
psu create ugroup xrootd
#
psu addto ugroup any-protocol */*
psu addto ugroup any-store *@*
psu addto ugroup world-net 0.0.0.0/0.0.0.0
psu addto ugroup desy-net 131.169.0.0/255.255.0.0
psu addto ugroup xrootd xrootd/*
#
define the pools
#
psu create pool pool1
psu create pool pool2
#
define the pool groups
#
psu create pgroup default-pools
psu create pgroup special-pools
#
psu addto pgroup default-pools pool1
psu addto pgroup default-pools pool2
#
psu addto pgroup special-pools pool1
psu addto pgroup special-pools pool2
#

Disallowing pool to pool transfers for special pool
groups based on the access protocol
For a special set of pools, where we only allow the xrootd protocol, we don’t want the datasets to be
replicated on high load while for the rest of the pools we allow replication on hot spot detection.

#
#
pm set default -p2p=0.4
pm set xrootd-section -p2p=0.0
#
psu create link default-link any-protocol any-store world-net
psu add link default-link default-pools
psu set link default-link -readpref=10 -cachepref=10 -writepref=0
#
psu create link xrootd-link xrootd any-store world-net
psu add link xrootd-link special-pools
psu set link xrootd-link -readpref=11 -cachepref=11 -writepref=0
psu set link xrootd-link -section=xrootd-section

dCache Partitioning

95

Choosing pools randomly for incoming traffic on-
ly
For a set of pools we select pools following the default setting of cpu and space related cost factors. For
incoming traffic from outside, though, we select the same pools, but in a randomly distributed fashion.
Please note that this is not really a physical partitioning of the dCache system, but rather a virtual one,
applied to the same set of pools.

#
#
pm set default -cpucostfactor=0.2 -spacecostfactor=1.0
pm set incoming-section -cpucostfactor=0.0 -spacecostfactor=0.0
#
psu create link default-link any-protocol any-store desy-net
psu add link default-link default-pools
psu set link default-link -readpref=10 -cachepref=10 -writepref=10
#
psu create link default-link any-protocol any-store world-net
psu add link default-link default-pools
psu set link default-link -readpref=10 -cachepref=10 -writepref=0
#
psu create link incoming-link any-protocol any-store world-net
psu add link incoming-link default-pools
psu set link incoming-link -readpref=10 -cachepref=10 -writepref=10
psu set link incoming-link -section=incoming-section
#

96

Chapter 12. Authorization in dCache
dCache has an open interface to work with different authorization services. With dCache you get two
implementations of this interface: gPlazma1 and gPlazma2. Both are described in this chapter.
gPlazma is an acronym for Grid-aware PLuggable AuthorZation Management. Both implementations
come with various plug-ins that implement different authorization methods (e.g., Username/Password).
gPlazma1 is grown over the last few years and provides with some older authorization methods
gPlazma2 does not. On the other hand: gPlazma2 has a more modular structure, offers the possibility
to add custom plug-ins and is able to make use of some authorization techniques you cannot use with
gPlazma1 (i.e., centralised banning of users). Also gPlazma2 has an new PAM like configuration
system that makes configuration very easy.

Read the following sections and see which version matches your needs best. If both do, we recom-
mend to use gPlazma2. For legacy reasons version 1 is used as default. To set the version set
gplazma.version property in /etc/dcache/dcache.conf to 1 or 2.

gplazma.version = 2

The recommended way to specify the version is to set it in dcache.conf, but if you prefer you might
as well do it in the layout file.

[gPlazmaDomain]
[gPlazmaDomain/gplazma]
gplazma.version = 2

Note

If you don’t explicitly set the version to 2 then gPlazma1 will be used.

Basics
Though it is possible to allow anonymous access to dCache it is usually desirable to authenticate users.
The user then has to connect to one of the different doors (e.g., GridFTP door, dCap door) and login
with credentials that prove his identity. These credentials usually are X.509 certificates, but dCache
also supports username/password and kerberos authentication.

The door collects the credential information from the user and sends a login request to the configured
authorization service (in most cases this is gPlazma and we will go on assuming it is). Within gPlaz-
ma the configured plug-ins try to verify the users identity and determine his access rights. From this
a response is created that is then sent back to the door. The response may also contain additional user
information like UID, GID and the path to the data directory. While for authentication usually more
global services (e.g., ARGUS) may be used, the mapping to site specific UIDs has to be configured on a
per site basis. Both versions of gPlazma come with several plug-ins. Their configuration is described
in the section called “Configuration files”.

gPlazma1
gPlazma1 comes with support for five different authentication and mapping methods. Each method
is implemented in a plug-in-like module.

Authorization in dCache

97

Configuration
The gPlazma cell can be called from the GridFTP door and the dCap door and the srm server.

This section describes how to configure gPlazma1 in general. You also need to adjust the plug-in spe-
cific configuration files, depending on which authorization methods you choose to employ. The config-
uration of the plug-ins is described later in this chapter, since the files are also used by gPlazma2.

The gPlazma policy, located in the /etc/dcache/dcachesrm-gplazma.policy file, controls
the authorization plug-ins to be used (ON or OFF for each plug-in) and the order of their execution.

Switches
xacml-vo-mapping="OFF"
saml-vo-mapping="ON"
kpwd="ON"
grid-mapfile="OFF"
gplazmalite-vorole-mapping="OFF"

The order of execution is specified by assigning a different number to each plug-in, such as

Priorities
xacml-vo-mapping-priority="5"
saml-vo-mapping-priority="1"
kpwd-priority="3"
grid-mapfile-priority="4"
gplazmalite-vorole-mapping-priority="2"

In the above example, only the saml-vo-mapping plug-in and the kpwd plug-in are activated (i.e.,
switched ON). Of those the saml-vo-mapping plug-in would be tried first, because it was assigned
a higher priority. Note that the higher the value the lower is the plugins priority. If authorization was
denied for that method, or if the authentication method itself failed, then the next activated plugin with
the next lower priority would be tried. In this example this would be the kpwd plug-in. If the gplaz-
malite-vorole-mapping plug-in would also be activated, it would be tried after the saml-vo-
mapping plug-in and before the kpwd plug-in.

Activating more than one plug-in allows plug-ins to be used as fall-back for another plug-ins that may
fail. It also allows for the authorization of special users who may be denied by the other methods.

After the general configuration the policy file also contains a section for each of the plug-ins with plug-
in specific configuration. These sections are described in the documentation for each plug-in, as follows.
You may delete or comment out the lines specifing the priorities and configuration for unused plug-ins.

Here is an example of how a policy file might be set up.

Switches
xacml-vo-mapping="OFF"
saml-vo-mapping="ON"
kpwd="ON"
grid-mapfile="OFF"
gplazmalite-vorole-mapping="OFF"

Priorities
saml-vo-mapping-priority="1"
kpwd-priority="3"

dcache.kpwd
kpwdPath="/etc/dcache/dcache.kpwd"

SAML-based grid VO role mapping

Authorization in dCache

98

mappingServiceUrl="https://fledgling09.fnal.gov:8443/gums/services/GUMSAuthorizationServicePort"
saml-vo-mapping-cache-lifetime="60"

In this case, gPlazma1 will attempt to authorize first through a GUMS server, and fall back to using
dcache.kpwd. The mappingServiceUrl would have to be changed to a GUMS server appropriate
for the site.

Configuring VOMS Attribute Validation

VOMS attribute validation in gPlazma1 does not require VOMS server certificates. Instead the signa-
ture of an attribute is checked against the CA Certificate that signed the VOMS server certificate. To have
gPlazma1 validate the proxy attributes in dCache, write configuration directories and *.lsc files in /
etc/grid-security/vomsdir for each authorized VOMS server according to these instructions
[https://twiki.cern.ch/twiki/bin/view/LCG/VomsFAQforServiceManagers] and set the vomsValida-
tion in /etc/dcache/dcachesrm-gplazma.policy to true.

Note

The legacy method of using *.pem files which contain the VOMS server certificates is still
supported. To achieve this add the *.pem file which contains the certificate of the VOMS server
to the directory /etc/grid-security/vomsdir/.

Note that it is recommended to use the *.lsc files for the VOMS attribute validation as with
this method you don’t need to keep the VOMS server certificate up to date.

The default is to validate the attributes. In both cases there must be a non-empty /etc/grid-secu-
rity/vomsdir directory on the node which is running gPlazma1. To create a working dummy di-
rectory it is enough to do

[root] # mkdir -p /etc/grid-security/vomsdir
[root] # touch /etc/grid-security/vomsdir/empty-cert.pem

plug-ins

This section describes the five different authentication methods for gPlazma1. Four of them share the
common file storage-authzdb for mapping usernames to UID/GID and provide additional user
specific path information. The format of this file is described in the section called “storage-au-
thzdb”.

gplazmalite-vorole-mapping plug-in

The gplazmalite-vorole-mapping plug-in maps a combination of DN and FQAN (Fully Qual-
ified Attribute Name) to a username using a vorolemap file. The subsequent mappings to UID and
GID is done via the storage-authzdb file.

kpwd plug-in

The kpwd plug-in uses a kpwd file for authorization and mapping. This is the “legacy” method and
is recommended only for testing and/or rather small and independent sites or as a fallback method.
The file contains different records for authorization and mappings. Its format is documented within the
sample file in /usr/share/dcache/examples/gplazma/dcache.kpwd. In the first step a
DN or Kerberos principal is mapped to a username. To authorize the user has to provide the password
belonging to the mapped username to get UID and GID and user path information.

https://twiki.cern.ch/twiki/bin/view/LCG/VomsFAQforServiceManagers
https://twiki.cern.ch/twiki/bin/view/LCG/VomsFAQforServiceManagers

Authorization in dCache

99

grid-mapfile plug-in

This plug-in uses a grid-mapfile to map DNs to usernames. The subsequent mapping to UID/GID
is done via the storage-authzdb file.

saml-vo-mapping plug-in

This plug-in requests DN to username mappings from a GUMS server (Grid User Management System).
The GUMS service may run an extension which returns the UID/GID plus the additional user path
information. Without this extension UIDand GID are obtained via the storage-authzdb file.

xacml-vo-mapping plug-in

This plug-in requests DN to username mappings from a GUMS server with XACML support. The GUMS
service may run an extension which returns the UID/GID plus the additional user path information.
Without this extension UID and GID are obtained via the storage-authzdb (see the section called
“storage-authzdb”) file.

gPlazma2
Some newer requirements (e.g., reverse mapping, banning) could not be integrated into gPlazma1
without making major changes on its architecture. Since the effort would have only beed slightly less
than a reimplementation, we decided to keep the established gPlazma1 and create a new version from
scratch that could offer modern features for those who already require them. In the long term gPlazma2
is meant to replace gPlazma1 completely. For this reason it supports most of the latter’s authentication
methods. But not only offers gPlazma2 new features, it also comes with flexible architecture that
can be extended by plug-ins. Since many authentication methods share some functionality (e.g., use
storage-authdb) the same functionality that was covered by one plug-in in version 1 is now divided
into several plug-ins. This way, if for example you used the gplazmalite-vorole-mapping plug-
in of gPlazma1 you will now need to use the vorolemap plug-in and the authzdb plug-in to get the
same functionality. Currently gPlazma2 comes with seven plug-ins that can be used to cover a wide
range of systems. Check if yours is among those. Some plug-ins are designed for backwards compatibility
and will work with your existing files (e.g., vorolemap) and some offer completely new functionality
(e.g., NIS/LDAP mapping, ARGUS banning).

gPlazma2 has several advantages over gPlazma1 in means of design, flexibility and functionality.
Its behaviour is easily configurable with a PAM-style configuration file, that will be described in detail
in the next section.

Configuration
To use gPlazma2, the first thing you have to do is to activate it by setting gplazma.version to 2
in dcache.conf. This is described in the first part of this chapter. Afterwards edit /etc/dcache/
gplazma.conf with your favourite editor (e.g., vim) to match your requirements. The plug-ins will
be used in the order auth, map, account and session. Within these groups they are used in the
order they are specified.

It will look something like this:

Some comment
auth optional x509
auth optional voms

Authorization in dCache

100

map requisite vorolemap
map requisite authzdb authzdb=/etc/grid-security/authzdb
session requisite authzdb

Each line consists of one of the keywords auth, map, account, session or identity followed
by one of the modifiers optional, required, requisite or sufficient, the name of the plug-
in and a list of parameters. Empty lines and lines starting with a # are comments and will be ignored.
With the first keyword you specify the type of the plugin (some plug-ins implement several types) and
the modifier defines how success or failure of the plugin is handled. The configured plugins are then
combined into two stacks. The first is processed each time a authentication decision has to be made and
the second stack is used to perform mapping and reverse mapping. The first stack consists of auth,
map, account and session plugins, the second one only of identity plugins.

auth|map|account|session|identity optional|required|requisite|sufficient plug-in ["key=value" ...]

auth auth-plug-ins are used to read the users public and private credentials and ask some
authority, if those are valid for accessing the system.

map map-plug-ins map the user information obtained in the auth step to UID and GIDs.
This may also be done in several steps (e.g., the vorolemap plug-in maps the users DN
+FQAN to a username which is then mapped to UID/GIDs by the authzdb plug-in.

account account-plug-ins verify the validity of a possibly mapped identity of the user and may
reject the login depending on information gathered within the map step.

session session plug-ins usually enrich the session with additional attributes like the user’s
home directory.

identity identity plug-ins have have two functions to map from usernames to UID and GID
and vice versa.

The meaning of the modifiers follow the PAM specification:

optional The success or failure of this plug-in is only important if it is the only plug-in in the
stack associated with this type.

sufficient Success of such a plug-in is enough to satisfy the authentication requirements of the
stack of plug-ins (if a prior required plug-in has failed the success of this one is ig-
nored). A failure of this plug-in is not deemed as fatal for the login attempt. If the plug-
in succeeds gPlazma2 immediately proceeds with the next plug-in type or returns
control to the door if this was the last stack.

required Failure of such a plug-in will ultimately lead to gPlazma2 returning failure but only
after the remaining plug-ins for this type have been invoked.

requisite Like required, however, in the case that such a plug-in returns a failure, control is
directly returned to the door.

plug-ins

gPlazma2 functionality is configured by combining different types of plug-ins to work together in a
way that matches your requirements. For this purpose there are four different types of plug-ins. These
types correspond to the keywords auth, map, account, session and identity from the previous
section.

Authorization in dCache

101

authzdb

The authzdb plug-in implementation offers map and session functionality. As a map-plug-in it
takes a username and maps it to UID/GID using the storage-authzdb file.

Parameter Meaning Default

authzdb Path to storage-autzdb /etc/grid-security/storage-authzdb

argus

The argus plug-in is an account plug-in, currently used for banning users by their DN. It talks to
your site’s ARGUS system (see https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
[https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework]) to check for banned users.

Parameter Meaning Default

HostCert Path to host certificate /etc/grid-security/hostcert.pem

HostKey Path to host key /etc/grid-security/hostkey.pem

KeyPass Password for host key

TrustMater-
ial

Path to CA certificates /etc/grid-security/certificates

PEPEndpoint URL of PEP service https://localhost:8154/authz

GridMap

The gridmap plug-in is a mapping plug-in. It maps GLOBUS identities and Kerberos identities to
a username.

Parameter Meaning Default

gridmap Path to grid-mapfile /etc/grid-security/grid-mapfile

kpwd

The kpwd plug-in has auth, map and session capabilities. It authorizes users by username and
password, by pairs of DN and FQAN and by Kerberos principals. As a map plug-in it maps usernames
to UID and GID. And as a session plug-in it adds root and home path information to the session based
on the user’s username.

Parameter Meaning Default

pwdfile Path to dcache.kpwd /etc/dcache/dcache.kpwd

voms

The voms plug-in is a auth plug-in. It can be used to verify X.509 certificates. It takes the certifcates
and checkes their validity by testing them against the trusted CAs. The verified certificates are then
stored and passed on to the other plug-ins in the stack.

Parameter Meaning Default

cadir Path to ca certificates /etc/grid-security/certificates

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework

Authorization in dCache

102

Parameter Meaning Default

vomsdir Path to vomsdir /etc/grid-security/vomsdir

vorolemap

The voms plug-in is a map plug-in. It can be used to map pairs of DN and FQAN to a username via
a vorolemap file.

Parameter Meaning Default

vorolemap Path to grid-
vorolemap

/etc/grid-security/grid-vorolemap

X.509 plug-in

The X.509 plug-in is a auth plug-in that extracts X.509 certificate chains from the credentials of a
user to be used by other plug-ins.

Using X.509 Certificates
Most plug-ins of gPlazma support X.509 certificates for authentication and authorisation. X.509
certificates are used to identify entities (e.g., persons, hosts) in the Internet. The certificates contain a DN
(Distinguished Name) that uniquely describes the entity. To give the certificate credibility it is issued by
a CA (Certificate Authority) which checks the identity upon request of the certificate (e.g., by checking
the persons id). For the use of X.509 certificates with dCache your users will have to request a certificate
from a CA you trust and you need host certificates for every host of your dCache instance.

CA Certificates
To be able to locally verify the validity of the certificates, you need to store the CA certificates on your
system. Most operating systems come with a number of commercial CA certificates, but for the Grid
you will need the certificates of the Grid CAs. For this, CERN packages a number of CA certificates.
These are deployed by most grid sites. By deploying these certificates, you state that you trust the CA’s
procedure for the identification of individuals and you agree to act promptly if there are any security
issues.

To install the CERN CA certificates follow the following steps:

[root] # cd /etc/yum.repos.d/
[root] # wget http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/lcg-CA.repo
[root] # yum install lcg-CA

This will create the directory /etc/grid-security/certificates which contains the Grid CA
certificates.

Certificates which have been revoked are collected in certificate revocation lists (CRLs). To get the
CRLs install the fetch-crl command as described below.

[root] # yum install fetch-crl
[root] # /usr/sbin/fetch-crl

fetch-crl adds X.509 CRLs to /etc/grid-security/certificates. It is recommended to set
up a cron job to periodically update the CRLs.

Authorization in dCache

103

User Certificate
If you do not have a valid grid user certificate yet, you have to request one from your CA. Fol-
low the instructions from your CA on how to get a certificate. After your request was accepted you
will get a URL pointing to your new certificate. Install it into your browser to be able to access
grid resources with it. Once you have the certificate in your browser, make a backup and name it
userCertificate.p12. Copy the user certificate to the directory ~/.globus/ on your worker
node and convert it to usercert.pem and userkey.pem as described below.

[user] $ openssl pkcs12 -clcerts -nokeys -in userCertificate.p12 -out usercert.pem
Enter Import Password:
MAC verified OK

During the backup your browser asked you for a password to encrypt the certificate. Enter this password
here when asked for a password. This will create your user certificate.

[user] $ openssl pkcs12 -nocerts -in userCertificate.p12 -out userkey.pem
Enter Import Password:
MAC verified OK
Enter PEM pass phrase:

In this step you need to again enter the backup password. When asked for the PEM pass phrase choose a
secure password. If you want to use your key without having to type in the pass phrase every time, you
can remove it by executing the following command.

[root] # openssl rsa -in userkey.pem -out userkey.pem
Enter pass phrase for userkey.pem:
writing RSA key

Now change the file permissions to make the key only readable by you and the certificate world readable
and only writable by you.

[root] # chmod 400 userkey.pem
 [root] # chmod 644 usercert.pem

Host Certificate
To request a host certificate for your server host, follow again the instructions of your CA.

The conversion to hostcert.pem and hostkey.pem works analogous to the user certificate. For
the hostkey you have to remove the pass phrase. How to do this is also explained in the previous sec-
tion. Finally copy the host*.pem files to /etc/grid-security/ as root and change the file
permissions in favour of the user running the grid application.

VOMS Proxy Certificate
For very large groups of people, it is often more convenient to authorise people based on their member-
ship of some group. To identify that they are a member of some group, the certificate owner can create
a new short-lived X.509 certificate that includes their membership of various groups. This short-lived
certificate is called a proxy-certificate and, if the membership information comes from a VOMS server,
it is often referred to as a VOMS-proxy.

[root] # cd /etc/yum.repos.d/
[root] # wget http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/glite-UI.repo

Authorization in dCache

104

[root] # yum install glite-security-voms-clients

Creating a VOMS proxy

To create a VOMS proxy for your user certificate you need to execute the voms-proxy-init as a user.

[user] $ export PATH=/opt/glite/bin/:$PATH
[user] $ voms-proxy-init
Enter GRID pass phrase:
Your identity: /C=DE/O=GermanGrid/OU=DESY/CN=John Doe

Creating proxy ..Done
Your proxy is valid until Mon Mar 7 22:06:15 2011

Certifying your membership of a VO

You can certify your membership of a VO by using the command voms-proxy-init -voms yourVO.
This is useful as in dCache authorization can be done by VO (see the section called “Authorizing a
VO”). To be able to use the extension -voms yourVO you need to be able to access VOMS servers.
To this end you need the the VOMS server’s and the CA’s DN. Create a file /etc/grid-securi-
ty/vomsdir/VO/hostname.lsc per VOMS server containing on the 1st line the VOMS server’s
DN and on the 2nd line, the corresponding CA’s DN. The name of this file should be the fully qualified
hostname followed by an .lsc extension and the file must appear in a subdirectory /etc/grid-
security/vomsdir/VO for each VO that is supported by that VOMS server and by the site.

At http://operations-portal.egi.eu/vo you can search for a VO and find this information.

For example, the file /etc/grid-security/vomsdir/desy/grid-voms.desy.de.lsc contains:

/C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de
/C=DE/O=GermanGrid/CN=GridKa-CA

where the first entry is the DN of the DESY VOMS server and the second entry is the DN of the CA
which signed the DESY VOMS server’s certificate.

In addition, you need to have a file /opt/glite/etc/vomses containing your VO’s VOMS server.

For DESY the file /opt/glite/etc/vomses should contain the entry

"desy" "grid-voms.desy.de" "15104" "/C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de" "desy"
 "24"

The first entry “desy” is the real name or a nickname of your VO. “grid-voms.desy.de” is the hostname
of the VOMS server. The number “15104” is the port number the server is listening on. The forth entry
is the DN of the server’s VOMS certificate. The fifth entry, “desy”, is the VO name and the last entry is
the globus version number which is not used anymore and can be omitted.

Use the command voms-proxy-init -voms to create a VOMS proxy with VO “desy”.

[user] $ voms-proxy-init -voms desy
Enter GRID pass phrase:
Your identity: /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
Creating temporary proxy ... Done
Contacting grid-voms.desy.de:15104 [/C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de] "desy"
 Done
Creating proxy Done
Your proxy is valid until Mon Mar 7 23:52:13 2011

http://operations-portal.egi.eu/vo

Authorization in dCache

105

View the information about your VOMS proxy with voms-proxy-info

[user] $ voms-proxy-info
subject : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe/CN=proxy
issuer : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
identity : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
type : proxy
strength : 1024 bits
path : /tmp/x509up_u500
timeleft : 11:28:02

The last line tells you how much longer your proxy will be valid.

If your proxy is expired you will get

[user] $ voms-proxy-info
subject : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe/CN=proxy
issuer : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
identity : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
type : proxy
strength : 1024 bits
path : /tmp/x509up_u500
timeleft : 0:00:00

The command voms-proxy-info -all gives you information about the proxy and about the VO.

[user] $ voms-proxy-info -all
subject : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe/CN=proxy
issuer : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
identity : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
type : proxy
strength : 1024 bits
path : /tmp/x509up_u500
timeleft : 11:24:57
=== VO desy extension information ===
VO : desy
subject : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
issuer : /C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de
attribute : /desy/Role=NULL/Capability=NULL
attribute : /desy/test/Role=NULL/Capability=NULL
timeleft : 11:24:57
uri : grid-voms.desy.de:15104

Use the command voms-proxy-destroy to destroy your VOMS proxy.

[user] $ voms-proxy-destroy
[user] $ voms-proxy-info

Couldn't find a valid proxy.

Configuration files
In this section we explain the format of the different files that are used by both gPlazma1 and gPlaz-
ma2 plug-ins.

storage-authzdb

In gPlazma, except for the kpwd plug-in, authorization is a two-step process. First, a username is
obtained from a mapping of the user’s DN or his DN and role, then a mapping of username to UID and
GID with optional additional session parameters like the root path is performed. For the second mapping
usually the file called storage-authzdb is used.

Authorization in dCache

106

Preparing storage-authzdb

The default location of the storage-authzdb is /etc/grid-security. Before the mapping
entries there has to be a line specifying the version of the used file format.

version 2.1

dCache supports versions 2.1 and to some extend 2.2.

Except for empty lines and comments (lines start with #) the configuration lines have the following
format:

 authorize username (read-only|read-write) UID GID[,GID]* homedir rootdir

For legacy reasons there may be a third path entry which is ignored by dCache. The username here has
to be the name the user has been mapped to in the first step (e.g., by his DN).

authorize john read-write 1001 100 / /data/experiments /

In this example user john will be mapped to UID 1001 and GID 100 with read access on the directory
/data/experiments. You may choose to set the user’s root directory to /.

authorize adm read-write 1000 100 / / /

In this case the user adm will be granted read/write access in any path, given that the file system per-
missions in Chimera also allow the transfer.

The first path is nearly always left as “/”, but it may be used as a home directory in interactive session,
as a subdirectory of the root path. Upon login, the second path is used as the user’s root, and a “cd” is
performed to the first path. The first path is always defined as being relative to the second path.

Multiple GIDs can be assigned by using comma-separated values for the GID file, as in

authorize john read-write 1001 100,101,200 / / /

The lines of the storage-authzdb file are similar to the “login” lines of the dcache.kpwd file. If
you already have a dcache.kwpd file, you can easily create storage-authzdb by taking the lines
from your dcache.kpwd file that start with the word login, for example,

login john read-write 1001 100 / /data/experiments /

and replace the word login with authorize. The following line does this for you.

[root] # sed "s/^ *login/authorize/" dcache.kpwd|grep "^authorize" > storage-authzdb

The gplazmalite-vorole-mapping plug-in
The gPlazma policy file /etc/dcache/dcachesrm-gplazma.policy contains two lines for
this plug-in.

Authorization in dCache

107

Built-in gPLAZMAlite grid VO role mapping
gridVoRolemapPath="/etc/grid-security/grid-vorolemap"
gridVoRoleStorageAuthzPath="/etc/grid-security/storage-authzdb"

The second is the storage-authzdb used in other plug-ins. See the above documentation on stor-
age-authdb for how to create the file.

Preparing grid-vorolemap

The file is similar in format to the grid-mapfile, however there is an additional field following the
DN (Certificate Subject), containing the FQAN (Fully Qualified Attribute Name).

"/C=DE/O=GermanGrid/OU=DESY/CN=John Doe" "/some-vo" doegroup
"/C=DE/DC=GermanGrid/O=DESY/CN=John Doe" "/some-vo/Role=NULL" doegroup
"/C=DE/DC=GermanGrid/O=DESY/CN=John Doe" "/some-vo/Role=NULL/Capability=NULL" doegroup

Therefore each line has three fields: the user’s DN, the user’s FQAN, and the username that the DN and
FQAN combination are to be mapped to.

The FQAN is sometimes semantically referred to as the “role”. The same user can be mapped to different
usernames depending on what their FQAN is. The FQAN is determined by how the user creates their
proxy, for example, using voms-proxy-init. The FQAN contains the user’s Group, Role (optional), and
Capability (optional). The latter two may be set to the string “NULL”, in which case they will be ignored
by the plug-in. Therefore the three lines in the example above are equivalent.

If a user is authorized in multiple roles, for example

"/DC=org/DC=doegrids/OU=People/CN=John Doe" "/some-vo/sub-grp" vo_sub_grp_user
"/DC=org/DC=doegrids/OU=People/CN=John Doe" "/some-vo/sub-grp/Role=user" vouser
"/DC=org/DC=doegrids/OU=People/CN=John Doe" "/some-vo/sub-grp/Role=admin" voadmin
"/DC=org/DC=doegrids/OU=People/CN=John Doe" "/some-vo/sub-grp/Role=prod" voprod

he will get the username corresponding to the FQAN found in the proxy that the user creates for use by
the client software. If the user actually creates several roles in his proxy, authorization (and subsequent
check of path and file system permissions) will be attempted for each role in the order that they are
found in the proxy.

In a GridFTP URL, the user may also explicitly request a username.

gsiftp://doeprod@ftp-door.example.org:2811/testfile1

in which case other roles will be disregarded.

Authorizing a VO
Instead of individual DNs, it is allowed to use * or "*" as the first field, such as

"*" "/desy/Role=production/" desyprod

In that case, any DN with the corresponding role will match. It should be noted that a match is first
attempted with the explicit DN. Therefore if both DN and "*" matches can be made, the DN match will
take precedence. This is true for the revocation matches as well (see below).

Authorization in dCache

108

Thus a user with subject /C=DE/O=GermanGrid/OU=DESY/CN=John Doe and role /desy/
Role=production will be mapped to username desyprod via the above storage-authzdb
line with "*" for the DN, except if there is also a line such as

"/C=DE/O=GermanGrid/OU=DESY/CN=John Doe"
 "/desy/Role=production" desyprod2

in which case the username will be desyprod2.

Revocation Entries

To create a revocation entry, add a line with a dash (-) as the username, such as

"/C=DE/O=GermanGrid/OU=DESY/CN=John Doe" "/desy/production" -

or modify the username of the entry if it already exists. The behaviour is undefined if there are two
entries which differ only by username.

Since DN is matched first, if a user would be authorized by his VO membership through a "*" entry,
but is matched according to his DN to a revocation entry, authorization would be denied. Likewise if a
whole VO were denied in a revocation entry, but some user in that VO could be mapped to a username
through his DN, then authorization would be granted.

More Examples

Suppose that there are users in production roles that are expected to write into the storage system data
which will be read by other users. In that case, to protect the data the non-production users would be
given read-only access. Here in /etc/grid-security/grid-vorolemap the production role
maps to username cmsprod, and the role which reads the data maps to cmsuser.

"*" "/cms/uscms/Role=cmsprod" cmsprod
"*" "/cms/uscms/Role=cmsuser" cmsuser

The read-write privilege is controlled by the third field in the lines of /etc/grid-security/stor-
age-authzdb

authorize cmsprod read-write 9811 5063 / /data /
 authorize cmsuser read-only 10001 6800 / /data /

Another use case is when users are to have their own directories within the storage system. This can
be arranged within the gPlazma configuration files by mapping each user’s DN to a unique username
and then mapping each username to a unique root path. As an example, lines from /etc/grid-se-
curity/grid-vorolemap would therefore be written

"/DC=org/DC=doegrids/OU=People/CN=Selby Booth" "/cms" cms821
"/DC=org/DC=doegrids/OU=People/CN=Kenja Kassi" "/cms" cms822
"/DC=org/DC=doegrids/OU=People/CN=Ameil Fauss" "/cms" cms823

and the corresponding lines from /etc/grid-security/storage-authzdb would be

authorize cms821 read-write 10821 7000 / /data/cms821 /
authorize cms822 read-write 10822 7000 / /data/cms822 /
authorize cms823 read-write 10823 7000 / /data/cms823 /

Authorization in dCache

109

The kpwd plug-in
The section in the gPlazma policy file for the kpwd plug-in specifies the location of the dcache.kpwd
file, for example

dcache.kpwd
kpwdPath="/etc/dcache/dcache.kpwd"

To maintain only one such file, make sure that this is the same location as defined in /usr/share/
dcache/defaults/dcache.properties.

Use /usr/share/dcache/examples/gplazma/dcache.kpwd to create this file.

The grid-mapfile plug-in
Two file locations are defined in the policy file for this plug-in:

grid-mapfile
gridMapFilePath="/etc/grid-security/grid-mapfile"
storageAuthzPath="/etc/grid-security/storage-authzdb"

Preparing the grid-mapfile

The grid-mapfile is the same as that used in other applications. It can be created in various ways,
either by connecting directly to VOMS or GUMS servers, or by hand.

Each line contains two fields: a DN (Certificate Subject) in quotes, and the username it is to be mapped to.

"/C=DE/O=GermanGrid/OU=DESY/CN=John Doe" johndoe

When using the grid-mapfile plug-in, the storage-authzdb file must also be configured. See
the section called “storage-authzdb” for details.

The saml-vo-mapping plug-in
There are two lines in the policy file for this plug-in.

SAML-based grid VO role mapping
mappingServiceUrl="https://gums.oursite.edu:8443/gums/services/GUMSAuthorizationServicePort"
Time in seconds to cache the mapping in memory
saml-vo-mapping-cache-lifetime="60"

The first line contains the URL for the GUMS web service. Replace the URL with that of the site-specific
GUMS. When using the GUMSAuthorizationServicePort", the service will only provide the
username mapping and it will still be necessary to have the storage-authzdb file used in other plug-ins.
See the above documentation storage-authzdb for how to create the file. If a GUMS server providing
a StorageAuthorizationServicePort with correct UID, GID, and root path information for
your site is available, the storage-authzdb file is not necessary.

The second line contains the value of the caching lifetime. In order to decrease the volume of requests
to the SAML authorization (GUMS) service, authorizations for the saml-vo-mapping plug-in are

Authorization in dCache

110

by default cached for a period of time. To change the caching duration, modify the saml-vo-map-
ping-cache-lifetime value in /etc/dcache/dcachesrm-gplazma.policy

saml-vo-mapping-cache-lifetime="120"

To turn off caching, set the value to 0. The default value is 180 seconds.

The xacml-vo-mapping plug-in
gPlazma includes an authorization plug-in, to support the XACML authorization schema. Using
XACML with SOAP messaging allows gPlazma to acquire authorization mappings from any ser-
vice which supports the obligation profile for grid interoperability [http://cd-docdb.fnal.gov/cgi-bin/
ShowDocument?docid=2952]. Servers presently supporting XACML mapping are the latest releases of
GUMS and SCAS. Using the new plug-in is optional, and previous configuration files are still compat-
ible with gPlazma. It is normally not necessary to change this file, but if you have customized the
previous copy, transfer your changes to the new batch file.

The configuration is very similar to that for the saml-vo-mapping plug-in. There are two lines for
the configuration.

XACML-based grid VO role mapping
XACMLmappingServiceUrl="https://gums.example.org:8443/gums/services/GUMS";
XACMLAuthorizationServicePort="8443"
Time in seconds to cache the mapping in memory
xacml-vo-mapping-cache-lifetime="180"

XACML-based grid VO role mapping
XACMLmappingServiceUrl="https://scas.europeansite.eu:8443"
Time in seconds to cache the mapping in memory
xacml-vo-mapping-cache-lifetime="180"

As for the saml-vo-mapping plug-in, the first line contains the URL for the web service. Replace
the URL with that of the site-specific GUMS or SCAS server. When using the GUMSXACMLAutho-
rizationServicePort (notice the difference in service name from that for the saml-vo-map-
ping plug-in) with a GUMS server, the service will only provide the username mapping and it will
still be necessary to have the storage-authzdb file used in other plug-ins. See the above documentation
about storage-authzdb for how to create the file. An SCAS server will return a UID, a primary GID, and
secondary GIDs, but not a root path. A storage-authzdb file will be necessary to assign the root
path. Since SCAS does not return a username, the convention in gPlazma is to use uid:gid for the
username, where uid is the string representation of the UID returned by SCAS, and gid is the string
representation of the primary GID returned by SCAS. Thus a line such as

authorize 13160:9767 read-write 13160 9767 / /data /

in /etc/grid-security/storage-authzdb will serve to assign the user mapped by SCAS to
UID=13160 and primary GID=9767 the root path /data. It is best for consistency’s sake to fill in
the UID and GID fields with the same values as in the uid:gid field. Additional secondary GIDs can
be assigned by using comma-separated values in the GID field. Any GIDs there not already returned as
secondary GIDs by SCAS will be added to the secondary GIDs list.

The second line contains the value of the caching lifetime. In order to decrease the volume of requests to
the XACML authorization (GUMS or SCAS) service, authorizations for the saml-vo-mapping plug-
in method are by default cached for a period of time. To change the caching duration, modify the xacml-
vo-mapping-cache-lifetime value in /etc/dcache/dcachesrm-gplazma.policy

http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2952
http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2952
http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2952

Authorization in dCache

111

saml-vo-mapping-cache-lifetime="120"

To turn off caching, set the value to 0. For the xacml-vo-mapping plug-in the default value is 180
seconds.

gPlazma specific dCache configuration
dCache has many parameters that can be used to configure the systems behaviour. You can find all
these parameters well documented and together with their default values in the properties files in /usr/
share/dcache/defaults/. To use non-default values, you have to set the new values in /etc/
dcache/dcache.conf or in the layout file. Do not change the defaults in the properties files! After
changing a parameter you have to restart the concerned cells.

Refer to the file gPlazma.properties for a full list of properties for gPlazma The following table
shows the most commonly used ones:

Parameter Meaning Default

gPlazmaNumberOfSimultane-
ousRequests

The number of concurrent requests 30

useGPlazmaAuthorization-
Module

Run gPlazma local for each door False

useGPlazmaAuthorization-
Cell

Run a central gPlazma instance. True

Setting the value for gPlazmaNumberOfSimultaneousRequests too high may result in large
spikes of CPU activity and the potential to run out of memory. Setting the number too low results in
potentially slow login activity.

The default mode for gPlazma is to run centralised in one instance. It is however possible to specify
to use gPlazma1 as module running locally to the doors. Set this property to True in the domain you
wish to run the module in.

If you decide to run gPlazma1 as a module you can switch off the centralised by setting useGPlaz-
maAuthorizationCell to False. Note that is also possible to mix both modes.

Using Direct Calls of gPlazma1 Methods
Cells may also call gPlazma1 methods as an alternative, or as a fall-back, to using the gPlazma cell.

Operation without a gPlazma Cell

If the gPlazma cell is not started, other cells can still authorize by calling gPlazma1 methods directly
from a pluggable module. The gPlazma1 control files and host certificates are needed on the node
from which authorization will take place. To invoke the gPlazma1 modules, modify the following line
in gridftpdoorSetup or srmSetup to

useGPlazmaAuthorizationModule=true

and make sure that the gplazmaPolicy line defines a valid gPlazma1 policy file on the node for
which authorization is to occur:

Authorization in dCache

112

gplazmaPolicy=/etc/dcache/dcachesrm-gplazma.policy

No adjustable timeout is available, but any blocking would likely be due to a socket read in the saml-
vo-mapping plug-in, which is circumvented by a built-in 30-second timeout.

Using a gPlazma Cell with a Direct-Call Fallback

Both a call to the gPlazma cell and the direct call of the gPlazma1 module may be specified. In that
case, authentication will first be tried via the gPlazma cell, and if that does not succeed, authentication
by direct invocation of gPlazma1 methods will be tried. Modify the following lines to:

useGPlazmaAuthorizationModule=true
useGPlazmaAuthorizationCell=true

Make sure that the line for gplazmaPolicy

gplazmaPolicy=/etc/dcache/dcachesrm-gplazma.policy

set to a local policy file on the node. The gPlazma policy file on the GridFTP door or srm does
not have to specify the same plug-ins as the gPlazma cell.

gPlazma config example to work with authenticat-
ed webadmin
In this section an example configuration of gPlazma1 is presented to enable working with Webadmin
in authenticated mode and give a user administrator access.

The /etc/dcache/dcachesrm-gplazma.policy file would look like this:

Switches
xacml-vo-mapping="OFF"
saml-vo-mapping="OFF"
kpwd="ON"
grid-mapfile="OFF"
gplazmalite-vorole-mapping="OFF"

Priorities
xacml-vo-mapping-priority="5"
saml-vo-mapping-priority="1"
kpwd-priority="3"
grid-mapfile-priority="4"
gplazmalite-vorole-mapping-priority="2"

Configurable Options for plug-ins|Services
###
Path to local or remotely accessible authorization repositories|services.
A valid path is required if corresponding switch is ON.

dcache.kpwd
kpwdPath="/etc/dcache/dcache.kpwd"

###
END

The /etc/dcache/dcache.kpwd file would look like this:

version 2.1

Authorization in dCache

113

mapping "/C=DE/O=ExampleOrganisation/OU=EXAMPLE/CN=John Doe" john
the following are the user auth records
login jans read-write 1000 100 / / /
/C=DE/O=ExampleOrganisation/OU=EXAMPLE/CN=John Doe

set pwd
passwd john 8402480 read-write 1000 100 / / /

This maps the subject part of a Grid-Certificate subject=/C=DE/O=ExampleOrganisation/
OU=EXAMPLE/CN=John Doe to the User john and the entry

login john read-write 1000 100 / / /
 /C=DE/O=GermanGrid/OU=DESY/CN=John Doe

applies unix-like values to john, most important is the 100, because it is the assigned GID. This must
match the value of the webadminAdminGid configured in your webadmin. This is sufficient for login
using a certificate. The entry

passwd john 8402480 read-write 1000 100 / / /

enables Username/Password login, such as a valid login would be user john with some password. The
password is encrypted with the kpwd-algorithm (also see the section called “The kpwd plug-in”) and
then stored in the file. Again the 100 here is the assigned GID.

114

Chapter 13. dCache as xRootd-Server
This chapter explains how to configure dCache in order to access it via the xrootd protocol, allowing
xrootd-Clients like ROOT’s TXNetfile and xrdcp to do file operations against a dCache instance in a
transparent manner. dCache implements version 2.1.6 of xrootd protocol.

Setting up
To allow file transfers in and out of dCache using xrootd, a new xrootd door must be started. This
door acts then as the entry point to all xrootd requests. Compared to the native xrootd server-imple-
mentation (produced by SLAC), the xrootd door corresponds to the redirector node.

To enable the xrootd door, you have to change the layout file corresponding to your dCache-instance.
Enable the xrootd-service within the domain that you want to run it by adding the following line

..
[domainName/xrootd]
..

You can just add the following lines to the layout file:

..
[xrootd-${host.name}Domain]
[xrootd-${host.name}Domain/xrootd]
..

After a restart of the domain running the xrootd door, done e.g. by executing

[root] # ${dCacheHome}/bin/dcache restart xrootd-babelfishDomain
Stopping xrootd-babelfishDomain (pid=30246) 0 1 2 3 4 5 6 7 done
Starting xrootd-babelfishDomain done

the xrootd door should be running. A few minutes later it should appear at the web monitoring
interface under "Cell Services" (see the section called “The Web Interface for Monitoring dCache”).

Parameters
The default port the xrootd door is listening on is 1094. This can be changed two ways:

1. Per door: Edit your instance’s layout file, for example /etc/dcache/lay-
outs/example.conf and add the desired port for the xrootd door in a separate line (a restart
of the domain(s) running the xrootd door is required):

..
[xrootd-${host.name}Domain]
[xrootd-${host.name}Domain/xrootd]
 port = 1095
..

2. Globally: Edit /etc/dcache/dcache.conf and add the variable xrootdPort with the de-
sired value (a restart of the domain(s) running the xrootd door is required):

..

dCache as xRootd-Server

115

xrootdPort=1095
..

For controlling the TCP-portrange within which xrootd-movers will start listening in the poolDo-
main, you can add the properties net.lan.port.min and net.lan.port.max to /etc/
dcache/dcache.conf and adapt them according to your preferences. The default values can be
viewed in /usr/share/dcache/defaults/dcache.properties.

..
net.lan.port.min=30100
net.lan.port.max=30200
..

Quick tests
The subsequent paragraphs describe a quick guide on how to test xrootd using the xrdcp and ROOT
clients.

Copying files with xrdcp
A simple way to get files in and out of dCache via xrootd is the command xrdcp. It is included in
every xrootd and ROOT distribution.

To transfer a single file in and out of dCache, just issue

[user] $ xrdcp /bin/sh root://xrootd-door.example.org/pnfs/example.org/data/xrd_test
[user] $ xrdcp root://xrootd-door.example.org/pnfs/example.org/data/xrd_test /dev/null

Accessing files from within ROOT
This simple ROOT example shows how to write a randomly filled histogram to a file in dCache:

root [0] TH1F h("testhisto", "test", 100, -4, 4);
root [1] h->FillRandom("gaus", 10000);
root [2] TFile *f = new TXNetFile("root://door_hostname//pnfs/example.org/data/test.root","new");
061024 12:03:52 001 Xrd: Create: (C) 2004 SLAC INFN XrdClient 0.3
root [3] h->Write();
root [4] f->Write();
root [5] f->Close();
root [6] 061101 15:57:42 14991 Xrd: XrdClientSock::RecvRaw: Error reading from socket: Success
061101 15:57:42 14991 Xrd: XrdClientMessage::ReadRaw: Error reading header (8 bytes)

Closing remote xrootd files that live in dCache produces this warning, but has absolutely no effect on
subsequent ROOT commands. It happens because dCache closes all TCP connections after finishing a
file transfer, while xrootd expects to keep them open for later reuse.

To read it back into ROOT from dCache:

root [7] TFile *reopen = TXNetFile ("root://door_hostname//pnfs/example.org/data/
test.root","read");
root [8] reopen->ls();
TXNetFile** //pnfs/example.org/data/test.root
 TXNetFile* //pnfs/example.org/data/test.root
 KEY: TH1F testhisto;1 test

dCache as xRootd-Server

116

xrootd security

Read-Write access
Per default dCache xrootd is restricted to read-only, because plain xrootd is completely unauthen-
ticated. A typical error message on the clientside if the server is read-only looks like:

 [user] $ xrdcp -d 1 /bin/sh root://ford.desy.de//pnfs/desy.de/data/xrd_test2
Setting debug level 1
061024 18:43:05 001 Xrd: main: (C) 2004 SLAC INFN xrdcp 0.2 beta
061024 18:43:05 001 Xrd: Create: (C) 2004 SLAC INFN XrdClient kXR_ver002+kXR_asyncap
061024 18:43:05 001 Xrd: ShowUrls: The converted URLs count is 1
061024 18:43:05 001 Xrd: ShowUrls: URL n.1: root://ford.desy.de:1094//pnfs/desy.de/data/asdfas.
061024 18:43:05 001 Xrd: Open: Access to server granted.
061024 18:43:05 001 Xrd: Open: Opening the remote file /pnfs/desy.de/data/asdfas
061024 18:43:05 001 Xrd: XrdClient::TryOpen: doitparallel=1
061024 18:43:05 001 Xrd: Open: File open in progress.
061024 18:43:06 5819 Xrd: SendGenCommand: Server declared: Permission denied. Access is read only.
(error code: 3003)
061024 18:43:06 001 Xrd: Close: File not opened.
Error accessing path/file for root://ford//pnfs/desy.de/data/asdfas

To enable read-write access, add the following line to ${dCacheHome}/etc/dcache.conf

..
xrootdIsReadOnly=false
..

and restart any domain(s) running a xrootd door.

Please note that due to the unauthenticated nature of this access mode, files can be written and read to/
from any subdirectory in the pnfs namespace (including the automatic creation of parent directories). If
there is no user information at the time of request, new files/subdirectories generated through xrootd
will inherit UID/GID from its parent directory. The user used for this can be configured via the xroot-
dUser property.

Permitting read/write access on selected directo-
ries
To overcome the security issue of uncontrolled xrootd read and write access mentioned in the previous
section, it is possible to restrict read and write access on a per-directory basis (including subdirectories).

To activate this feature, a colon-seperated list containing the full paths of authorized directories must
be added to /etc/dcache/dcache.conf. If both read and write access should be authorized for
certain directories, add the following line to /etc/dcache/dcache.conf:

..
xrootdAllowedPaths=/pnfs/example.org/path1:/pnfs/example.org/path2
..

If you want to split permissions depending on whether the operation is reading or writing, add the fol-
lowing lines instead:

..
xrootdAllowedReadPaths=/pnfs/example.org/rpath1:/pnfs/example.org/rpath2

dCache as xRootd-Server

117

xrootdAllowedWritePaths=/pnfs/example.org/wpath1:/pnfs/example.org/wpath2
..

A restart of the xrootd door is required to make the changes take effect. As soon as any of the above
properties are set, all read or write requests to directories not matching the allowed path lists will be
refused. Symlinks are however not restricted to these prefixes.

Token-based authorization
The xrootd dCache implementation includes a generic mechanism to plug in different authorization
handlers. The only plugin available so far implements token-based authorization as suggested in http://
people.web.psi.ch/feichtinger/doc/authz.pdf.

The first thing to do is to setup the keystore. The keystore file basically specifies all RSA-keypairs used
within the authorization process and has exactly the same syntax as in the native xrootd tokenauthoriza-
tion implementation. In this file, each line beginning with the keyword KEY corresponds to a certain
Virtual Organisation (VO) and specifies the remote public (owned by the file catalogue) and the local
private key belonging to that VO. A line containing the statement "KEY VO:*" defines a default key-
pair that is used as a fallback solution if no VO is specified in token-enhanced xrootd requests. Lines
not starting with the KEY keyword are ignored. A template can be found in /usr/share/dcache/
examples/xrootd/keystore.

The keys itself have to be converted into a certain format in order to be loaded into the authorization
plugin. dCache expects both keys to be binary DER-encoded (Distinguished Encoding Rules for ASN.1).
Furthermore the private key must be PKCS #8-compliant and the public key must follow the X.509-
standard.

The following example demonstrates how to create and convert a keypair using OpenSSL:

Generate new RSA private key
[root] # openssl genrsa -rand 12938467 -out key.pem 1024

Create certificate request
[root] # openssl req -new -inform PEM -key key.pem -outform PEM -out certreq.pem

Create certificate by self-signing certificate request
[root] # openssl x509 -days 3650 -signkey key.pem -in certreq.pem -req -out cert.pem

Extract public key from certificate
[root] # openssl x509 -pubkey -in cert.pem -out pkey.pem
[root] # openssl pkcs8 -in key.pem -topk8 -nocrypt -outform DER -out new_private_key
[root] # openssl enc -base64 -d -in pkey.pem -out new_public_key

Only the last two lines are performing the actual conversion, therefore you can skip the previous lines in
case you already have a keypair. Make sure that your keystore file correctly points to the converted keys.

To enable the plugin, it is necessary to add the following two lines to the file /etc/dcache/
dcache.conf, so that it looks like

..
 xrootdAuthzPlugin=org.dcache.xrootd.security.plugins.tokenauthz.TokenAuthorizationFactory
 xrootdAuthzKeystore=Path_to_your_Keystore
 ..

After doing a restart of dCache, any requests without an appropriate token should result in an error
saying "authorization check failed: No authorization token found in open
request, access denied.(error code: 3010)".

http://people.web.psi.ch/feichtinger/doc/authz.pdf
http://people.web.psi.ch/feichtinger/doc/authz.pdf

dCache as xRootd-Server

118

If both tokenbased authorization and read-only access are activated, the read-only restriction will dom-
inate (local settings have precedence over remote file catalogue permissions).

Strong authentication
The xrootd-implementation in dCache includes a pluggable authentication framework. To control
which authentication mechanism is used by xrootd, add the xrootdAuthNPlugin option to your
dCache configuration and set it to the desired value.

For instance, to enable GSI authentication in xrootd, add the following line to /etc/dcache/
dcache.conf:

..
xrootdAuthNPlugin=gsi
..

When using GSI authentication, depending on your setup, you may or may not want dCache to fail if the
host certificate chain can not be verified against trusted certificate authorities. Whether dCache performs
this check can be controlled by setting the option verifyHostCertificateChain:

..
verifyHostCertificateChain=true
..

Authorization of the user information obtained by strong authentication is performed by contacting the
gPlazma service. Please refer to Chapter 12, Authorization in dCache for instructions about how to
configure gPlazma.

Security consideration

In general GSI on xrootd is not secure. It does not provide confidentiality and integrity guar-
antees and hence does not protect against man-in-the-middle attacks.

Precedence of security mechanisms
The previously explained methods to restrict access via xrootd can also be used together. The prece-
dence applied in that case is as following:

Note

The xrootd-door can be configured to use either token authorization or strong authentication
with gPlazma authorization. A combination of both is currently not possible.

The permission check executed by the authorization plugin (if one is installed) is given the lowest pri-
ority, because it can controlled by a remote party. E.g. in the case of token based authorization, access
control is determined by the file catalogue (global namespace).

The same argument holds for many strong authentication mechanisms - for example, both the GSI
protocol as well as the Kerberos protocols require trust in remote authorities. However, this only
affects user authentication, while authorization decisions can be adjusted by local site administrators by
adapting the gPlazma configuration.

To allow local site’s administrators to override remote security settings, write access can be further
restricted to few directories (based on the local namespace, the pnfs). Setting xrootd access to read-
only has the highest priority, overriding all other settings.

dCache as xRootd-Server

119

Other configuration options
The xrootd-door has several other configuration properties. You can configure various timeout para-
meters, the thread pool sizes on pools, queue buffer sizes on pools, the xrootd root path, the xrootd
user and the xrootd IO queue. Full descriptions on the effect of those can be found in /usr/share/
dcache/defaults/xrootd.properties.

120

Chapter 14. dCache Storage Resource
Manager

Introduction
Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic
space allocation and file management on shared storage components on the Grid. SRMs support protocol
negotiation and a reliable replication mechanism. The SRM specification [https://sdm.lbl.gov/srm-wg/
doc/SRM.v2.2.html] standardizes the interface, thus allowing for a uniform access to heterogeneous
storage elements.

The SRM utilizes the Grid Security Infrastructure (GSI) for authentication. The SRM is a Web Service im-
plementing a published WSDL document. Please visit the SRM Working Group Page [http://sdm.lbl.gov/
srm-wg/] to see the SRM Version 1.1 and SRM Version 2.2 protocol specification documents.

The SRM protocol uses HTTP over GSI as a transport. The dCache SRM implementation added HTTPS
as a transport layer option. The main benefits of using HTTPS rather than HTTP over GSI is that HTTPS
is a standard protocol and has support for sessions, improving latency in case a client needs to connect to
the same server multiple times. The current implementation does not offer a delegation service. Hence
srmCopy will not work with SRM over HTTPS. A separate delegation service will be added in a later
release.

Configuring the srm service

The Basic Setup
Like other services, the srm service can be enabled in the layout file /etc/dcache/layouts/my-
layout of your dCache installation. For an overview of the layout file format, please see the section
called “Defining domains and services”.

To enable SRM in a separate srm-${host.name}Domain in dCache, add the following lines to your
layout file:

[srm-${host.name}Domain]
[srm-${host.name}Domain/srm]

The use of the srm service requires an authentication setup, see Chapter 12, Authorization in dCache for
a general description or the section called “Authentication and Authorization in dCache” for an example
setup with X.509 certificates.

You can now copy a file into your dCache using the SRM,

Note

Please make sure to use latest srmcp client otherwise you will need to specify -2 in order to
use the right version.

[user] $ srmcp file:////bin/sh srm://dcache.example.org:8443/data/world-writable/srm-test-file

copy it back

https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
http://sdm.lbl.gov/srm-wg/
http://sdm.lbl.gov/srm-wg/
http://sdm.lbl.gov/srm-wg/

dCache Storage Re-
source Manager

121

[user] $ srmcp srm://dcache.example.org:8443/data/world-writable/srm-test-file file:////tmp/
srmtestfile.tmp

and delete it

[user] $ srmrm srm://dcache.example.org:8443/data/world-writable/srm-test-file

Important srm configuration options
The defaults for the following configuration parameters can be found in the .properties files in the
directory /usr/share/dcache/defaults.

If you want to modify parameters, copy them to /etc/dcache/dcache.conf or to your layout file
/etc/dcache/layouts/mylayout and update their value.

Change the value for srmDatabaseHost=localhost in the layout file.

[srm-${host.name}Domain]
[srm-${host.name}Domain/srm]
srmDatabaseHost=hostname

In the file /usr/share/dcache/defaults/srm.properties you will find the default values

---- Database name
srmDbName=dcache

---- Database user name
srmDbUser=srmdcache

The defaults for the configuration parameters for the SRM service can be found in /usr/share/
dcache/defaults/dcache.properties.

srmCopyReqThreadPoolSize=250
remoteGsiftpMaxTransfers=${srmCopyReqThreadPoolSize}

If you want to modify these values make sure that both srmCopyReqThreadPoolSize and re-
moteGsiftpMaxTransfers are set to the same values. The common value should be the roughly
equal to the maximum number of the SRM - to -SRM copies your system can sustain.

So if you think about 3 gridftp transfers per pool and you have 30 pools then the number should be
3x30=90.

srmCopyReqThreadPoolSize=90
remoteGsiftpMaxTransfers=90

US-CMS T1 has:

srmCopyReqThreadPoolSize=2000
remoteGsiftpMaxTransfers=2000

Note

SRM might produce a lot of log entries, especially if it runs in debug mode. It is recommended
to make sure that logs are redirected into a file on a large disk.

dCache Storage Re-
source Manager

122

Utilization of Space Reservations for Data
Storage
SRM version 2.2 introduced a concept of space reservation. Space reservation guarantees that the re-
quested amount of storage space of a specified type is made available by the storage system for a spec-
ified amount of time.

The dCache administrator can make space reservations for VOs (see the section called “SpaceMan-
ager configuration for Explicit Space Reservations”. Each space reservation has an associated ID (or
space token). VOs then can copy directly into space tokens assigned to them by the dcache administrator.

When a file is about to be transferred to a storage system, the space available in the space reservation
is checked if it can accomodate the entire file. If yes, this chunk of space is marked as allocated, so
that it can not be taken by another, concurrently transferred file. If the file is transferred successfully
the allocated space becomes used space within the space reservation, else the allocated space is released
back to the space reservation.

SRM space reservation can be assigned a non-unique description which can be used to query the system
for space reservations with a given description.

dCache only manages write space, i.e. space on disk can be reserved only for write operations. Once
files are migrated to tape, and if no copy is required on disk, space used by these files is returned back
into space reservation. When files are read back from tape and cached on disk, they are not counted as
part of any space.

Properties of Space Reservation
The administrator can specify a RetentionPolicy and an AccessLatency for the space reser-
vation.

RetentionPolicy describes the quality of the storage service that will be provided for the data
(files) stored in this space reservation and AccessLatency describes the availability of this data. The
specification requires that if a space reservation is given, then the specified RetentionPolicy or
AccessLatency must match those of the space reservation.

The default values for the RetentionPolicy and AccessLatency can be changed in the file /
etc/dcache/dcache.conf.

RetentionPolicy The values of RetentionPolicy used in dCache are REPLICA and CUS-
TODIAL.

• REPLICA corresponds to the lowest quality of the service, usually associated
with storing a single copy of each file on the disk.

• CUSTODIAL is the highest quality service, usually interpreted as storage of
the data on tape.

Once a file is written into a given space reservation, it inherits the reservation’s
RetentionPolicy.

If the space reservation request does not specify a retention policy we will as-
sign DefaultRetentionPolicy a retention policy by default. The default
value is CUSTODIAL.

dCache Storage Re-
source Manager

123

Edit the file /etc/dcache/dcache.conf to change the default value.

Change the default value to REPLICA.

DefaultRetentionPolicy=REPLICA

AccessLatency The two values allowed for AccessLatency are NEARLINE and ONLINE.

• NEARLINE means that data stored in this reservation is allowed to migrate
to permanent media. Retrieving these data may result in delays associated
with preparatory steps that the storage system has to perform to make these
data available for the user I/O (e.g., staging data from tape to a disk cache).

• ONLINE means that data is readily available allowing for faster access.

In case of dCache ONLINE means that there will always be a copy of the file
on disk, while NEARLINE does not provide such guarantee. As with Reten-
tionPolicy, once a file is written into a given space reservation, it inherits
the reservation’s AccessLatency.

If a space reservation request does not specify an access latency we will as-
sign DefaultAccessLatencyForSpaceReservation an access la-
tency by default. The default value is NEARLINE.

Edit the file /etc/dcache/dcache.conf to change the default value.

Change the default value to ONLINE.

DefaultAccessLatencyForSpaceReservation=ONLINE

Important
Please make sure to use capital letters for REPLICA, CUSTODIAL, ONLINE and NEARLINE
otherwise you will receive an error message.

dCache specific concepts

Activating SRM SpaceManager

In order to enable the SRM SpaceManager you need to add the spacemanager service to your
layout file

[srm-${host.name}Domain]
[srm-${host.name}Domain/srm]
[srm-${host.name}Domain/spacemanager]

and add (uncomment) the following definition in the file /etc/dcache/dcache.conf

srmSpaceManagerEnabled=yes

dCache Storage Re-
source Manager

124

Explicit and Implicit Space Reservations for Data
Storage in dCache

Explicit Space Reservations

Each SRM space reservation is made against the total available disk space of a particular link group. If
dCache is configured correctly each byte of disk space, that can be reserved, belongs to one and only
one link group. See the section called “SpaceManager configuration for Explicit Space Reservations”
for a detailed description.

Important

Make sure that no pool belongs to more than one pool group, no pool group belongs to more
than one link and no link belongs to more than one link group.

If a space reservation is specified, the file will be stored in it (assuming the user has permission to do
so in the name space).

Files written into a space made within a particular link group will end up on one of the pools belonging
to this link group. The difference between the link group’s available space and the sum of all the current
space reservation sizes is the available space in the link group.

The total space in dCache that can be reserved is the sum of the available spaces of all link groups.

Implicit Space Reservations

dCache can perform implicit space reservations for non-SRM transfers, SRM Version 1 transfers and for
SRM Version 2.2 data transfers that are not given the space token explicitly. The parameter that enables
this behavior is srmImplicitSpaceManagerEnabled, which is described in the section called
“SRM configuration for experts”. If no implicit space reservation can be made, the transfer will fail.

In case of SRM version 1.1 data transfers, when the access latency and retention policy cannot be speci-
fied, and in case of SRM V2.2 clients, when the access latency and retention policy are not specified, the
default values will be used. First SRM will attempt to use the values of AccessLatency and Reten-
tionPolicy tags from the directory to which a file is being written. If the tags are present, then the
AccessLatency and RetentionPolicy will be set on basis of the system wide defaults, which are
controlled by DefaultRetentionPolicy and DefaultAccessLatencyForSpaceReser-
vation variables in /etc/dcache/dcache.conf.

You can check if the AccessLatency and RetentionPolicy tags are present by using the fol-
lowing commands:

[root] # /usr/bin/chimera-cli lstag /path/to/directory
Total: numberOfTags
tag1
tag2
..
AccessLatency
RetentionPolicy

If the output contains the lines AccessLatency and RetentionPolicy then the tags are already
present and you can get the actual values of these tags by executing the following commands, which are
shown together with example outputs:

dCache Storage Re-
source Manager

125

[root] # /usr/bin/chimera-cli readtag /data/experiment-a AccessLatency
ONLINE
[root] # /usr/bin/chimera-cli readtag /data/experiment-a RetentionPolicy
CUSTODIAL

The valid AccessLatency values are ONLINE and NEARLINE, valid RetentionPolicy values
are REPLICA and CUSTODIAL.

To create/change the values of the tags, please execute :

[root] # /usr/bin/chimera-cli writetag /path/to/directory AccessLatency "New AccessLatency"
[root] # /usr/bin/chimera-cli writetag /path/to/directory RetentionPolicy "New RetentionPolicy"

Note

Some clients also have default values, which are used when not explicitly specified by the user.
I this case server side defaults will have no effect.

Note

If the implicit space reservation is not enabled the pools in the link groups will be excluded from
consideration and only the remaining pools will be considered for storing the incoming data,
and classical pool selection mechanism will be used.

SpaceManager configuration for Explicit
Space Reservations

SRM SpaceManager and Link Groups
SpaceManager is making reservations against free space available in link groups. The total free space
in the given link group is the sum of available spaces in all links. The available space in each link is the
sum of all sizes of available space in all pools assinged to a given link. Therefore for the space reservation
to work correctly it is essential that each pool belongs to one and only one link, and each link belongs
to only one link group. Link groups are assigned several parameters that determine what kind of space
the link group corresponds to and who can make reservations against this space.

Making a Space Reservation
Now that the SRM SpaceManager is activated you can make a space reservation. As mentioned above
you need link groups to make a space reservation.

Prerequisites for Space Reservations

Login to the admin interface and cd to the cell SrmSpaceManager.

[user] $ ssh -c blowfish -p 22223 -l admin headnode.example.org
(local) admin > cd SrmSpaceManager

Type ls to get information about reservations and link groups.

(SrmSpaceManager) admin > ls

dCache Storage Re-
source Manager

126

Reservations:
total number of reservations: 0
total number of bytes reserved: 0

LinkGroups:
total number of linkGroups: 0
total number of bytes reservable: 0
total number of bytes reserved : 0
last time all link groups were updated: Tue Sep 20 11:15:19 CEST 2011(1316510119634)

This output tells you that there are no reservations yet and no link groups. As there are no link groups
no space can be reserved.

The Link Groups

For a general introduction about link groups see the section called “Link Groups”.

In this example we will create a link group for the VO desy. In order to do so we need to have a pool, a
pool group and a link. Moreover, we define unit groups named any-store, world-net and any-
protocol. (See the section called “Types of Units”.)

Define a pool in your layout file, add it to your pool directory and restart the poolDomain.

[poolDomain]
[poolDomain/pool]
path=/srv/dcache/spacemanager-pool
name=spacemanager-pool

[root] # mkdir -p /srv/dcache/spacemanager-pool
[root] # /usr/bin/dcache restart

In the Admin Interface cd to the PoolManager and create a pool group, a link and a link group.

(SrmSpaceManager) admin > ..
(local) admin > cd PoolManager
(PoolManager) admin > psu create pgroup spacemanager_poolGroup
(PoolManager) admin > psu addto pgroup spacemanager_poolGroup spacemanager-pool
(PoolManager) admin > psu removefrom pgroup default spacemanager-pool
(PoolManager) admin > psu create link spacemanager_WriteLink any-store world-net any-protocol
(PoolManager) admin > psu set link spacemanager_WriteLink -readpref=10 -writepref=10 -cachepref=0
 -p2ppref=-1
(PoolManager) admin > psu add link spacemanager_WriteLink spacemanager_poolGroup
(PoolManager) admin > psu create linkGroup spacemanager_WriteLinkGroup
(PoolManager) admin > psu set linkGroup custodialAllowed spacemanager_WriteLinkGroup true
(PoolManager) admin > psu set linkGroup replicaAllowed spacemanager_WriteLinkGroup true
(PoolManager) admin > psu set linkGroup nearlineAllowed spacemanager_WriteLinkGroup true
(PoolManager) admin > psu set linkGroup onlineAllowed spacemanager_WriteLinkGroup true
(PoolManager) admin > psu addto linkGroup spacemanager_WriteLinkGroup spacemanager_WriteLink
(PoolManager) admin > save
(PoolManager) admin > ..

Check whether the link group is available.

(local) admin > cd SrmSpaceManager
(SrmSpaceManager) admin > ls
Reservations:
total number of reservations: 0
total number of bytes reserved: 0

LinkGroups:
0 Name:spacemanager_WriteLinkGroup FreeSpace:7278624768 ReservedSpace:0 AvailableSpace:7278624768
 VOs: onlineAllowed:true nearlineAllowed:false replicaAllowed:true custodialAllowed:true
 UpdateTime:Mon Nov 28 12:12:51 CET 2011(1322478771030)

dCache Storage Re-
source Manager

127

total number of linkGroups: 1
total number of bytes reservable: 7278624768
total number of bytes reserved : 0
last time all link groups were updated: Mon Nov 28 12:12:51 CET 2011(1322478771030)

The link group spacemanager_WriteLinkGroup was created and has the id 0.

The SpaceManagerLinkGroupAuthorizationFile

Now you need to edit the LinkGroupAuthorization.conf file. This file contains a list of the link
groups and all the VOs and the VO Roles that are permitted to make reservations in a given link group.

Specify the location of the LinkGroupAuthorization.conf file in the /etc/dcache/
dcache.conf file.

SpaceManagerLinkGroupAuthorizationFileName=/path/to/LinkGroupAuthorization.conf

The file LinkGroupAuthorization.conf has following syntax:

LinkGroup NameOfLinkGroup followed by the list of the Fully Qualified Attribute Names (FQANs).
Each FQAN on a separate line, followed by an empty line, which is used as a record separator, or by
the end of the file.

FQAN is usually a string of the form VO/Role=VORole. Both VO and VORole could be set to *, in this
case all VOs or VO Roles will be allowed to make reservations in this link group. Any line that starts
with # is a comment and may appear anywhere.

#SpaceManagerLinkGroupAuthorizationFile

LinkGroup NameOfLinkGroup
/VO/Role=VORole

Note

You do not need to restart the srm or dCache after changing the
LinkGroupAuthorization.conf file. The changes will be applied automatically after a
few minutes.

Use update link groups to be sure that the LinkGroupAuthorization.conf file and the
link groups have been updated.

(SrmSpaceManager) admin > update link groups
update started

In the example above you created the link group spacemanager_WriteLinkGroup. Now you
want to allow members of the VO desy with the role production to make a space reservation in
this link group.

#SpaceManagerLinkGroupAuthorizationFile
this is comment and is ignored

LinkGroup spacemanager_WriteLinkGroup
#
/desy/Role=production

In this more general example for a SpaceManagerLinkGroupAuthorizationFile members
of the VO desy with role test get the right to make a space reservation in a link group called desy-

dCache Storage Re-
source Manager

128

test-LinkGroup. Moreover, all members of the VO desy get the right to make a reservation in the
link group called desy-anyone-LinkGroup and anyone will get the right to make a space reserva-
tion in the link group called default-LinkGroup.

#SpaceManagerLinkGroupAuthorizationFile
this is comment and is ignored

LinkGroup desy-test-LinkGroup
/desy/Role=/test

LinkGroup desy-anyone-LinkGroup
/desy/Role=*

LinkGroup default-LinkGroup
allow anyone :-)
/Role=

Making and Releasing a Space Reservation as dCache Ad-
ministrator

Making a Space Reservation

Now you can make a space reservation for the VO desy.

(SrmSpaceManager) admin > reserve -vog=/desy -vor=production -desc=DESY_TEST 5000000 10000
110000 voGroup:/desy voRole:production retentionPolicy:CUSTODIAL accessLatency:NEARLINE
 linkGroupId:0 size:5000000 created:Fri Dec 09 12:43:48 CET 2011 lifetime:10000000ms
 expiration:Fri Dec 09 15:30:28 CET 2011 description:DESY_TEST state:RESERVED used:0 allocated:0

The id of the space token is 110000.

Check the status of the reservation by

(SrmSpaceManager) admin > ls
Reservations:
110000 voGroup:/desy voRole:production retentionPolicy:CUSTODIAL accessLatency:NEARLINE
 linkGroupId:0 size:5000000 created:Fri Dec 09 12:43:48 CET 2011 lifetime:10000000ms
 expiration:Fri Dec 09 15:30:28 CET 2011 description:DESY_TEST state:RESERVED used:0 allocated:0
total number of reservations: 1
total number of bytes reserved: 5000000

LinkGroups:
0 Name:spacemanager_WriteLinkGroup FreeSpace:23747563520 ReservedSpace:5000000
 AvailableSpace:23742563520 VOs:{/desy:*} onlineAllowed:true nearlineAllowed:true
 replicaAllowed:true custodialAllowed:true UpdateTime:Fri Dec 09 12:49:29 CET 2011(1323431369046)
total number of linkGroups: 1
total number of bytes reservable: 23742563520
total number of bytes reserved : 5000000
last time all link groups were updated: Fri Dec 09 12:49:29 CET 2011(1323431369046)

You can now copy a file into that space token.

[user] $ srmcp file:////bin/sh srm://dcache.example.org:8443/data/world-writable/space-token-test-
file -space_token=110000

Now you can check via the Webadmin Interface or the Web Interface that the file has been copied to
the pool spacemanager-pool.

There are several parameters to be specified for a space reservation.

(SrmSpaceManager) admin > reserve [-vog=voGroup] [-vor=voRole] [-acclat=AccessLatency] \

dCache Storage Re-
source Manager

129

[-retpol=RetentionPolicy] [-desc=Description] [-lgid=LinkGroupId] [-lg=LinkGroupName] \
sizeInBytes lifetimeInSecs

[-vog=voGroup] voGroup should match the VO you specified in the
LinkGroupAuthorization.conf file. If you do not want
to make a space reservation for a certain VO then the entry in the
LinkGroupAuthorization.conf should read

LinkGroup NameOfLinkGroup
/Role=

[-vor=voRole] voRole can be specified if it is used in the
LinkGroupAuthorization.conf file.

[-acclat=AccessLatency] AccessLatency needs to match one of the access latencies
allowed for the link group.

[-retpol=RetentionPolicy] RetentionPolicy needs to match one of the retention poli-
cies allowed for the link group.

[-desc=Description] You can chose a value to describe your space reservation.

[-lgid=LinkGroupId] You can either use the LinkGroupId to make a space reserva-
tion or

[-lg=LinkGroupName] you use the LinkGroupName to make a space reservation.

sizeInBytes The size of the space reservation should be specified in bytes.

lifetimeInSecs The life time of the space reservation should be specified in sec-
onds. Choose "-1" for a space reservation that will never expire
(use quotes around the negative one).

Releasing a Space Reservation

If a space reservation is not needet anymore it can be released with

(SrmSpaceManager) admin > release spaceTokenId

(SrmSpaceManager) admin > reserve -vog=/desy -vor=production -desc=DESY_TEST 5000000 600
110042 voGroup:/desy voRole:production retentionPolicy:CUSTODIAL accessLatency:NEARLINE
 linkGroupId:0 size:5000000 created:Thu Dec 15 12:00:35 CET 2011 lifetime:600000ms expiration:Thu
 Dec 15 12:10:35 CET 2011 description:DESY_TEST state:RESERVED used:0 allocated:0
(SrmSpaceManager) admin > release 110042
110042 voGroup:/desy voRole:production retentionPolicy:CUSTODIAL accessLatency:NEARLINE
 linkGroupId:0 size:5000000 created:Thu Dec 15 12:00:35 CET 2011 lifetime:600000ms expiration:Thu
 Dec 15 12:10:35 CET 2011 description:DESY_TEST state:RELEASED used:0 allocated:0

You can see that the value for state has changed from RESERVED to RELEASED

Making and Releasing a Space Reservation as a User

A user who has been given the right to make a space reservation can make a space reservation. To achieve
this the right entry in the LinkGroupAuthorization.conf file is required.

dCache Storage Re-
source Manager

130

VO based Authorization Prerequisites

In order to be able to take advantage of the virtual organization (VO) infrastructure and VO based au-
thorization and VO based access control to the space in dCache, certain things need to be in place:

• User needs to be registered with the VO.

• User needs to use voms-proxy-init to create a VO proxy.

• dCache needs to use gPlazma with modules that extract VO attributes from the user’s proxy. (See
Chapter 12, Authorization in dCache, have a look at gplazmalite-vorole-mapping plugin
and see the section called “Authentication and Authorization in dCache” for an example with gplaz-
malite-vorole-mapping.

Only if these 3 conditions are satisfied the VO based authorization of the SpaceManager will work.

VO based Access Control Configuration

As mentioned above dCache space reservation functionality access control is currently performed at the
level of the link groups. Access to making reservations in each link group is controlled by the Space-
ManagerLinkGroupAuthorizationFile.

This file contains a list of the link groups and all the VOs and the VO Roles that are permitted to make
reservations in a given link group.

When a SRM Space Reservation request is executed, its parameters, such as reservation size, lifetime,
AccessLatencyand RetentionPolicy as well as user’s VO membership information is forward-
ed to the SRM SpaceManager.

Once a space reservation is created, no access control is performed, any user can store the files in this
space reservation, provided he or she knows the exact space token.

Making and Releasing a Space Reservation

A user who is given the rights in the SpaceManagerLinkGroupAuthorizationFile can make
a space reservation by

[user] $ srm-reserve-space -retention_policy=RetentionPolicy -lifetime=lifetimeInSecs -
desired_size=sizeInBytes -guaranteed_size=sizeInBytes srm://example.org:8443
Space token =SpaceTokenId

and release it by

[user] $ srm-release-space srm://example.org:8443 -space_token=SpaceTokenId

Note

Please note that it is obligatory to specify the retention policy while it is optional to specify the
access latency.

[user] $ srm-reserve-space -retention_policy=REPLICA -lifetime=300 -desired_size=5500000 -
guaranteed_size=5500000 srm://srm.example.org:8443
Space token =110044

The space reservation can be released by:

dCache Storage Re-
source Manager

131

[user] $ srm-release-space srm://srm.example.org:8443 -space_token=110044

Space Reservation without VOMS certificate

If a client uses a regular grid proxy, created with grid-proxy-init, and not a VO proxy, which is created
with the voms-proxy-init, when it is communicating with SRM server in dCache, then the VO attributes
can not be extracted from its credential. In this case the name of the user is extracted from the Distin-
guished Name (DN) to use name mapping. For the purposes of the space reservation the name of the
user as mapped by gplazma is used as its VO Group name, and the VO Role is left empty. The entry
in the SpaceManagerLinkGroupAuthorizationFile should be:

#LinkGroupAuthorizationFile
#
userName

Space Reservation for non SRM Transfers

Edit the file /etc/dcache/dcache.conf to enable space reservation for non SRM transfers.

SpaceManagerReserveSpaceForNonSRMTransfers=true

If the spacemanager is enabled, SpaceManagerReserveSpaceForNonSRMTransfers is
set to true, and if the transfer request comes from a door, and there was no prior space reservation
made for this file, the SpaceManager will try to reserve space before satisfying the request.

Possible values are true or false and the default value is false.

SRM configuration for experts
There are a few parameters in /usr/share/dcache/defaults/*.properties that you might
find useful for nontrivial SRM deployment.

srmSpaceManagerEnabled

srmSpaceManagerEnabled tells if the space management is activated in SRM.

Possible values are yes and no. Default is yes.

Usage example:

srmSpaceManagerEnabled=yes

srmImplicitSpaceManagerEnabled

srmImplicitSpaceManagerEnabled tells if the space should be reserved for SRM Version 1
transfers and for SRM Version 2 transfers that have no space token specified. Will have effect only if
srmSpaceManagerEnabled.

Possible values are yes and no. This is enabled by default. It has no effect if srmSpaceManager-
Enabled is set to no.

Usage example:

dCache Storage Re-
source Manager

132

srmImplicitSpaceManagerEnabled=yes

overwriteEnabled

overwriteEnabled tells SRM and GridFTP servers if the overwrite is allowed. If enabled on the
SRM node, should be enabled on all GridFTP nodes.

Possible values are yes and no. Default is no.

Usage example:

overwriteEnabled=yes

srmOverwriteByDefault

srmOverwriteByDefault Set this to true if you want overwrite to be enabled for SRM v1.1 inter-
face as well as for SRM v2.2 interface when client does not specify desired overwrite mode. This option
will be considered only if overwriteEnabled is set to yes.

Possible values are true and false. Default is false.

Usage example:

srmOverwriteByDefault=false

srmDatabaseHost

srmDatabaseHost tells SRM which database host to connect to.

Default value is localhost.

Usage example:

srmDatabaseHost=database-host.example.org

spaceManagerDatabaseHost

spaceManagerDatabaseHost tells SpaceManager which database host to connect to.

Default value is localhost.

Usage example:

spaceManagerDatabaseHost=database-host.example.org

pinManagerDbHost

pinManagerDbHost tells PinManager which database host to connect to.

Default value is localhost.

Usage example:

dCache Storage Re-
source Manager

133

pinManagerDbHost=database-host.example.org

srmDbName

srmDbName tells SRM which database to connect to.

Default value is dcache.

Usage example:

srmDbName=dcache

srmDbUser

srmDbUser tells SRM which database user name to use when connecting to database. Do not change
unless you know what you are doing.

Default value is srmdcache.

Usage example:

srmDbUser=srmdcache

srmDbPassword

srmDbPassword tells SRM which database password to use when connecting to database. The default
value is srmdcache.

Usage example:

srmDbPassword=NotVerySecret

srmPasswordFile

srmPasswordFile tells SRM which database password file to use when connecting to database. Do
not change unless you know what you are doing. It is recommended that MD5 authentication method is
used. To learn about file format please see http://www.postgresql.org/docs/8.1/static/libpq-pgpass.html.
To learn more about authentication methods please visit http://www.postgresql.org/docs/8.1/static/en-
cryption-options.html, Please read "Encrypting Passwords Across A Network" section.

This option is not set by default.

Usage example:

srmPasswordFile=/root/.pgpass

srmRequestHistoryDatabaseEnabled

srmRequestHistoryDatabaseEnabled enables logging of the transition history of the SRM re-
quest in the database. The request transitions can be examined through the command line interface.

http://www.postgresql.org/docs/8.1/static/libpq-pgpass.html
http://www.postgresql.org/docs/8.1/static/encryption-options.html
http://www.postgresql.org/docs/8.1/static/encryption-options.html

dCache Storage Re-
source Manager

134

Activation of this option might lead to the increase of the database activity, so if the PostgreSQL load
generated by SRM is excessive, disable it.

Possible values are true and false. Default is false.

Usage example:

srmRequestHistoryDatabaseEnabled=true

srmDbLogEnabled

srmDbLogEnabled tells SRM to store the information about the remote (copy, srmCopy) transfer
details in the database. Activation of this option might lead to the increase of the database activity, so if
the PostgreSQL load generated by SRM is excessive, disable it.

Possible values are true and false. Default is false.

Usage example:

srmDbLogEnabled=false

srmVersion

srmVersion is not used by SRM; it was mentioned that this value is used by some publishing scripts.

Default is version1.

pnfsSrmPath

pnfsSrmPath tells SRM what the root of all SRM paths is in pnfs. SRM will prepend path
to all the local SURL paths passed to it by SRM client. So if the pnfsSrmPath is set
to /pnfs/fnal.gov/THISISTHEPNFSSRMPATH and someone requests the read of srm://
srm.example.org:8443/file1, SRM will translate the SURL path /file1 into /pn-
fs/fnal.gov/THISISTHEPNFSSRMPATH/file1. Setting this variable to something different
from / is equivalent of performing Unix chroot for all SRM operations.

Default value is /.

Usage example:

pnfsSrmPath="/pnfs/fnal.gov/data/experiment"

parallelStreams

parallelStreams specifies the number of the parallel streams that SRM will use when performing
third party transfers between this system and remote GSI-FTP servers, in response to SRM v1.1 copy
or SRM V2.2 srmCopy function. This will have no effect on srmPrepareToPut and srmPrepareToGet
command results and parameters of GridFTP transfers driven by the SRM clients.

Default value is 10.

Usage example:

dCache Storage Re-
source Manager

135

parallelStreams=20

srmBufferSize

srmBufferSize specifies the number of bytes to use for the in memory buffers for performing third
party transfers between this system and remote GSI-FTP servers, in response to SRM v1.1 copy or SRM
V2.2 srmCopy function. This will have no effect on srmPrepareToPut and srmPrepareToGet command
results and parameters of GridFTP transfers driven by the SRM clients.

Default value is 1048576.

Usage example:

srmBufferSize=1048576

srmTcpBufferSize

srmTcpBufferSize specifies the number of bytes to use for the tcp buffers for performing third
party transfers between this system and remote GSI-FTP servers, in response to SRM v1.1 copy or SRM
V2.2 srmCopy function. This will have no effect on srmPrepareToPut and srmPrepareToGet command
results and parameters of GridFTP transfers driven by the SRM clients.

Default value is 1048576.

Usage example:

srmTcpBufferSize=1048576

srmAuthzCacheLifetime

srmAuthzCacheLifetime specifies the duration that authorizations will be cached. Caching de-
creases the volume of messages to the gPlazma cell or other authorization mechanism. To turn off
caching, set the value to 0.

Default value is 120.

Usage example:

srmAuthzCacheLifetime=60

srmGetLifeTime, srmPutLifeTime and srmCopyLifeTime

srmGetLifeTime, srmPutLifeTime and srmCopyLifeTime specify the lifetimes of the srm-
PrepareToGet (srmBringOnline) srmPrepareToPut and srmCopy requests lifetimes in millisecond. If the
system is unable to fulfill the requests before the request lifetimes expire, the requests are automatically
garbage collected.

Default value is 14400000 (4 hours)

Usage example:

srmGetLifeTime=14400000

dCache Storage Re-
source Manager

136

srmPutLifeTime=14400000
srmCopyLifeTime=14400000

srmGetReqMaxReadyRequests, srmPutReqMaxReadyRe-
quests, srmGetReqReadyQueueSize and srmPutRe-
qReadyQueueSize

srmGetReqMaxReadyRequests and srmPutReqMaxReadyRequests specify the maximum
number of the files for which the transfer URLs will be computed and given to the users in response to
SRM get (srmPrepareToGet) and put (srmPrepareToPut) requests. The rest of the files that are ready to be
transfered are put on the Ready queues, the maximum length of these queues are controlled by srmGe-
tReqReadyQueueSize and srmPutReqReadyQueueSize parameters. These parameters should
be set according to the capacity of the system, and are usually greater than the maximum number of the
GridFTP transfers that this dCache instance GridFTP doors can sustain.

Usage example:

srmGetReqReadyQueueSize=10000
srmGetReqMaxReadyRequests=2000
srmPutReqReadyQueueSize=10000
srmPutReqMaxReadyRequests=1000

srmCopyReqThreadPoolSize and remoteGsiftpMaxTrans-
fers

srmCopyReqThreadPoolSize and remoteGsiftpMaxTransfers. srmCopyReqThread-
PoolSize is used to specify how many parallel srmCopy file copies to execute simultaneously. Once the
SRM contacted the remote SRM system, and obtained a Transfer URL (usually GSI-FTP URL), it con-
tacts a Copy Manager module (usually RemoteGSIFTPTransferManager), and asks it to perform
a GridFTP transfer between the remote GridFTP server and a dCache pool. The maximum number of
simultaneous transfers that RemoteGSIFTPTransferManager will support is remoteGsiftp-
MaxTransfers, therefore it is important that remoteGsiftpMaxTransfers is greater than or
equal to srmCopyReqThreadPoolSize.

Usage example:

srmCopyReqThreadPoolSize=250
remoteGsiftpMaxTransfers=260

srmCustomGetHostByAddr

srmCustomGetHostByAddr srmCustomGetHostByAddr enables using the BNL developed proce-
dure for host by IP resolution if standard InetAddress method failed.

Usage example:

srmCustomGetHostByAddr=true

RecursiveDirectoryCreation

RecursiveDirectoryCreation allows or disallows automatic creation of directories via SRM,
allow=true, disallow=false.

dCache Storage Re-
source Manager

137

Automatic directory creation is allowed by default.

Usage example:

RecursiveDirectoryCreation=true

hostCertificateRefreshPeriod

This option allows you to control how often the SRM door will reload the server’s host certificate from the
filesystem. For the specified period, the host certificate will be kept in memory. This speeds up the rate
at which the door can handle requests, but also causes it to be unaware of changes to the host certificate
(for instance in the case of renewal).

By changing this parameter you can control how long the host certificate is cached by the door and
consequently how fast the door will be able to detect and reload a renewed host certificate.

Please note that the value of this parameter has to be specified in seconds.

Usage example:

hostCertificateRefreshPeriod=86400

trustAnchorRefreshPeriod

The trustAnchorRefreshPeriod option is similar to hostCertificateRefreshPeriod.
It applies to the set of CA certificates trusted by the SRM door for signing end-entity certificates (along
with some metadata, these form so called trust anchors). The trust anchors are needed to make a decision
about the trustworthiness of a certificate in X.509 client authentication. The GSI security protocol used
by SRM builds upon X.509 client authentication.

By changing this parameter you can control how long the set of trust anchors remains cached by the
door. Conversely, it also influences how often the door reloads the set of trusted certificates.

Please note that the value of this parameter has to be specified in seconds.

Tip

Trust-anchors usually change more often than the host certificate. Thus, it might be sensible to
set the refresh period of the trust anchors lower than the refresh period of the host certificate.

Usage example:

trustAnchorRefreshPeriod=3600

Configuring the PostgreSQL Database
We highly recommend to make sure that PostgreSQL database files are stored on a separate disk that
is not used for anything else (not even PostgreSQL logging). BNL Atlas Tier 1 observed a great im-
provement in srm-database communication performance after they deployed PostgreSQL on a separate
dedicated machine.

dCache Storage Re-
source Manager

138

SRM or srm monitoring on a separate node
If SRM or srm monitoring is going to be installed on a separate node, you need to add an entry in the file
/var/lib/pgsql/data/pg_hba.conf for this node as well:

host all all monitoring node trust
host all all srm node trust

The file postgresql.conf should contain the following:

#to enable network connection on the default port
max_connections = 100
port = 5432
...
shared_buffers = 114688
...
work_mem = 10240
...
#to enable autovacuuming
stats_row_level = on
autovacuum = on
autovacuum_vacuum_threshold = 500 # min # of tuple updates before
 # vacuum
autovacuum_analyze_threshold = 250 # min # of tuple updates before
 # analyze
autovacuum_vacuum_scale_factor = 0.2 # fraction of rel size before
 # vacuum
autovacuum_analyze_scale_factor = 0.1 # fraction of rel size before
#
setting vacuum_cost_delay might be useful to avoid
autovacuum penalize general performance
it is not set in US-CMS T1 at Fermilab
#
In IN2P3 add_missing_from = on
In Fermilab it is commented out

- Free Space Map -
max_fsm_pages = 500000

- Planner Cost Constants -
effective_cache_size = 16384 # typically 8KB each

General SRM Concepts (for developers)

The SRM service
dCache SRM is implemented as a Web Service running in a Jetty servlet container and an Axis Web
Services engine. The Jetty server is executed as a cell, embedded in dCache and started automatically
by the SRM service. Other cells started automatically by SRM are SpaceManager, PinManager
and RemoteGSIFTPTransferManager. Of these services only SRM and SpaceManager require
special configuration.

The SRM consists of the five categories of functions:

• Space Management Functions

• Data Transfer Functions

• Request Status Functions

• Directory Functions

dCache Storage Re-
source Manager

139

• Permission Functions

Space Management Functions
SRM version 2.2 introduces a concept of space reservation. Space reservation guarantees that the request-
ed amount of storage space of a specified type is made available by the storage system for a specified
amount of time.

We use three functions for space management:

• srmReserveSpace

• SrmGetSpaceMetadata

• srmReleaseSpace

Space reservation is made using the srmReserveSpace function. In case of successful reservation,
a unique name, called space token is assigned to the reservation. A space token can be used during the
transfer operations to tell the system to put the files being manipulated or transferred into an associated
space reservation. A storage system ensures that the reserved amount of the disk space is indeed avail-
able, thus providing a guarantee that a client does not run out of space until all space promised by the
reservation has been used. When files are deleted, the space is returned to the space reservation.

dCache only manages write space, i.e. space on disk can be reserved only for write operations. Once
files are migrated to tape, and if no copy is required on disk, space used by these files is returned back
into space reservation. When files are read back from tape and cached on disk, they are not counted as
part of any space. SRM space reservation can be assigned a non-unique description that can be used to
query the system for space reservations with a given description.

Properties of the SRM space reservations can be discovered using the SrmGetSpaceMetadata func-
tion.

Space Reservations might be released with the function srmReleaseSpace.

For a complete description of the available space management functions please see the SRM Version 2.2
Specification [http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html#_Toc241633085].

Data Transfer Functions

SURLs and TURLs

SRM defines a protocol named SRM, and introduces a way to address the files stored in the SRM managed
storage by site URL (SURL of the format srm://<host>:<port>/[<web service path>?
SFN=]<path>.

Examples of the SURLs a.k.a. SRM URLs are:

srm://fapl110.fnal.gov:8443/srm/managerv2?SFN=//pnfs/fnal.gov/data/test/file1
srm://fapl110.fnal.gov:8443/srm/managerv1?SFN=/pnfs/fnal.gov/data/test/file2
srm://srm.cern.ch:8443/castor/cern.ch/cms/store/cmsfile23

A transfer URL (TURL) encodes the file transport protocol in the URL.

gsiftp://gridftpdoor.fnal.gov:2811/data/test/file1

http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html#_Toc241633085
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html#_Toc241633085
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html#_Toc241633085

dCache Storage Re-
source Manager

140

SRM version 2.2 provides three functions for performing data transfers:

• srmPrepareToGet

• srmPrepareToPut

• srmCopy

(in SRM version 1.1 these functions were called get, put and copy).

All three functions accept lists of SURLs as parameters. All data transfer functions perform file/directory
access verification and srmPrepareToPut and srmCopy check if the receiving storage element has
sufficient space to store the files.

srmPrepareToGet prepares files for read. These files are specified as a list of source SURLs, which
are stored in an SRM managed storage element. srmPrepareToGet is used to bring source files online
and assigns transfer URLs (TURLs) that are used for actual data transfer.

srmPrepareToPut prepares an SRM managed storage element to receive data into the list of desti-
nation SURLs. It prepares a list of TURLs where the client can write data into.

Both functions support transfer protocol negotiation. A client supplies a list of transfer protocols and the
SRM server computes the TURL using the first protocol from the list that it supports. Function invoca-
tion on the Storage Element depends on implementation and may range from simple SURL to TURL
translation to stage from tape to disk cache and dynamic selection of transfer host and transfer protocol
depending on the protocol availability and current load on each of the transfer server load.

The function srmCopy is used to copy files between SRM managed storage elements. If both source
and target are local to the SRM, it performes a local copy. There are two modes of remote copies:

• PULL mode : The target SRM initiates an srmCopy request. Upon the client\u0411\u2500\u2265s
srmCopy request, the target SRM makes a space at the target storage, executes srmPrepareToGet
on the source SRM. When the TURL is ready at the source SRM, the target SRM transfers the file from
the source TURL into the prepared target storage. After the file transfer completes, srmRelease-
Files is issued to the source SRM.

• PUSH mode : The source SRM initiates an srmCopy request. Upon the client\u0411\u2500\u2265s
srmCopy request, the source SRM prepares a file to be transferred out to the target SRM, executes
srmPrepareToPut on the target SRM. When the TURL is ready at the target SRM, the source
SRM transfers the file from the prepared source into the prepared target TURL. After the file transfer
completes, srmPutDone is issued to the target SRM.

When a specified target space token is provided, the files will be located in the space associated with
the space token.

SRM Version 2.2 srmPrepareToPut and srmCopy PULL mode transfers allow the user to specify
a space reservation token or a RetentionPolicy and AccessLatency. Any of these parameters
are optional, and it is up to the implementation to decide what to do, if these properties are not specified.
The specification requires that if a space reservation is given, then the specified AccessLatency or
RetentionPolicy must match those of the space reservation.

The Data Transfer Functions are asynchronous, an initial SRM call starts a request execution on the server
side and returns a request status that contains a unique request token. The status of request is polled
periodically by SRM get request status functions. Once a request is completed and the client receives
the TURLs the data transfers are initiated. When the transfers are completed the client notifies the SRM

dCache Storage Re-
source Manager

141

server by executing srmReleaseFiles in case of srmPrepareToGet or srmPutDone in case
of srmPrepareToPut. In case of srmCopy, the system knows when the transfers are completed and
resources can be released, so it requires no special function at the end.

Clients are free to cancel the requests at any time by execution of srmAbortFiles or srmAbortRe-
quest.

Request Status Functions
The functions for checking the request status are:

• srmStatusOfReserveSpaceRequest

• srmStatusOfUpdateSpaceRequest

• srmStatusOfChangeSpaceForFilesRequest

• srmStatusOfChangeSpaceForFilesRequest

• srmStatusOfBringOnlineRequest

• srmStatusOfPutRequest

• srmStatusOfCopyRequest

Directory Functions
SRM Version 2.2, interface provides a complete set of directory management functions. These are

• srmLs, srmRm

• srmMkDir, srmRmDir

• srmMv

Permission functions
SRM Version 2.2 supports the following three file permission functions:

• srmGetPermission

• srmCheckPermission and

• srmSetPermission

dCache contains an implementation of these functions that allows setting and checking of Unix file
permissions.

142

Chapter 15. The statistics Service
The statistics service collects information on the amount of data stored on all pools and the total
data flow including streams from and to tertiary storage systems.

Once per hour an ASCII file is produced, containing a table with information on the amount of used
disk space and the data transferred starting midnight up to this point in time. Data is sorted per pool
and storage class.

In addition to the hourly statistics, files are produced reporting on the daily, monthly and yearly dCache
activities. An HTML tree is produced and updated once per hour allowing to navigate through the col-
lected statistics information.

The Basic Setup
Define the statistics service in the domain, where the httpd is running.

[httpdDomain]
[httpdDomain/httpd]
...
[httpdDomain/statistics]

The statistics service automatically creates a directory tree, structured according to years, months
and days.

Once per hour, a total.raw file is produced underneath the active year, month and day directo-
ries, containing the sum over all pools and storage classes of the corresponding time interval. The day
directory contains detailed statistics per hour and for the whole day.

/var/lib/dcache/statistics/YYYY/total.raw
/var/lib/dcache/statistics/YYYY/MM/total.raw
/var/lib/dcache/statistics/YYYY/MM/DD/total.raw
/var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-day.raw
/var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-HH.raw

In the same directory tree the HTML files are created for each day, month and year.

/var/lib/dcache/statistics/YYYY/index.html
/var/lib/dcache/statistics/YYYY/MM/index.html
/var/lib/dcache/statistics/YYYY/MM/DD/index.html

By default the path for the statistics data is /var/lib/dcache/statistics. You can modify this
path by setting the property dcache.paths.statistics to a different value.

The Statistics Web Page
Point a web browser to your dCache webpage at http://head-node.example.org:2288/. On
the bottom you find the link to Statistics.

The statistics data needs to be collected for a day before it will appear on the web page.

Note

You will get an error if you try to read the statistics web page right after you enabled the sta-
tistics as the web page has not yet been created.

The statistics Service

143

Create data and the web page by logging in to the admin interface and running the commands
create stat and create html.

(local) admin > cd PoolStatistics@httpdDomain
(PoolStatistics@)httpdDomain admin > create stat
Thread started for internal run
(PoolStatistics@)httpdDomain admin > create html
java.lang.NullPointerException

Now you can see a statistics web page.

Statistics is calculated once per hour at HH:55. The daily stuff is calculated at 23:55. Without manual
intervention, it takes two midnights before all HTML statistics pages are available. There is a way to
get this done after just one midnight. After the first midnight following the first startup of the statistics
module, log into the PoolStatistics cell and run the following commands in the given sequence.
The specified date has to be the Year/Month/Day of today.

(PoolStatistics@)httpdDomain admin > create html YYYY MM DD
done
(PoolStatistics@)httpdDomain admin > create html YYYY MM
done
(PoolStatistics@)httpdDomain admin > create html YYYY
done
(PoolStatistics@)httpdDomain admin > create html
done

You will see an empty statistics page at http://head-node.example.org:2288/statis-
tics/.

On the Statistics Help Page http://head-node.example.org:2288/docs/
statisticsHelp.html you find an explanation for the colors.

Explanation of the File Format of the
xxx.raw Files
The file formats of the /var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-
HH.raw and the /var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-day.raw
files are similar. The file /var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-
HH.raw does not contain columns 2 and 3 as these are related to the day and not to the hour.

The file format of the /var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-
day.raw files:

#
timestamp=1361364900897
date=Wed Feb 20 13:55:00 CET 2013
#
pool1 StoreA:GroupB@osm 21307929 10155 2466935 10155 0 925 0 0 0 0 85362 0

Format of YYYY-MM-DD-day.raw files.

Column Number Column Description

0 Pool Name

1 Storage Class

The statistics Service

144

Column Number Column Description

2 Bytes stored on this pool for this stor-
age class at beginning of day — green bar

3 Number of files stored on this pool for this storage class at beginning of day

4 Bytes stored on this pool for this storage
class at this hour or end of day — red bar

5 Number of files stored on this pool for
this storage class at this hour or end of day

6 Total Number of transfers (in and out, dCache-client)

7 Total Number of restores (HSM to dCache)

8 Total Number of stores (dCache to HSM)

9 Total Number errors

10 Total Number of bytes transferred from client into dCache — blue bar

11 Total Number of bytes transferred from dCache to clients — yellow bar

12 Total Number of bytes tranferred from HSM to dCache — pink bar

13 Total Number of bytes tranferred from dCache to HSM — orange bar

The YYYY/MM/DD/YYYY-MM-DD-HH.raw files do not contain line 2 and 3.

145

Chapter 16. dCache Webadmin-
Interface
This part describes how to configure the Webadmin-interface which is a replacement for the old httpd-
service and offers additional features to admins like sending admin-commands equal to those of admin
to chosen cells.

The Webadmin-interface receives the information from dCache info service as XML which are parsed
and presented. For authentication and authorisation it offers usage of username/password (currently
KAuth-File) or grid-certificates talking to gPlazma. It also offers a non-authenticated, read-only mode.

If you are logged in as admin it is possible to send a command to multiple pools or a whole poolgroup
in one go. It is even possible to send a command to any dCache-Cell.

From the technical point of view the Webadmin-interface uses a Jetty-Server which is embedded in
an ordinary dCache-cell. It is using apache-wicket (a webfrontend-framework) and YAML (a CSS-
Template Framework). The application is wired up by a Spring IOC-Container.

Installation
To enable your dCache to run the Webadmin-interface your system has to run the info service. For
the authenticated mode a configured gPlazma is also required (see also the section called “gPlazma
config example to work with authenticated webadmin”). The KAuth-File has to be on the same machine
then the Webadmin for this to work. For a non-authenticated Webadmin you just need to add the We-
badmin service to a domain and configure the port Webadmin will listen on - webadminHttpPort.

For authenticated mode the host certificate has to be imported into the dCache-keystore. In the grid
world host certificates are usually signed by national Grid-CAs. Refer to the documentation provided
by the Grid-CA to find out how to request a certificate. To import them into the dCache-keystore use
this command:

[root] # dcache import hostcert

Now you have to initialise your truststore (this is the certificate-store used for the SSL connections) by
using this command:

[root] # dcache import cacerts

Webadmin-interface uses the same truststore as WebDAV, so maybe you can skip this step.

You can enable the Webadmin interface by adding the service (Webadmin) to a domain.

[webadminDomain]
[webadminDomain/webadmin]
webadminDCacheInstanceName=coolName
webadminAuthenticated=true
webadminAdminGid=1000

The default value for the webadminHttpsPort is 8444 and for the webadminHttpPort it is
8080. Have a look at the following example to see how to modify these values.

[webadminDomain]

dCache Webadmin-Interface

146

[webadminDomain/webadmin]
webadminHttpsPort=8445
webadminHttpPort=8081
webadminDCacheInstanceName=coolName
webadminAuthenticated=true
webadminAdminGid=1000

The most important value is webadminAdminGid, because it configures who is allowed to alter
dCache behaviour, which certainly should not be everyone:

---- GID a user has to have to be considered an Admin of webadmininterface
#
When a user has this GID he can become an Admin for webadmininterface
webadminAdminGid=1000

To see all webadmin specific property values have a look at /usr/share/dcache/de-
faults/webadmin.properties. For information on gPlazma configuration have a look at
Chapter 12, Authorization in dCache and for a special example the section called “gPlazma config ex-
ample to work with authenticated webadmin”. After startup of webadmin you can reach it via http://
example.com:8080/webadmin. Since webadmin bases on the info it takes some time until all
values are populated, because info needs to collect them first. It is recommended to let info run on
the same machine then Webadmin.

147

Chapter 17. ACLs in dCache
Irina Kozlova

Paul Millar

Starting with the 1.9.3 series, dCache includes support for Access Control Lists (ACLs). This support
is conforming to the NFS version 4 Protocol specification [http://www.nfsv4-editor.org/draft-25/draft-
ietf-nfsv4-minorversion1-25.html].

This chapter provides some background information and details on configuring dCache to use ACLs and
how to administer the resulting system.

ACLs and pnfs

ACLs are only supported with the Chimera name space backend. Versions before 1.9.12 had
partial support for ACLs with the pnfs backend, however due to the limitations of that imple-
mentation ACLs were practically useless with pnfs.

Introduction
dCache allows control over namespace operations (e.g., creating new files and directories, deleting items,
renaming items) and data operations (reading data, writing data) using the standard Unix permission
model. In this model, files and directories have both owner and group-owner attributes and a set of
permissions that apply to the owner, permissions for users that are members of the group-owner group
and permissions for other users.

Although Unix permission model is flexible enough for many deployment scenarios there are configu-
rations that either cannot configured easily or are impossible. To satisfy these more complex permission
handling dCache has support for ACL-based permission handling.

An Access Control List (ACL) is a set of rules for determining whether an end-user is allowed to under-
take some specific operation. Each ACL is tied to a specific namespace entry: a file or directory. When
an end-user wishes to undertake some operation then the ACL for that namespace entry is checked to
see if that user is authorised. If the operation is to create a new file or directory then the ACL of the
parent directory is checked.

File- and directory- ACLs

Each ACL is associated with a specific file or directory in dCache. Although the general form
is the same whether the ACL is associated with a file or directory, some aspects of an ACL may
change. Because of this, we introduce the terms file-ACL and directory-ACL when taking about
ACLs associated with a file or a directory respectively. If the term ACL is used then it refers to
both file-ACLs and directory-ACLs.

Each ACL contains a list of one or more Access Control Entries (ACEs). The ACEs describe how dCache
determines whether an end-user is authorised. Each ACE contains information about which group of end
users it applies to and describes whether this group is authorised for some subset of possible operations.

The order of the ACEs within an ACL is significant. When checking whether an end-user is authorised
each ACE is checked in turn to see if it applies to the end-user and the requested operation. If it does
then that ACE determines whether that end-user is authorised. If not then the next ACE is checked. Thus
an ACL can have several ACEs and the first matched ACE “wins”.

http://www.nfsv4-editor.org/draft-25/draft-ietf-nfsv4-minorversion1-25.html
http://www.nfsv4-editor.org/draft-25/draft-ietf-nfsv4-minorversion1-25.html
http://www.nfsv4-editor.org/draft-25/draft-ietf-nfsv4-minorversion1-25.html

ACLs in dCache

148

One of the problems with traditional Unix-based permission model is its inflexible handling of newly
created files and directories. With transitional filesystems, the permissions that are set are under the
control of the user-process creating the file. The sysadmin has no direct control over the permissions
that newly files or directories will have. The ACL permission model solves this problem by allowing
explicit configuration using inheritance.

ACL inheritance is when a new file or directory is created with an ACL containing a set of ACEs from
the parent directory’s ACL. The inherited ACEs are specially marked so that only those that are intended
will be inherited.

Inheritance only happens when a new file or directory is created. After creation, the ACL of the new file
or directory is completely decoupled from the parent directory’s ACL: the ACL of the parent directory
may be altered without affecting the ACL of the new file or directory and visa versa.

Inheritance is optional. Within a directory’s ACL some ACEs may be inherited whilst others are not.
New files or directories will receive only those ACEs that are configured; the remaining ACEs will not
be copied.

Database configuration
ACL support requires database tables to store ACL and ACE information. These tables are part of the
Chimera name space backend and for a new installation no additional steps are needed to prepare the
database.

Early versions of Chimera (before dCache 1.9.3) did not create the ACL table during installation. If the
database is lacking the extra table then it has to be created before enabling ACL support. This is achieved
by applying two SQL files:

[root] # psql chimera < /usr/share/dcache/chimera/sql/addACLtoChimeraDB.sql
[root] # psql chimera < /usr/share/dcache/chimera/sql/pgsql-procedures.sql

Configuring ACL support
The dcache.conf and layout files contain a number of settings that may be adjusted to configure
dCache’s permission settings. These settings are are described in this section.

Enabling ACL support
To enable ACL support set the property aclEnabled to true. This property applies to the pnfs-
manager and acl services and only need to be defined for these services.

Enabling the acl service
To query and define ACLs on files and directories enable the acl service. This service exposes a com-
mand line interface to administer ACLs. The command line interface of the service is described in sec-
tion the section called “Administrating ACLs”.

To enable the acl service, you have to change the layout file corresponding to your dCache-instance.
Enable the acl service within the domain that you want to run it in by adding the following line

..
[domainName/acl]

ACLs in dCache

149

..

Administrating ACLs
Altering dCache ACL behaviour is achieved by connecting to the acladmin well-known cell using the
administrator interface. For further details about how to use the administrator interface, see the section
called “The Admin Interface”.

The info and help commands are available within acladmin and fulfil their usual functions.

How to set ACLs
The setfacl command is used to set a new ACL. This command accepts arguments with the following
form:

setfacl ID ACE [ACE...]

The ID argument is either a pnfs-ID or the absolute path of some file or directory in dCache. The
setfacl command requires one or more ACE arguments seperated by spaces.

The setfacl command creates a new ACL for the file or directory represented by ID. This new ACL
replaces any existing ACEs for ID.

An ACL has one or more ACEs. Each ACE defines permissions to access this resource for some Subject.
The ACEs are space-separated and the ordering is significant. The format and description of these ACE
values are described below.

Description of the ACE structure

The ACE arguments to the setfacl command have a specific format. This format is described below in
Extended Backus-Naur Form (EBNF).
[1] ACE::=Subject ':' Access |

Subject ':' Access ':' Inheritance

[2] Subject::= 'USER:' UserID |
'GROUP:' GroupID |
'OWNER@' |
'GROUP@' |
'EVERYONE@' |
'ANONYMOUS@' |
'AUTHENTICATED@'

[3] Access::= '+' Mask |
'-' Mask

[4] Mask::=Mask MaskItem |
MaskItem

[5] MaskItem::= 'r' | 'l' | 'w' | 'f' | 's' | 'a' | 'n' | 'N' | 'x' | 'd' | 'D' | 't' | 'T' |
'c' | 'C' | 'o'

[6] Inheritance::= Inheritance Flag |
Flag

[7] Flag::= 'f' | 'd' | 'o'
[8] UserID::= INTEGER
[9] GroupID::= INTEGER

The various options are described below.

ACLs in dCache

150

The Subject

The Subject defines to which user or group of users the ACE will apply. It acts as a filter so that only
those users that match the Subject will have their access rights affected.

As indicated by the EBNF above, the Subject of an ACE can take one of several forms. These are
described below:

USER:id The USER: prefix indicates that the ACE applies only to the specific end-user:
the dCache user with ID id. For example, USER:0:+w is an ACE that allows
user 0 to write over a file’s existing data.

GROUP:id The GROUP: prefix indicates that the ACE applies only to those end-users who
are a member of the specific group: the dCache group with ID id. For example,
GROUP:20:+a is an ACE that allows any user who is a member of group 20
to append data to the end of a file.

OWNER@ The OWNER@ subject indicates that the ACE applies only to whichever end-user
owns the file or directory. For example, OWNER@:+d is an ACE that allows the
file’s or directory’s owner to delete it.

GROUP@ The GROUP@ subject indicates that the ACE applies only to all users that are
members of the group-owner of the file or directory. For example, GROUP@:+l
is an ACE that allows any user that is in a directory’s group-owner to list the
directory’s contents.

EVERYONE@ The EVERYONE@ subject indicates that the ACE applies to all users. For exam-
ple, EVERYONE@:+r is an ACE that makes a file world-readable.

ANONYMOUS@ The ANONYMOUS@ Subject indicates that the ACE applies to all users who have
not authenticated themselves. For example, ANONYMOUS@:-l is an ACE that
prevents unauthenticated users from listing the contents of a directory.

AUTHENTICATED@ The AUTHENTICATED@ Subject indicates that an ACE applies to all authenti-
cated users. For example, AUTHENTICATED@:+r is an ACE that allows any
authenticated user to read a file’s contents.

Authenticated or anonymous

An end user of dCache is either authenticated or is unauthenticated, but never both. Because of
this, an end user operation will either match ACEs with ANONYMOUS@ Subjects or AUTHEN-
TICATED@ Subjects but the request will never match both at the same time.

Access mask

Access (defined in the ACE EBNF above) describes what kind of operations are being described by the
ACE and whether the ACE is granting permission or denying it.

An individual ACE can either grant permissions or deny them, but never both. However, an ACL may
be composed of any mixture of authorising- and denying- ACEs. The first character of Access describes
whether the ACE is authorising or denying.

If Access begins with a plus symbol (+) then the ACE authorises the Subject some operations. The ACE
EVERYONE@:+r authorises all users to read a file since the Access begins with a +.

If the Access begins with a minus symbol (-) then the ACE denies the Subject some operations. The
ACE EVERYONE@:-r prevents any user from reading a file since the Access begins with a -.

ACLs in dCache

151

The first character of Access must be + or -, no other possibility is allowed. The initial + or - of Access
is followed by one or more operation letters. These letters form the ACE’s access mask (Mask in ACE
EBNF above).

The access mask describes which operations may be allowed or denied by the ACE. Each type of oper-
ation has a corresponding letter; for example, obtaining a directory listing has a corresponding letter l.
If a user attempts an operation of a type corresponding to a letter present in the access mask then the
ACE may affect whether the operation is authorised. If the corresponding letter is absent from the access
mask then the ACE will be ignored for this operation.

The following table describes the access mask letters and the corresponding operations:

File- and directory- specific operations

Some operations and, correspondingly, some access mask letters only make sense for ACLs
attached to certain types of items. Some operations only apply to directories, some operations
are only for files and some operations apply to both files and directories.

When configuring an ACL, if an ACE has an operation letter in the access mask that is not
applicable to whatever the ACL is associated with then the letter is converted to an equivalent.
For example, if l (list directory) is in the access mask of an ACE that is part of a file-ACL then
it is converted to r. These mappings are described in the following table.

r reading data from a file. Specifying r in an ACE’s access mask controls whether end-users are
allowed to read a file’s contents. If the ACE is part of a directory-ACL then the letter is converted
to l.

l listing the contents of a directory. Specifying l in an ACE’s access mask controls whether end-
users are allowed to list a directory’s contents. If the ACE is part of a file-ACL then the letter is
converted to r.

w overwriting a file’s existing contents. Specifying w in an ACE’s access mask controls whether end-
users are allowed to write data anywhere within the file’s current offset range. This includes the
ability to write to any arbitrary offset and, as a result, to grow the file. If the ACE is part of a
directory-ACL then the letter is converted to f.

f creating a new file within a directory. Specifying f in an ACE’s access mask controls whether end-
users are allowed to create a new file. If the ACE is part of an file-ACL then then the letter is
converted to w.

s creating a subdirectory within a directory. Specifying s in an ACE’s access mask controls whether
end-users are allowed to create new subdirectories. If the ACE is part of a file-ACL then the letter
is converted to a.

a appending data to the end of a file. Specifying a in an ACE’s access mask controls whether end-
users are allowed to add data to the end of a file. If the ACE is part of a directory-ACL then the
letter is converted to s.

n reading attributes. Specifying n in an ACE’s access mask controls whether end-users are allowed
to read attributes. This letter may be specified in ACEs that are part of a file-ACL and those that
are part of a directory-ACL.

N write attributes. Specifying N in an ACE’s access mask controls whether end-users are allowed to
write attributes. This letter may be specified in ACEs that are part of a file-ACL and those that are
part of a directory-ACL.

ACLs in dCache

152

x executing a file or entering a directory. x may be specified in an ACE that is part of a file-ACL or
a directory-ACL; however, the operation that is authorised will be different.

Specifying x in an ACEs access mask that is part of a file-ACL will control whether end users
matching the ACE Subject are allowed to execute that file.

Specifying x in an ACEs access mask that is part of a directory-ACL will control whether end
users matching ACE Subject are allowed to search a directory for a named file or subdirectory. This
operation is needed for end users to change their current working directory.

d deleting a namespace entry. Specifying d in an ACE’s access mask controls whether end-users are
allowed to delete the file or directory the ACL is attached. The end user must be also authorised for
the parent directory (see D).

D deleting a child of a directory. Specifying D in the access mask of an ACE that is part of a directo-
ry-ACL controls whether end-users are allowed to delete items within that directory. The end user
must be also authorised for the existing item (see d).

t reading basic attributes. Specifying t in the access mask of an ACE controls whether end users are
allowed to read basic (i.e., non-ACL) attributes of that item.

T altering basic attributes. Specifying T in an ACE’s access mask controls whether end users are al-
lowed to alter timestamps of the item the ACE’s ACL is attached.

c reading ACL information. Specifying c in an ACE’s access mask controls whether end users are
allowed to read the ACL information of the item to which the ACE’s ACL is attached.

C writing ACL information. Specifying C in an ACE’s access mask controls whether end users are
allowed to update ACL information of the item to which the ACE’s ACL is attached.

o altering owner and owner-group information. Specifying o controls whether end users are allowed
to change ownership information of the item to which the ACE’s ACL is attached.

ACL inheritance

To enable ACL inheritance, the optional inheritance flags must be defined. The flag is a list of letters.
There are three possible letters that may be included and the order doesn’t matter.

ACE Inheritance Flags

f This inheritance flag only affects those ACEs that form part of an directory-ACL. If the ACE is part
of a file-ACL then specifying f has no effect.

If a file is created in a directory with an ACE with f in inheritance flags then the ACE is copied to
the newly created file’s ACL. This ACE copy will not have the f inheritance flag.

Specifying f in an ACE’s inheritance flags does not affect whether this ACE is inherited by a newly
created subdirectory. See d for more details.

d This inheritance flag only affect those ACEs that form part of an directory-ACL. If the ACE is part
of a file-ACL then specifying d has no effect.

Specifying d in an ACE’s inheritance flags does not affect whether this ACE is inherited by a newly
created file. See f for more details.

ACLs in dCache

153

If a subdirectory is created in a directory with an ACE with d in the ACE’s inheritance flag then the
ACE is copied to the newly created subdirectory’s ACL. This ACE copy will have the d inheritance
flag specified. If the f inheritance flag is specified then this, too, will be copied.

o The o flag may only be used when the ACE also has the f, d or both f and d inheritance flags.

Specifying o in the inheritance flag will suppress the ACE. No user operations will be authorised
or denied as a result of such an ACE.

When a file or directory inherits from an ACE with o in the inheritance flags then the o is not present
in the newly created file or directory’s ACE. Since the newly created file or directory will not have
the o in it’s inheritance flags the ACE will take effect.

An o in the inheritance flag allows child files or directories to inherit authorisation behaviour that
is different from the parent directory.

Examples

This section gives some specific examples of how to set ACLs to achieve some specific behaviour.

Example 17.1. ACL allowing specific user to delete files in a directory

This example demonstrates how to configure a directory-ACL so user 3750 can delete any file within
the directory /pnfs/example.org/data/exampleDir.

(acladmin) admin > setfacl /pnfs/example.org/data/exampleDir EVERYONE@:+l USER:3750:D
 (...line continues...) USER:3750:+d:of
(acladmin) admin > setfacl /pnfs/example.org/data/exampleDir/existingFile1
 (...line continues...) USER:3750:+d:f
(acladmin) admin > setfacl /pnfs/example.org/data/exampleDir/existingFile2
 (...line continues...) USER:3750:+d:f

The first command creates an ACL for the directory. This ACL has three ACEs. The first ACE allows
anyone to list the contents of the directory. The second ACE allows user 3750 to delete content within
the directory in general. The third ACE is inherited by all newly created files and specifies that user 3750
is authorised to delete the file independent of that file’s ownership.

The second and third commands creates an ACL for files that already exists within the directory. Since
ACL inheritance only applies to newly created files or directories, any existing files must have an ACL
explicitly set.

ACLs in dCache

154

Example 17.2. ACL to deny a group

The following example demonstrates authorising all end users to list a directory. Members of group 1000
can also create subdirectories. However, any member of group 2000 can do neither.

(acladmin) admin > setfacl /pnfs/example.org/data/exampleDir GROUP:2000:-sl
 (...line continues...) EVERYONE@:+l GROUP:1000:+s

The first ACE denies any member of group 2000 the ability to create subdirectories or list the directory
contents. As this ACE is first, it takes precedence over other ACEs.

The second ACE allows everyone to list the directory’s content. If an end user who is a member of group
2000 attempts to list a directory then their request will match the first ACE so will be denied. End users
attempting to list a directory that are not a member of group 2000 will not match the first ACE but will
match the second ACE and will be authorised.

The final ACE authorises members of group 1000 to create subdirectories. If an end user who is a member
of group 1000 and group 2000 attempts to create a subdirectory then their request will match the first
ACE and be denied.

Example 17.3. ACL to allow a user to delete all files and subdirectories

This example is an extension to Example 17.1, “ACL allowing specific user to delete files in a directo-
ry”. The previous example allowed deletion of the contents of a directory but not the contents of any
subdirectories. This example allows user 3750 to delete all files and subdirectories within the directory.

(acladmin) admin > setfacl /pnfs/example.org/data/exampleDir USER:3750:+D:d
 (...line continues...) USER:3750:+d:odf

The first ACE is USER:3750:+D:d. This authorises user 3750 to delete any contents of directory /
pnfs/example.org/data/exampleDir that has an ACL authorising them with d operation.

The first ACE also contains the inheritance flag d so newly created subdirectories will inherit this ACE.
Since the inherited ACE will also contain the d inheritance flag, this ACE will be copied to all subdi-
rectories when they are created.

The second ACE is USER:3750:+d:odf. The ACE authorises user 3750 to delete whichever item
the ACL containing this ACE is associated with. However, since the ACE contains the o in the inher-
itance flags, user 3750 is not authorised to delete the directory /pnfs/example.org/data/ex-
ampleDir

Since the second ACE has both the d and f inheritance flags, it will be inherited by all files and sub-
directories of /pnfs/example.org/data/exampleDir, but without the o flag. This authorises
user 3750 to delete these items.

Subdirectories (and files) will inherit the second ACE with both d and f inheritance flags. This im-
plies that all files and sub-subdirecties within a subdirectory of /pnfs/example.org/data/ex-
ampleDir will also inherit this ACE, so will also be deletable by user 3750.

Viewing configured ACLs
The getfacl is used to obtain the current ACL for some item in dCache namespace. It takes the following
arguments.

ACLs in dCache

155

getfacl [pnfsId] | [globalPath]

The getfacl command fetches the ACL information of a namespace item (a file or directory). The item
may be specified by its pnfs-ID or its absolute path.

Example 17.4. Obtain ACL information by absolute path

(acladmin) admin > getfacl /pnfs/example.org/data/exampleDir
ACL: rsId = 00004EEFE7E59A3441198E7EB744B0D8BA54, rsType = DIR
order = 0, type = A, accessMsk = lfsD, who = USER, whoID = 12457
order = 1, type = A, flags = f, accessMsk = lfd, who = USER, whoID = 87552
In extra format:
USER:12457:+lfsD
USER:87552:+lfd:f

The information is provided twice. The first part gives detailed information about the ACL. The second
part, after the In extra format: heading, provides a list of ACEs that may be used when updating
the ACL using the setfacl command.

156

Chapter 18. GLUE Info Provider
The GLUE information provider supplied with dCache provides the information about the dCache in-
stance in a standard format called GLUE. This is necessary so that WLCG infrastructure (such as FTS)
and clients using WLCG tools can discover the dCache instance and use it correctly.

The process of configuring the info-provider is designed to have the minimum overhead so you can
configure it manually; however, you may prefer to use an automatic configuration tool, such as YAIM.

Note
Be sure you have at least v2.0.8 of glue-schema RPM installed on the node running the in-
fo-provider.

This chapter describes how to enable and test the dCache-internal collection of information needed by
the info-provider. It also describes how to configure the info-provider and verify that it is working cor-
rectly. Finally, it describes how to publish this information within BDII, verify that this is working and
troubleshoot any problems.

Warning

Please be aware that changing information provider may result in a brief interruption to pub-
lished information. This may have an adverse affect on client software that make use of this
information.

Internal collection of information
The info-provider takes as much information as possible from dCache. To achieve this, it needs the
internal information-collecting service, info, to be running and a means to collect that information:
httpd. Make sure that both the httpd and info services are running within your dCache instance.
By default, the info service is started on the admin-node; but it is possible to configure dCache so it
runs on a different node. You should run only one info service per dCache instance.

The traditional (pre-1.9.7) allocation of services to domains has the info cell running in the in-
foDomain domain. A dCache system that has been migrated from this old configuration will have the
following fragment in the node’s layout file:

[infoDomain]
[infoDomain/info]

It is also possible to run the info service inside a domain that runs other services. The following example
show the information domain that hosts the admin, httpd, topo and info services.

[information]
[information/admin]
[information/httpd]
[information/topo]
[information/info]

For more information on configuring dCache layout files, see the section called “Defining domains and
services”.

Use the dcache services command to see if a particular node is configured to run the info service.
The following shows the output if the node has an information domain that is configured to run
the info cell.

GLUE Info Provider

157

[root] # dcache services | grep info
information info info /var/log/dCache/information.log

If a node has no domain configured to host the info service then the above dcache services command
will give no output:

[root] # dcache services | grep info

If no running domain within any node of your dCache instance is running the info service then you
must add the service to a domain and restart that domain.

In this example, the info service is added to the example domain. Note that the specific choice of
domain (example) is just to give a concrete example; the same process may be applied to a different
domain.

The layouts file for this node includes the following definition for the example domain:

[example]
[example/admin]
[example/httpd]
[example/topo]

By adding the extra line [example/info] to the layouts file, in future, the example domain will
host the info service.

[example]
[example/admin]
[example/httpd]
[example/topo]
[example/info]

To actually start the info cell, the example domain must be restarted.

[root] # dcache restart example
Stopping example (pid=30471) 0 done
Starting example done

With the example domain restarted, the info service is now running.

You can also verify both the httpd and info services are running using the wget command. The
specific command assumes that you are logged into the node that has the httpd service (by default,
the admin node). You may run the command on any node by replacing localhost with the hostname
of the node running the httpd service.

The following example shows the output from the wget when the info service is running correctly:

[root] # wget -O/dev/null http://localhost:2288/info
--17:57:38-- http://localhost:2288/info
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:2288... connected.
HTTP request sent, awaiting response... 200 Document follows
Length: 372962 (364K) [application/xml]
Saving to: `/dev/null'

100%[===
===>] 372,962 --.-K/s in 0.001s

17:57:38 (346 MB/s) - `/dev/null' saved [372962/372962]

GLUE Info Provider

158

If the httpd service isn’t running then the command will generate the following output:

[root] # wget -O/dev/null http://localhost:2288/info
 --10:05:35-- http://localhost:2288/info
 => `/dev/null'
 Resolving localhost... 127.0.0.1
 Connecting to localhost|127.0.0.1|:2288... failed: Connection refused.

To fix the problem, ensure that the httpd service is running within your dCache instance. This is the
service that provides the web server monitoring within dCache. To enable the service, follow the same
procedure for enabling the info cell, but add the httpd service within one of the domains in dCache.

If running the wget command gives an error message with Unable to contact the info
cell. Please ensure the info cell is running:

[root] # wget -O/dev/null http://localhost:2288/info
 --10:03:13-- http://localhost:2288/info
 => `/dev/null'
 Resolving localhost... 127.0.0.1
 Connecting to localhost|127.0.0.1|:2288... connected.
 HTTP request sent, awaiting response... 503 Unable to contact the info cell. Pl
ease ensure the info cell is running.
 10:03:13 ERROR 503: Unable to contact the info cell. Please ensure the info cel
l is running..

This means that the info service is not running. Follow the instructions for starting the info service
given above.

Configuring the info provider
In the directory /etc/dcache you will find the file info-provider.xml. This file is where you
configure the info-provider. It provides information that is difficult or impossible to obtain from the
running dCache directly.

You must edit the info-provider.xml to customise its content to match your dCache instance. In
some places, the file contains place-holder values. These place-holder values must be changed to the
correct values for your dCache instance.

Careful with < and & charaters

Take care when editing the info-provider.xml file! After changing the contents, the file
must remain valid, well-formed XML. In particular, be very careful when writing a less-than
symbol (<) or an ampersand symbol (&).

• Only use an ampersand symbol (&) if it is part of an entity reference. An entity reference is a
sequence that starts with an ampersand symbol and is terminated with a semi-colon (;), for
example > and ' are entity markups.

If you want to include an ampersand character in the text then you must use the & entity;
for example, to include the text “me & you” the XML file would include me & you.

• Only use a less-than symbol (<) when starting an XML element; for example, <constant
id="TEST">A test value</constant>.

If you want to include a less-than character in the text then you must use the < entity; for
example, to include the text “1 < 2” the XML file would include 1 < 2.

GLUE Info Provider

159

The following example shows the SE-NAME constant (which provides a human-readable de-
scription of the dCache instance) from a well-formed info-provider.xml configuration
file:

<constant id="SE-NAME">Simple & small dCache instance for small VOs
(typically < 20 users)</constant>

The SE-NAME constant is configured to have the value “Simple & small dCache instance for
small VOs (typically < 20 users)”. This illustrates how to include ampersand and less-than char-
acters in an XML file.

When editing the info-provider.xml file, you should only edit text between two elements or add
more elements (for lists and mappings). You should never alter the text inside double-quote marks.

This example shows how to edit the SITE-UNIQUE-ID constant. This constant has a default value
EXAMPLESITE-ID, which is a place-holder value and must be edited.

<constant id="SITE-UNIQUE-ID">EXAMPLESITE-ID</constant>

To edit the constant’s value, you must change the text between the start- and end-element tags: EXAM-
PLESITE-ID. You should not edit the text SITE-UNIQUE-ID as it is in double-quote marks. After
editing, the file may read:

<constant id="SITE-UNIQUE-ID">DESY-HH</constant>

The info-provider.xml contains detailed descriptions of all the properties that are editable. You
should refer to this documentation when editing the info-provider.xml.

Testing the info provider
Once you have configured info-provider.xml to reflect your site’s configuration, you may test
that the info provider produces meaningful results.

Running the info-provider script should produce GLUE information in LDIF format; for example:

[root] # dcache-info-provider | head -20
#
LDIF generated by Xylophone v0.2
#
XSLT processing using SAXON 6.5.5 from Michael Kay 1 (http://saxon.sf.ne
 t/)
at: 2011-05-11T14:08:45+02:00
#

dn: GlueSEUniqueID=dcache-host.example.org,mds-vo-name=resource,o=grid
objectClass: GlueSETop
objectClass: GlueSE
objectClass: GlueKey
objectClass: GlueSchemaVersion
GlueSEStatus: Production
GlueSEUniqueID: dcache-host.example.org
GlueSEImplementationName: dCache
GlueSEArchitecture: multidisk
GlueSEImplementationVersion: 1.9.12-3 (ns=Chimera)
GlueSESizeTotal: 86

The actual values you see will be site-specific and depend on the contents of the in-
fo-provider.xml file and your dCache configuration.

GLUE Info Provider

160

To verify that there are no problems, redirect standard-out to /dev/null to show only the error mes-
sages:

[root] # dcache-info-provider >/dev/null

If you see error messages (which may be repeated several times) of the form:

[root] # dcache-info-provider >/dev/null
Recoverable error
Failure reading http://localhost:2288/info: no more input

then it is likely that either the httpd or info service has not been started. Use the above wget test
to check that both services are running. You can also see which services are available by running the
dcache services and dcache status commands.

Decommissioning the old info provider
Sites that were using the old (pre-1.9.5) info provider should ensure that there are no remnants of this
old info-provider on their machine. Although the old info-provider has been removed from dCache, it
relied on static LDIF files, which might still exist. If so, then BDII will obtain some information from the
current info-provider and some out-of-date information from the static LDIF files. BDII will then attempt
to merge the two sources of information. The merged information may provide a confusing description
of your dCache instance, which may prevent clients from working correctly.

The old info provider had two static LDIF files and a symbolic link for BDII. These are:

• The file lcg-info-static-SE.ldif,

• The file: lcg-info-static-dSE.ldif,

• The symbolic link /opt/glite/etc/gip/plugin, which points to /opt/d-cache/jobs/
infoDynamicSE-plugin-dcache.

The two files (lcg-info-static-SE.ldif and lcg-info-static-dSE.ldif) appear in the
/opt/lcg/var/gip/ldif directory; however, it is possible to alter the location BDII will use. In
BDII v4, the directory is controlled by the static_dir variable (see /opt/glite/etc/gip/
glite-info-generic.conf or /opt/lcg/etc/lcg-info-generic.conf). For BDII v5,
the BDII_LDIF_DIR variable (defined in /opt/bdii/etc/bdii.conf) controls this behaviour.

You must delete the above three entries: lcg-info-static-SE.ldif, lcg-info-stat-
ic-dSE.ldif and the plugin symbolic link.

The directory with the static LDIF, /opt/lcg/var/gip/ldif or /opt/glite/etc/gip/
ldif by default, may contain other static LDIF entries that are relics of previous info-providers. These
may have filenames like static-file-SE.ldif.

Delete any static LDIF file that contain information about dCache. With the info-provider, all LDIF
information comes from the info-provider; there should be no static LDIF files. Be careful not to delete
any static LDIF files that come as part of BDII; for example, the default.ldif file, if present.

Publishing dCache information
BDII obtains information by querying different sources. One such source of information is by running
an info-provider command and taking the resulting LDIF output. To allow BDII to obtain dCache infor-

GLUE Info Provider

161

mation, you must allow BDII to run the dCache info-provider. This is achieved by symbolically linking
the dcache-info-provider script into the BDII plugins directory:

[root] # ln -s /usr/sbin/dcache-info-provider
/opt/glite/etc/gip/provider/

If the BDII daemons are running, then you will see the information appear in BDII after a short delay;
by default this is (at most) 60 seconds.

You can verify that information is present in BDII by querying BDII using the ldapsearch command.
Here is an example that queries for GLUE v1.3 objects:

[root] # ldapsearch -LLL -x -H ldap://dcache-host:2170 -b o=grid \
'(objectClass=GlueSE)'
dn: GlueSEUniqueID=dcache-host.example.org,Mds-Vo-name=resource,o=grid
GlueSEStatus: Production
objectClass: GlueSETop
objectClass: GlueSE
objectClass: GlueKey
objectClass: GlueSchemaVersion
GlueSETotalNearlineSize: 0
GlueSEArchitecture: multidisk
GlueSchemaVersionMinor: 3
GlueSEUsedNearlineSize: 0
GlueChunkKey: GlueSEUniqueID=dcache-host.example.org
GlueForeignKey: GlueSiteUniqueID=example.org
GlueSchemaVersionMajor: 1
GlueSEImplementationName: dCache
GlueSEUniqueID: dcache-host.example.org
GlueSEImplementationVersion: 1.9.12-3 (ns=Chimera)
GlueSESizeFree: 84
GlueSEUsedOnlineSize: 2
GlueSETotalOnlineSize: 86
GlueSESizeTotal: 86

Careful with the hostname

You must replace dcache-host in the URI ldap://dcache-host:2170/ with the ac-
tual hostname of your node.

It’s tempting to use localhost in the URI when executing the ldapsearch command; howev-
er, BDII binds to the ethernet device (e.g., eth0). Typically, localhost is associated with the
loopback device (lo), so querying BDII with the URI ldap://localhost:2170/ will fail.

The LDAP query uses the o=grid object as the base; all reported objects are descendant objects of
this base object. The o=grid base selects only the GLUE v1.3 objects. To see GLUE v2.0 objects, the
base object must be o=glue.

The above ldapsearch command queries BDII using the (objectClass=GlueSE) filter. This filter
selects only objects that provide the highest-level summary information about a storage-element. Since
each storage-element has only one such object and this BDII instance only describes a single dCache
instance, the command returns only the single LDAP object.

To see all GLUE v1.3 objects in BDII, repeat the above ldapsearch command but omit the
(objectClass=GlueSE) filter: ldapsearch -LLL -x -H ldap://dcache-host:2170
-b o=grid. This command will output all GLUE v1.3 LDAP objects, which includes all the GLUE
v1.3 objects from the info-provider.

Searching for all GLUE v2.0 objects in BDII is achieved by repeating the above ldapsearch com-
mand but omitting the (objectClass=GlueSE) filter and changing the search base to o=glue:

GLUE Info Provider

162

ldapsearch -LLL -x -H ldap://dcache-host:2170 -b o=glue. This command re-
turns a completely different set of objects from the GLUE v1.3 queries.

You should be able to compare this output with the output from running the info-provider script manu-
ally: BDII should contain all the objects that the dCache info-provider is supplying. Unfortunately, the
order in which the objects are returned and the order of an object’s properties is not guaranteed; there-
fore a direct comparison of the output isn’t possible. However, it is possible to calculate the number of
objects in GLUE v1.3 and GLUE v2.0.

First, calculate the number of GLUE v1.3 objects in BDII and compare that to the number of GLUE
v1.3 objects that the info-provider supplies.

[root] # ldapsearch -LLL -x -H ldap://dcache-host:2170 -b o=grid \
'(objectClass=GlueSchemaVersion)' | grep ^dn | wc -l
10
[root] # dcache-info-provider | \
grep -i "objectClass: GlueSchemaVersion" | wc -l
10

Now calculate the number of GLUE v2.0 objects in BDII describing your dCache instance and compare
that to the number provided by the info-provider:

[root] # ldapsearch -LLL -x -H ldap://dcache-host:2170 -b o=glue | perl -p00e 's/\n //g' | \
grep dn.*GLUE2ServiceID | wc -l
27
[root] # dcache-info-provider | perl -p00e 's/\n //g' | \
grep ^dn.*GLUE2ServiceID | wc -l
27

If there is a discrepancy in the pair of numbers obtains in the above commands then BDII has rejecting
some of the objects. This is likely due to malformed LDAP objects from the info-provider.

Troubleshooting BDII problems
The BDII log file should explain why objects are not accepted; for example, due to a badly formatted
attribute. The default location of the log file is /var/log/bdii/bdii-update.log, but the lo-
cation is configured by the BDII_LOG_FILE option in the /opt/bdii/etc/bdii.conf file.

The BDII log files may show entries like:

2011-05-11 04:04:58,711: [WARNING] dn: o=shadow
2011-05-11 04:04:58,711: [WARNING] ldapadd: Invalid syntax (21)
2011-05-11 04:04:58,711: [WARNING] additional info: objectclass: value #1 invalid per syntax

This problem comes when BDII is attempting to inject new information. Unfortunately, the information
isn’t detailed enough for further investigation. To obtain more detailed information from BDII, switch
the BDII_LOG_LEVEL option in /opt/bdii/etc/bdii.conf to DEBUG. This will provide more
information in the BDII log file.

Logging at DEBUG level has another effect; BDII no longer deletes some temporary files. These tempo-
rary files are located in the directory controlled by the BDII_VAR_DIR option. This is /var/run/
bdii by default.

There are several temporary files located in the /var/run/bdii directory. When BDII decides which
objects to add, modify and remove, it creates LDIF instructions inside temporary files add.ldif,
modify.ldif and delete.ldif respectively. Any problems in the attempt to add, modify and

GLUE Info Provider

163

delete LDAP objects are logged to corresponding error files: errors with add.ldif are logged to
add.err, modify.ldif to modify.err and so on.

Once information in BDII has stablised, the only new, incoming objects for BDII come from those objects
that it was unable to add previously. This means that add.ldif will contain these badly formatted
objects and add.err will contain the corresponding errors.

Updating information
The information contained within the info service may take a short time to achieve a complete overview
of dCache’s state. For certain gathered information it may take a few minutes before the information
stabilises. This delay is intentional and prevents the gathering of information from adversely affecting
dCache’s performance.

The information presented by the LDAP server is updated periodically by BDII requesting fresh infor-
mation from the info-provider. The info-provider obtains this information by requesting dCache’s cur-
rent status from info service. By default, BDII will query the info-provider every 60 seconds. This will
introduce an additional delay between a change in dCache’s state and that information propagating.

Some information is hard-coded within the info-provider.xml file; that is, you will need to edit
this file before the published value(s) will change. These values are ones that typically a site-admin must
choose independently of dCache’s current operations.

164

Chapter 19. Stage Protection
Irina Kozlova

A dCache system administrator may specify a list of DNs/FQANs which are allowed to trigger tape
restores for files not being available on disk. Users, requesting tape-only files, and not being on that
white list, will receive a permission error and no tape operation is launched. Stage protection can be
enhanced to allow authorization specific to a dCache storage group. The additional configuration para-
meter is optional allowing the stage protection to be backwards compatible when stage authorization is
not specific to a storage group.

Configuration of Stage Protection
Stage protection can optionally be configured in the poolmanager rather than on the doors and the
pinmanager. Thus the white list needs to be present on a single node only. To enable this, define the
following parameter in /etc/dcache/dcache.conf:

stagePolicyEnforcementPoint=PoolManager

The file name of the white list must be configured by setting the stageConfigurationFilePath
parameter in /etc/dcache/dcache.conf:

stageConfigurationFilePath=/etc/dcache/StageConfiguration.conf

The parameter needs to be defined on all nodes which enforce the stage protection, i.e., either on the doors
and the pinmanager, or in the poolmanager depending on the stage policy enforcement point.

Definition of the White List
The Stage Configuration File will contain a white list. Each line of the white list may contain up to three
regular expressions enclosed in double quotes. The regular expressions match the DN, FQAN, and the
Storage Group written in the following format:

"DN" ["FQAN" ["StorageGroup"]]

Lines starting with a hash symbol # are discarded as comments.

The regular expression syntax follows the syntax defined for the Java Pattern class [http://java.sun.com/
javase/6/docs/api/java/util/regex/Pattern.html].

Here are some examples of the White List Records:

".*" "/atlas/Role=production"
"/C=DE/O=DESY/CN=Kermit the frog"
"/C=DE/O=DESY/CN=Beaker" "/desy"
"/O=GermanGrid/.*" "/desy/Role=.*"

This example authorizes a number of different groups of users:

• Any user with the FQAN /atlas/Role=production.

• The user with the DN /C=DE/O=DESY/CN=Kermit the frog, irrespective of which VOMS
groups he belongs to.

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

Stage Protection

165

• The user with the DN /C=DE/O=DESY/CN=Beaker but only if he is also identified as a member
of VO desy (FQAN /desy)

• Any user with DN and FQAN that match /O=GermanGrid/.* and /desy/Role=.* respective-
ly.

If a storage group is specified all three parameters must be provided. The regular expression ".*" may
be used to authorize any DN or any FQAN. Consider the following example:

".*" "/atlas/Role=production" "h1:raw@osm"
"/C=DE/O=DESY/CN=Scooter" ".*" "sql:chimera@osm"

In the example above:

• Any user with FQAN /atlas/Role=production is allowed to stage files located in the storage
group h1:raw@osm.

• The user /C=DE/O=DESY/CN=Scooter, irrespective of which VOMS groups he belongs to, is
allowed to stage files located in the storage group sql:chimera@osm.

With the plain dCap protocol the DN and FQAN are not known for any users.

In order to allow all dCap users to stage files the white list should contain the following record:

"" ""

In case this line is commented or not present in the white list, all dCap users will be disallowed to stage
files.

It is possible to allow all dCap users to stage files located in a certain storage group.

In this example, all dCap users are allowed to stage files located in the storage group h1:raw@osm:

"" "" "h1:raw@osm"

Part III. Cookbook

Table of Contents
20. dCache Clients. ... 167

GSI-FTP ... 167
dCap .. 168
SRM .. 170
ldap .. 175
Using the LCG commands with dCache ... 176

21. Pool Operations ... 178
Checksums .. 178
Migration Module ... 179
Renaming a Pool ... 184
Pinning Files to a Pool .. 185

22. PostgreSQL and dCache .. 186
Installing a PostgreSQL Server .. 186
Configuring Access to PostgreSQL .. 186
Performance of the PostgreSQL Server .. 187

23. Complex Network Configuration .. 189
Firewall Configuration ... 189
GridFTP Connections via two or more Network Interfaces .. 191
GridFTP with Pools in a Private Subnet ... 192
Doors in the DMZ .. 193

24. Accounting .. 194
25. Protocols ... 195

dCap options mover and client options .. 195
Specifying dCap open timeouts .. 196
Using the dCap protocol for strict file checking .. 197
Passive dCap ... 198
Access to SRM and GridFTP server from behind a firewall .. 198
Disableing unauthenticated dCap via SRM ... 199

26. Advanced Tuning .. 201
Multiple Queues for Movers in each Pool ... 201
Tunable Properties .. 203

This part contains guides for specific tasks a system administrator might want to perform.

167

Chapter 20. dCache Clients.

Owen Synge

There are many client tools for dCache. These can most easily be classified by communication protocol.

GSI-FTP
dCache provides a GSI-FTP door, which is in effect a GSI authenticated FTP access point to dCache

Listing a directory
To list the content of a dCache directory, the GSI-FTP protocol can be used;

[user] $ edg-gridftp-ls gsiftp://gridftp-door.example.org/pnfs/example.org/data/dteam/

Checking a file exists
To check the existence of a file with GSI-FTP.

[user] $ edg-gridftp-exists gsiftp://gridftp-door.example.org/pnfs/example.org/data/dteam/
filler_test20050819130209790873000
[user] $ echo $?
0
[user] $ edg-gridftp-exists gsiftp://gridftp-door.example.org/pnfs/example.org/data/dteam/
filler_test200508191302097908730002
error the server sent an error response: 451 451 /pnfs/example.org/data/dteam/
filler_test200508191302097908730002 not found
[user] $ echo $?
1

Use the return code

Please note the echo $? show the return code of the last run application. The error message
returned from the client this should not be scripted against as it is one of many possible errors.

Deleting files
To delete files with GSI-FTP use the edg-gridftp-rm command.

[user] $ edg-gridftp-rm gsiftp://gridftp-door.example.org/pnfs/example.org/data/dteam/
filler_test20050811160948926780000

This deletes the file filler_test20050811160948926780000 from the /pn-
fs/example.org/data/dteam using the door running on the host gridftp-
door.example.org within the dCache cluster example.org

Copying files
globus-url-copy [[command line options]] [srcUrl] [destinationUrl] ...

Copying file with globus-url-copy follows the syntax source, destination.

dCache Clients.

168

The following example copies the file /etc/group into dCache as the file /pnfs/example.org/
data/dteam/test_GlobusUrlCopy.clinton.504.22080.20071102160121.2

[user] $ globus-url-copy \
file://///etc/group \
gsiftp://gridftp-door.example.org/pnfs/example.org/data/dteam/
test_GlobusUrlCopy.clinton.504.22080.20071102160121.2

Please note that the five slashes are really needed.

dCap
When using dccp client or using the interposition library the errors Command failed! can be safely
ignored.

dccp
The following example shows dccp being used to copy the file /etc/group into dCache as the the file
/pnfs/example.org/data/dteam/test6. The dccp program will connect to dCache without
authenticating.

[user] $ /opt/d-cache/dcap/bin/dccp /etc/group dcap://dcap-door.example.org:22125/pnfs/
example.org/data/dteam/test6
Command failed!
Server error message for [1]: "path /pnfs/example.org/data/dteam/test6 not found" (errno 10001).
597 bytes in 0 seconds

The following example shows dccp being used to upload the file /etc/group. In this example, dccp
will authenticate with dCache using the GSI protocol.

[user] $ /opt/d-cache/dcap/bin/dccp /etc/group gsidcap://gsidcap-door.example.org:22128/pnfs/
example.org/data/dteam/test5
Command failed!
Server error message for [1]: "path /pnfs/example.org/data/dteam/test5 not found" (errno 10001).
597 bytes in 0 seconds

The following example shows dccp with the debugging enabled. The value 63 controls how much
information is displayed.

[user] $ /opt/d-cache/dcap/bin/dccp -d 63 /etc/group dcap://dcap-door.example.org:22128/pnfs/
example.org/data/dteam/test3
Dcap Version version-1-2-42 Jul 10 2007 19:56:02
Using system native stat64 for /etc/group.
Allocated message queues 0, used 0

Using environment variable as configuration
Allocated message queues 1, used 1

Creating a new control connection to dcap-door.example.org:22128.
Activating IO tunnel. Provider: [libgsiTunnel.so].
Added IO tunneling plugin libgsiTunnel.so for dcap-door.example.org:22128.
Setting IO timeout to 20 seconds.
Connected in 0.00s.
Removing IO timeout handler.
Sending control message: 0 0 client hello 0 0 2 42 -uid=501 -pid=32253 -gid=501
Server reply: welcome.
dcap_pool: POLLIN on control line [3] id=1
Connected to dcap-door.example.org:22128
Sending control message: 1 0 client stat "dcap://dcap-door.example.org:22128/pnfs/example.org/
data/dteam/test3" -uid=501
Command failed!
Server error message for [1]: "path //pnfs/example.org/data/dteam/test3 not found" (errno 10001).

dCache Clients.

169

[-1] unpluging node
Removing unneeded queue [1]
[-1] destroing node
Real file name: /etc/group.
Using system native open for /etc/group.
extra option: -alloc-size=597
[Fri Sep 7 17:50:56 2007] Going to open file dcap://dcap-door.example.org:22128/pnfs/example.org/
data/dteam/test3 in cache.
Allocated message queues 2, used 1

Using environment variable as configuration
Activating IO tunnel. Provider: [libgsiTunnel.so].
Added IO tunneling plugin libgsiTunnel.so for dcap-door.example.org:22128.
Using existing control connection to dcap-door.example.org:22128.
Setting hostname to dcap-door.example.org.
Sending control message: 2 0 client open "dcap://dcap-door.example.org:22128/pnfs/example.org/
data/dteam/test3" w -mode=0644 -truncate dcap-door.example.org 33122 -timeout=-
1 -onerror=default -alloc-size=597 -uid=501
Polling data for destination[6] queueID[2].
Got callback connection from dcap-door.example.org:35905 for session 2, myID 2.
cache_open -> OK
Enabling checksumming on write.
Cache open succeeded in 0.62s.
[7] Sending IOCMD_WRITE.
Entered sendDataMessage.
Polling data for destination[7] queueID[2].
[7] Got reply 4x12 bytes len.
[7] Reply: code[6] response[1] result[0].
get_reply: no special fields defined for that type of response.
[7] Got reply 4x12 bytes len.
[7] Reply: code[7] response[1] result[0].
get_reply: no special fields defined for that type of response.
[7] Expected position: 597 @ 597 bytes written.
Using system native close for [5].
[7] unpluging node
File checksum is: 460898156
Sending CLOSE for fd:7 ID:2.
Setting IO timeout to 300 seconds.
Entered sendDataMessage.
Polling data for destination[7] queueID[2].
[7] Got reply 4x12 bytes len.
[7] Reply: code[6] response[4] result[0].
get_reply: no special fields defined for that type of response.
Server reply: ok destination [2].
Removing IO timeout handler.
Removing unneeded queue [2]
[7] destroing node
597 bytes in 0 seconds
Debugging

Using the dCache client interposition library.

Finding the GSI tunnel.

When the LD_PRELOAD library libpdcap.so variable produces errors finding the GSI tun-
nel it can be useful to specify the location of the GSI tunnel library directly using the following
command:

[user] $ export
DCACHE_IO_TUNNEL=/opt/d-cache/dcap/lib/libgsiTunnel.so

Please see http://www.dcache.org/manuals/experts_docs/tunnel-HOWTO.html for further de-
tails on tunnel setup for the server.

dCap is a POSIX like interface for accessing dCache, allowing unmodified applications to access
dCache transparently. This access method uses a proprietary data transfer protocol, which can emulate
POSIX access across the LAN or WAN.

http://www.dcache.org/manuals/experts_docs/tunnel-HOWTO.html

dCache Clients.

170

Unfortunately the client requires inbound connectivity and so it is not practical to use this protocol over
the WAN as most sites will not allow inbound connectivity to worker nodes.

To make non dCache aware applications access files within dCache through dCap all that is needed is
set the LD_PRELOAD environment variable to /opt/d-cache/dcap/lib/libpdcap.so.

[user] $ export LD_PRELOAD=/opt/d-cache/dcap/lib/libpdcap.so

Setting the LD_PRELOAD environment variable results in the library libpdcap.so overriding the
operating system calls. After setting this environment variable, the standard shell command should work
with dCap and GSIdCap URLs.

The following session demonstrates copying a file into dCache, checking the file is present with the ls
command, reading the first 3 lines from dCache and finally deleting the file.

[user] $ cp /etc/group gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/data/dteam/myFile
[user] $ ls gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/data/dteam/DirOrFile
[user] $ head -3 gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/data/dteam/myFile
root:x:0:
daemon:x:1:
bin:x:2:
[user] $ rm gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/data/dteam/MyFile

SRM
dCache provides a series of clients one of which is the SRM client which supports a large number oper-
ations, but is just one Java application, the script name is sent to the Java applications command line
to invoke each operation.

This page just shows the scripts command line and not the invocation of the Java application directly.

Creating a new directory.
Usage:

srmmkdir [[command line options]] [srmUrl]

Example:

The following example creates the directory /pnfs/example.org/data/dteam/myDir.

[user] $ srmmkdir srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/myDir

Removing files from dCache
Usage:

srmrm [[command line options]] [srmUrl ...]

[user] $ srmrm srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/myDir/myFile

Removing empty directories from dCache
It is allowed to remove only empty directories as well as trees of empty directories.

dCache Clients.

171

Usage:

srmrmdir [command line options] [srmUrl]

Examples:

[user] $ srmrmdir srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/myDir

[user] $ srmrmdir -recursive=true srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/
myDir

srmcp for SRM v1
Usage:

srmcp [command line options] source... [destination]

or

srmcp [command line options] [-copyjobfile] file

Copying files to dCache

[user] $ srmcp -webservice_protocol=http \
 file://///etc/group \
 srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/
test_Srm.clinton.501.32050.20070907153055.0

Copying files from dCache

[user] $ srmcp -webservice_protocol=http \
 srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/
test_Srm.clinton.501.32050.20070907153055.0 \
 file://///tmp/testfile1 -streams_num=1

srmcp for SRM v2.2

Getting the dCache Version

The srmping command will tell you the version of dCache. This only works for authorized users and
not just authenticated users.

[user] $ srmping -2 srm://srm-door.example.org:8443/pnfs
WARNING: SRM_PATH is defined, which might cause a wrong version of srm client to be executed
WARNING: SRM_PATH=/opt/d-cache/srm
VersionInfo : v2.2
backend_type:dCache
backend_version:production-1-9-1-11

Space Tokens

Space token support must be set up and reserving space with the admin interface this is also docu-
mented in the SRM section and in the dCache wiki [http://trac.dcache.org/projects/dcache/wiki/manu-
als/SRM_2.2_Setup].

http://trac.dcache.org/projects/dcache/wiki/manuals/SRM_2.2_Setup
http://trac.dcache.org/projects/dcache/wiki/manuals/SRM_2.2_Setup
http://trac.dcache.org/projects/dcache/wiki/manuals/SRM_2.2_Setup

dCache Clients.

172

Space Token Listing

Usage:

get-space-tokens [command line options] [srmUrl]

Example 20.1. surveying the space tokens available in a directory.

[user] $ srm-get-space-tokens srm://srm-door.example.org:8443/pnfs/example.org/data/dteam -
srm_protocol_version=2

A successful result:

return status code : SRM_SUCCESS
return status expl. : OK
Space Reservation Tokens:
148241
148311
148317
28839
148253
148227
148229
148289
148231
148352

Example 20.2. Listing the space tokens for a SRM:

[user] $ srm-get-space-tokens srm://srm-door.example.org:8443
Space Reservation Tokens:
145614
145615
144248
144249
25099
145585
145607
28839
145589

Space Reservation

Usage:

srm-reserve-space [[command line options]] [srmUrl]

[user] $ srm-reserve-space \
-desired_size 2000 \
-srm_protocol_version=2 \
-retention_policy=REPLICA \
-access_latency=ONLINE \
-guaranteed_size 1024 \
-lifetime 36000 \
srm://srm-door.example.org:8443/pnfs/example.org/data/dteam

A successful result:

Space token =144573

dCache Clients.

173

A typical failure

SRMClientV2 : srmStatusOfReserveSpaceRequest , contacting service httpg://srm-
door.example.org:8443/srm/managerv2
status: code=SRM_NO_FREE_SPACE explanantion= at Thu Nov 08 15:29:44 CET 2007 state Failed : no
 space available
lifetime = null
access latency = ONLINE
retention policy = REPLICA
guaranteed size = null
total size = 34

Also you can get info for this space token 144573:

[user] $ srm-get-space-metadata srm://srm-door.example.org:8443/pnfs/example.org/data/dteam -
space_tokens=144573

Possible result:

Space Reservation with token=120047
 owner:VoGroup=/dteam VoRole=NULL
 totalSize:1024
 guaranteedSize:1024
 unusedSize:1024
 lifetimeAssigned:36000
 lifetimeLeft:25071
 accessLatency:ONLINE
 retentionPolicy:REPLICA

Writing to a Space Token

Usage: srmcp [command line options] source(s) destination

Examples:

[user] $ srmcp -protocols=gsiftp -space_token=144573 \
file://///home/user/path/to/myFile \
srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/myFile

[user] $ srmcp -protocols=gsiftp -space_token=144573 \
file://///home/user/path/to/myFile1 \
file://///home/user/path/to/myFile2 \
srm://srm-door.example.org:8443/pnfs/example.org/data/dteam

Space Metadata

Users can get the metadata available for the space, but the ability to query the metadata of a space
reservation may be restricted so that only certain users can obtain this information.

[user] $ srm-get-space-metadata srm://srm-door.example.org:8443/pnfs/example.org/data/dteam -
space_tokens=120049
WARNING: SRM_PATH is defined, which might cause a wrong version of srm client to be executed
WARNING: SRM_PATH=/opt/d-cache/srm
Space Reservation with token=120049
 owner:VoGroup=/dteam VoRole=NULL
 totalSize:1024
 guaranteedSize:1024
 unusedSize:1024
 lifetimeAssigned:36000
 lifetimeLeft:30204
 accessLatency:ONLINE
 retentionPolicy:REPLICA

dCache Clients.

174

Space Token Release

Removes a space token from the SRM.

[user] $ srm-release-space srm://srm-door.example.org:8443 -space_token=15

Listing a file in SRM

SRM version 2.2 has a much richer set of file listing commands.

Usage:

srmls [command line options] srmUrl...

Example 20.3. Using srmls -l:

[user] $ srmls srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/testdir -2
 0 /pnfs/example.org/data/dteam/testdir/
 31 /pnfs/example.org/data/dteam/testdir/testFile1
 31 /pnfs/example.org/data/dteam/testdir/testFile2
 31 /pnfs/example.org/data/dteam/testdir/testFile3
 31 /pnfs/example.org/data/dteam/testdir/testFile4
 31 /pnfs/example.org/data/dteam/testdir/testFile5

Note

The -l option results in srmls providing additional information. Collecting this additional in-
formation may result in a dramatic increase in execution time.

Example 20.4. Using srmls -l:

[user] $ srmls -l srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/testdir -2
 0 /pnfs/example.org/data/dteam/testdir/
 storage type:PERMANENT
 retention policy:CUSTODIAL
 access latency:NEARLINE
 locality:NEARLINE
 locality: null
 UserPermission: uid=18118 PermissionsRWX
 GroupPermission: gid=2688 PermissionsRWX
 WorldPermission: RX
 created at:2007/10/31 16:16:32
 modified at:2007/11/08 18:03:39
 - Assigned lifetime (in seconds): -1
 - Lifetime left (in seconds): -1
 - Original SURL: /pnfs/example.org/data/dteam/testdir
 - Status: null
 - Type: DIRECTORY
 31 /pnfs/example.org/data/dteam/testdir/testFile1
 storage type:PERMANENT
 retention policy:CUSTODIAL
 access latency:NEARLINE
 locality:NEARLINE
 - Checksum value: 84d007af
 - Checksum type: adler32
 UserPermission: uid=18118 PermissionsRW
 GroupPermission: gid=2688 PermissionsR
 WorldPermission: R
 created at:2007/11/08 15:47:13
 modified at:2007/11/08 15:47:13
 - Assigned lifetime (in seconds): -1
 - Lifetime left (in seconds): -1
 - Original SURL: /pnfs/example.org/data/dteam/testdir/testFile1
 - Status: null
 - Type: FILE

dCache Clients.

175

If you have more than 1000 entries in your directory then dCache will return only the first 1000. To view
directories with more than 1000 entries, please use the following parameters:

srmls parameters

-count=integer The number of entries to report.

-offset=integer

Example 20.5. Limited directory listing

The first command shows the output without specifying -count or -offset. Since the directory
contains less than 1000 entries, all entries are listed.

[user] $ srmls srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/dir1 \
srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/dir2
 0 /pnfs/example.org/data/dteam/dir1/
 31 /pnfs/example.org/data/dteam/dir1/myFile1
 28 /pnfs/example.org/data/dteam/dir1/myFile2
 47 /pnfs/example.org/data/dteam/dir1/myFile3
 0 /pnfs/example.org/data/dteam/dir2/
 25 /pnfs/example.org/data/dteam/dir2/fileA
 59 /pnfs/example.org/data/dteam/dir2/fileB

The following examples shows the result when using the -count option to listing the first three entries.

[user] $ srmls -count=3 srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/testdir -
srm_protocol_version=2
0 /pnfs/example.org/data/dteam/testdir/
 31 /pnfs/example.org/data/dteam/testdir/testFile1
 31 /pnfs/example.org/data/dteam/testdir/testFile2
 31 /pnfs/example.org/data/dteam/testdir/testFile3

In the next command, the -offset option is used to view a different set of entries.

[user] $ srmls -count=3 -offset=1 srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/
testdir -srm_protocol_version=2
0 /pnfs/example.org/data/dteam/testdir/
 31 /pnfs/example.org/data/dteam/testdir/testFile2
 31 /pnfs/example.org/data/dteam/testdir/testFile3
 31 /pnfs/example.org/data/dteam/testdir/testFile4

ldap
dCache is commonly deployed with the BDII. The information provider within dCache publishes infor-
mation to BDII. To querying the dCache BDII is a matter of using the standard command ldapsearch.
For grid the standard ldap port is set to 2170 from the previous value of 2135.

[user] $ ldapsearch -x -H ldap://localhost:2170 -b mds-vo-name=resource,o=grid > /tmp/
ldap.output.ldif
[user] $ wc -l /tmp/ldap.output.ldif
205 /tmp/ldap.output.ldif

As can be seen from above even a single node standard install of dCache returns a considerable number
of lines and for this reason we have not included the output, in this case 205 lines where written.

dCache Clients.

176

Using the LCG commands with dCache
The lcg_util RPM contains many small command line applications which interact with SRM imple-
mentations, these where developed independently from dCache and provided by the LCG grid comput-
ing effort.

Each command line application operates on a different method of the SRM interface. These applications
where not designed for normal use but to provide components upon which operations can be built.

lcg-gt queries the BDII information server. This adds an additional requirement that the BDII information
server can be found by lcg-gt, please only attempt to contact servers found on your user interface using.

[user] $ lcg-infosites --vo dteam se

The lcg-gt Application
SRM provides a protocol negotiating interface, and returns a TURL (transfer URL). The protocol speci-
fied by the client will be returned by the server if the server supports the requested protocol.

To read a file from dCache using lcg-gt you must specify two parameters the SURL (storage URL), and
the protcol (GSIdCap or GSI-FTP) you wish to use to access the file.

[user] $ lcg-gt srm://srm-door.example.org/pnfs/example.org/data/dteam/group gsidcap
gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/data/dteam/group
-2147365977
-2147365976

Each of the above three lines contains different information. These are explained below.

gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/
data/dteam/group is the transfer URL (TURL).

-2147365977 is the SRM Request Id, Please note that it is a negative number in this example,
which is allowed by the specification.

-2147365976 is the Unique identifier for the file with respect to the Request Id. Please note that
with this example this is a negative number.

Remember to return your Request Id

dCache limits the number of Request Ids a user may have. All Request Ids should be
returned to dCache using the command lcg-sd.

If you use lcg-gt to request a file with a protocol that is not supported by dCache the command will block
for some time as dCache’s SRM interface times out after approximately 10 minutes.

The lcg-sd Application
This command should be used to return any TURLs given by dCache’s SRM interface. This is because
dCache provides a limited number of TURLs available concurrently.

lcg-sd takes four parameters: the SURL, the Request Id, the File Id with respect to the Request
Id, and the direction of data transfer.

dCache Clients.

177

The following example is to complete the get operation, the values are taken form the above example
of lcg-gt.

[user] $ lcg-sd srm://srm-door.example.org:22128/pnfs/example.org/data/dteam/group " -2147365977"
 " -2147365976" 0

Negative numbers

dCache returns negative numbers for Request Id and File Id. Please note that lcg-sd
requires that these values are places in double-quotes with a single space before the - sign.

The Request Id is one of the values returned by the lcg-gt command. In this example, the value
(-2147365977) comes from the above example lcg-gt.

The File Id is also one of the values returned returned by the lcg-gt command. In this example, the
value (-2147365976) comes from the above example lcg-gt.

The direction parameter indicates in which direction data was transferred: 0 for reading data and 1 for
writing data.

178

Chapter 21. Pool Operations

Checksums
In dCache the storage of a checksum is part of a successful transfer.

• For an incoming transfer a checksum can be sent by the client (Client Checksum, it can be calculated
during the transfer (Transfer Checksum) or it can be calculated on the server after the file has been
written to disk (Server File Checksum).

• For a pool to pool transfer a Transfer Checksum or a Server File Checksum can be calculated.

• For data that is flushed to or restored from tape a checksum can be calculated before flushed to tape
or after restored from tape, respectively.

Client Checksum The client calculates the checksum before or while the data is sent to
dCache. The checksum value, depending on when it has been calculat-
ed, may be sent together with the open request to the door and stored
into Chimera before the data transfer begins or it may be sent with the
close operation after the data has been transferred.

The dCap protocol provides both methods, but the dCap clients use
the latter by default.

The FTP protocol does not provide a mechanism to send a checksum.
Nevertheless, some FTP clients can (mis-)use the “site” command to
send the checksum prior to the actual data transfer.

Transfer Checksum While data is coming in, the server data mover may calculate the check-
sum on the fly.

Server File Checksum After all the file data has been received by the dCache server and the file
has been fully written to disk, the server may calculate the checksum,
based on the disk file.

The default configuration is that a checksum is calculated on write, i.e. a Server File Checksum.

How to configure checksum calculation
Configure the calculation of checksums in the admin interface. The configuration has to be done for
each pool separately.

(local) admin > cd poolname
(poolname) admin > csm set policy -option=on/off
(poolname) admin > save

The configuration will be saved in the file path/to/pool/nameOfPooldirectory/setup.

Use the command csm info to see the checksum policy of the pool.

(poolname) admin > csm info
 Policies :
 on read : false
 on write : true

Pool Operations

179

 on flush : false
 on restore : false
 on transfer : false
 enforce crc : true
 getcrcfromhsm : false
 scrub : false

The default configuration is to check checksums on write.

Use the command help csm set policy to see the configuration options.

The syntax of the command csm set policy is

csm set policy [-option=on [|off]]
where option can be replaced by

OPTIONS

ontransfer If supported by the protocol, the checksum is calculated during file transfer.

onwrite The checksum is calculated after the file has been written to disk.

onrestore The checksum is calculated after data has been restored from tape.

onflush The checksum is calculated before data is flushed to tape.

getcrcfromhsm If the HSM script supports it, the pnfsid.crcval file is read and stored in
Chimera.

scrub Pool data will periodically be veryfied against checksums. Use the command help
csm set policy to see the configuration options.

enforcecrc If no checksum has been calculated after or during the transfer, this option ensures
that a checksum is calculated and stored in Chimera.

The option onread has not yet been implemented.

If an option is enabled a checksum is calculated as described. If there is already another checksum, the
checksums are compared and if they match stored in Chimera.

Important

Do not change the default configuration for the option enforcecrc. This option should always
be enabled as this ensures that there will always be a checksum stored with a file.

Migration Module
The purpose of the migration module is essentially to copy or move the content of a pool to one or more
other pools.

Typical use cases for the migration module include:

• Vacating pools, that is, moving all files to other pools before decomissioning the pool.

• Caching data on other pools, thus distributing the load and increasing availability.

• As an alternative to the hopping manager.

Pool Operations

180

Overview and Terminology
The migration module runs inside pools and hosts a number of migration jobs. Each job operates on a
set of files on the pool on which it is executed and can copy or move those files to other pools. The
migration module provides filters for defining the set of files on which a job operates.

The act of copying or moving a single file is called a migration task. A task selects a target pool and
asks it to perform a pool to pool transfer from the source pool. The actual transfer is performed by the
same component performing other pool to pool transfers. The migration module does not perform the
transfer; it only orchestrates it.

The state of the target copy (the target state) as well as the source copy (the source state) can be explicitly
defined. For instance, for vacating a pool the target state is set to be the same as the original source state,
and the source state is changed to removed; for caching files, the target state is set to cached, and the
source state is unmodified.

Sticky flags owned by the pin manager are never touched by a migration job, however the migration
module can ask the pin manager to move the pin to the target pool. Care has been taken that unless the
pin is moved by the pin manager, the source file is not deleted by a migration job, even if asked to do so.
To illustrate this, assume a source file marked precious and with two sticky flags, one owned by foobar
and the other by the pin manager. If a migration job is configured to delete the source file, but not to
move the pin, the result will be that the file is marked cached, and the sticky flag owned by foobar is
removed. The pin remains. Once it expires, the file is eligible for garbage collection.

All operations are idempotent. This means that a migration job can be safely rerun, and as long as every-
thing else is unchanged, files will not be transferred again. Because jobs are idempotent they do not
need to maintain persistent state, which in turns means the migration module becomes simpler and more
robust. Should a pool crash during a migration job, the job can be rerun and the remaining files will
be transfered.

Note

Please notice that a job is only idempotent as long as the set of target pools do not change.
If pools go offline or are excluded as a result of a an exclude or include expression, then the
idempotent nature of a job may be lost.

It is safe to run migration jobs while pools are in use. Once started, migration jobs run to completion and
do only operate on those files that matched the selection filters at the time the migration job started. New
files that arrive on the pool are not touched. Neither are files that change state after a migration job has
been initialized, even though the selection filters would match the new state of the file. The exception
to the rule is when files are deleted from the pool or change state so that they no longer match the
selection filter. Such files will be excluded from the migration job, unless the file was already processed.
Rerunning a migration job will force it to pick up any new files. Because the job is idempotent, any files
copied before are not copied again.

Permanent migration jobs behave differently. Rather than running to completion, permanent jobs keep
running until explicitly cancelled. They monitor the pool for any new files or state changes, and dynam-
ically add or remove files from the transfer queue. Permanent jobs are made persistent when the save
command is executed and will be recreated on pool restart. The main use case for permanent jobs is as
an alternative to using a central hopping manager.

Idempotence is achieved by locating existing copies of a file on any of the target pools. If an existing
copy is found, rather than creating a new copy, the state of the existing copy is updated to reflect the
target state specified for the migration job. Care is taken to never make a file more volatile than it already

Pool Operations

181

is: Sticky flags are added, or existing sticky flags are extended, but never removed or shortened; cached
files may be marked precious, but not vice versa. One caveat is when the target pool containing the
existing copy is offline. In that case the existence of the copy cannot be verified. Rather than creating a
new copy, the task fails and the file is put back into the transfer queue. This behaviour can be modified by
marking a migration job as eager. Eager jobs create new copies if an existing copy cannot be immediately
verified. As a rule of thumb, permanent jobs should never be marked eager. This is to avoid that a large
number of unnecessary copies are created when several pools are restarted simultaneously.

A migration task aborts whenever it runs into a problem. The file will be reinserted at the end of the
transfer queue. Consequently, once a migration job terminates, all files have been successfully trans-
ferred. If for some reason tasks for particular files keep failing, then the migration job will never termi-
nate by itself as it retries indefinitely.

Command Summary
Login to the admin interface and cd to a pool to use the migration commands. Use the command help
migration to view the possiblities.

(local) admin > cd poolname
(poolname) admin > help migration
migration cache [OPTIONS] TARGET...
migration cancel [-force] JOB
migration clear
migration concurrency ID CONCURRENCY
migration copy [OPTIONS] TARGET...
migration info JOB
migration ls
migration move [OPTIONS] TARGET...
migration resume JOB
migration suspend JOB

The commands migration copy, migration cache and migration move create new migration jobs.
These commands are used to copy files to other pools. Unless filter options are specified, all files on the
source pool are copied. The syntax for these commands is the same; example migration copy:

migration copy [option] target

There are four different types of options. The filter options, transfer options, target options and lifetime
options. Please run the command help migration copy for a detailed description of the various options.

The commands migration copy, migration move and migration cache take the same options and only
differ in default values.

migration move The command migration move does the same as the command migration copy
with the options:

• -smode=delete (default for migration copy is same).

• -pins=move (default for migration copy is keep).

additionally it uses the option -verify.

migration cache The command migration cache does the same as the command migration
copy with the option:

• -tmode=cached

Pool Operations

182

Jobs are assinged a job ID and are executed in the background. The status of a job may be queried through
the migration info command. A list of all jobs can be obtained through migration ls. Jobs stay in the
list even after they have terminated. Terminated jobs can be cleared from the list through the migration
clear command.

Jobs can be suspended, resumed and cancelled through the migration suspend, migration resume and
migration cancel commands. Existing tasks are allowed to finish before a job is suspended or cancelled.

A migration job can be suspended and resumed with the commands migration suspend and migration
resume respectively.

(local) admin > cd poolname
(poolname) admin > migration copy -pnfsid=000060D40698B4BF4BE284666ED29CC826C7 pool2
[1] INITIALIZING migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2
[1] SLEEPING migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2
(poolname) admin > migration ls
[1] RUNNING migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2
(poolname) admin > migration suspend 1
[1] SUSPENDED migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2
(poolname) admin > migration resume 1
[1] RUNNING migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2
(poolname) admin > migration info 1
Command : migration copy -pnfsid=000060D40698B4BF4BE284666ED29CC826C7 pool2
State : RUNNING
Queued : 0
Attempts : 1
Targets : pool2
Completed : 0 files; 0 bytes; 0%
Total : 5242880 bytes
Concurrency: 1
Running tasks:
[1] 00007C75C2E635CD472C8A75F5A90E4960D3: TASK.GettingLocations
(poolname) admin > migration info 1
Command : migration copy -pnfsid=000060D40698B4BF4BE284666ED29CC826C7 pool2
State : FINISHED
Queued : 0
Attempts : 1
Targets : pool2
Completed : 1 files; 5242880 bytes
Total : 5242880 bytes
Concurrency: 1
Running tasks:
(poolname) admin > migration ls
[1] FINISHED migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2

A migration job can be cancelled with the command migration cancel .

(local) admin > cd poolname
(poolname) admin > migration copy -pnfsid=0000D194FBD450A44D3EA606D0434D6D88CD pool2
[1] INITIALIZING migration copy 0000D194FBD450A44D3EA606D0434D6D88CD pool2
(poolname) admin > migration cancel 1
[1] CANCELLED migration copy -pnfsid=0000D194FBD450A44D3EA606D0434D6D88CD pool2

And terminated jobs can be cleared with the command migration clear.

(poolname) admin > migration ls
[3] FINISHED migration copy -pnfsid=0000D194FBD450A44D3EA606D0434D6D88CD pool2
[2] FINISHED migration copy -pnfsid=00007C75C2E635CD472C8A75F5A90E4960D3 pool2
[1] FINISHED migration copy -pnfsid=0000A48650142CBF4E55A7A26429DFEA27B6 pool2
[5] FINISHED migration move -pnfsid=000028C0C288190C4CE7822B3DB2CA6395E2 pool2
[4] FINISHED migration move -pnfsid=00007C75C2E635CD472C8A75F5A90E4960D3 pool2
(poolname) admin > migration clear
(poolname) admin > migration ls

Pool Operations

183

Except for the number of concurrent tasks, transfer parameters of existing jobs cannot be changed. This
is by design to ensure idempotency of jobs. The concurrency can be altered through the migration
concurrency command.

(poolname) admin > migration concurrency 4 2
(poolname) admin > migration info
Command : migration copy pool2
State : FINISHED
Queued : 0
Attempts : 6
Targets : pool2
Completed : 6 files; 20976068 bytes
Total : 20976068 bytes
Concurrency: 2
Running tasks:

Examples

Vacating a pool

To vacate the pool sourcePool, we first mark the pool read-only to avoid that more files are added
to the pool, and then move all files to the pool targetPool. It is not strictly necessary to mark the
pool read-only, however if not done there is no guarantee that the pool is empty when the migration
job terminates. The job can be rerun to move remaining files.

(sourcePool) admin > pool disable -rdonly
(sourcePool) admin > migration move targetPool
[1] RUNNING migration move targetPool
(sourcePool) admin > migration info 1
Command : migration move targetPool
State : RUNNING
Queued : 0
Attempts : 1
Targets : targetPool
Completed : 0 files; 0 bytes; 0%
Total : 830424 bytes
Concurrency: 1
Running tasks:
[0] 0001000000000000000BFAE0: TASK.Copying -> [targetPool@local]
(sourcePool) admin > migration info 1
Command : migration move targetPool
State : FINISHED
Queued : 0
Attempts : 1
Targets : targetPool
Completed : 1 files; 830424 bytes
Total : 830424 bytes
Concurrency: 1
Running tasks:
(sourcePool) admin > rep ls
(sourcePool) admin >

Caching recently accessed files

Say we want to cache all files belonging to the storage group atlas:default and accessed within the
last month on a set of low-cost cache pools defined by the pool group cache_pools. We can achieve
this through the following command.

(sourcePool) admin > migration cache -target=pgroup -accessed=0..2592000 -storage=atlas:default
 cache_pools
[1] INITIALIZING migration cache -target=pgroup -accessed=0..2592000 -storage=atlas:default
 cache_pools

Pool Operations

184

(sourcePool) admin > migration info 1
Command : migration cache -target=pgroup -accessed=0..2592000 -storage=atlas:default
 cache_pools
State : RUNNING
Queued : 2577
Attempts : 2
Targets : pool group cache_pools, 5 pools
Completed : 1 files; 830424 bytes; 0%
Total : 2143621320 bytes
Concurrency: 1
Running tasks:
[72] 00010000000000000000BE10: TASK.Copying -> [pool_2@local]

The files on the source pool will not be altered. Any file copied to one of the target pools will be marked
cached.

Renaming a Pool
A pool may be renamed with the following procedure, regardless of the type of files stored on it.

Disable file transfers from and to the pool with

(poolname) admin > pool disable -strict

Then make sure, no transfers are being processed anymore. All the following commands should give
no output:

(poolname) admin > queue ls queue
(poolname) admin > mover ls
(poolname) admin > p2p ls
(poolname) admin > pp ls
(poolname) admin > st jobs ls
(poolname) admin > rh jobs ls

Now the files on the pools have to be unregistered on the namespace server with

(poolname) admin > pnfs unregister

Note
Do not get confused that the commands pnfs unregister and pnfs register contain pnfs in
their names. They also apply to dCache instances with Chimera and are named like that for
legacy reasons.

Even if the pool contains precious files, this is no problem, since we will register them again in a moment.
The files might not be available for a short moment, though. Log out of the pool, and stop the domain
running the pool:

[root] # dcache stop poolDomain
Stopping poolDomain (pid=6070) 0 1 2 3 done
[root] #

Adapt the name of the pool in the layout files of your dCache installation to include your new pool-
name. For a general overview of layout-files see the section called “Defining domains and services”.

For example, to rename a pool from swimmingPool to carPool, change your layout file from

[poolDomain]
[poolDomain/pool]
name=swimmingPool

Pool Operations

185

path=/pool/

to

[poolDomain]
[poolDomain/pool]
name=carPool
path=/pool/

Warning

Be careful about renaming pools in the layout after users have already been writing to them.
This can cause inconsistencies in other components of dCache, if they are relying on pool names
to provide their functionality. An example of such a component is the Chimera cache info.

Start the domain running the pool:

[root] # dcache start poolDomain
Starting poolDomain done
[root] #

Register the files on the pool with

(poolname) admin > pnfs register

Pinning Files to a Pool
You may pin a file locally within the private pool repository:

(poolname) admin > rep set sticky pnfsid on|off

the sticky mode will stay with the file as long as the file is in the pool. If the file is removed from the
pool and recreated afterwards this information gets lost.

You may use the same mechanism globally: in the command line interface (local mode) there is the
command

(local) admin > set sticky pnfsid

This command does:

1. Flags the file as sticky in the name space database (Chimera). So from now the filename is globally
set sticky.

2. Will go to all pools where it finds the file and will flag it sticky in the pools.

3. All new copies of the file will become sticky.

186

Chapter 22. PostgreSQL and dCache
Vladimir Podstavkov

Mathias de Riese

Martin Radicke

PostgreSQL is used for various things in a dCache system: The SRM, the pin manager, the space man-
ager, the replica manager, the pnfs companion, the billing, and the pnfs server might make use
of one or more databases in a single or several separate PostgreSQL servers.

The SRM, the pin manager, the space manager, the replica manager, and the pnfs companion will use
the PostgreSQL database as configured at cell start-up in the corresponding batch files. The billing
will only write the accounting information into a database if it is configured with the option -useSQL.
The pnfs server will use a PostgreSQL server if the pnfs-posgresql version is used. It will use
several databases in the PostgreSQL server.

Installing a PostgreSQL Server
The preferred way to set up a PostgreSQL server should be the installation of the version provided by
your OS distribution; however, version 8.3 or later is required.

Install the PostgreSQL server, client and JDBC support with the tools of the operating system.

Initialize the database directory (usually /var/lib/pgsql/data/), start the database server, and
make sure that it is started at system start-up. This may be done with

[root] # /etc/init.d/postgresql start
[root] # chkconfig postgresql on

If the start-up script does not perform the initialization automatically, it might have to be done with

[root] # initdb -D /var/lib/pgsql/data/

and the server is started manually with

[root] # postmaster -i -D /var/lib/pgsql/data/ >logfile 2>&1 &

Configuring Access to PostgreSQL
In the installation guide instructions are given for configuring one PostgreSQL server on the admin node
for all the above described purposes with generous access rights. This is done to make the installation
as easy as possible. The access rights are configured in the file database_directory_name/da-
ta/pg_hba.conf. According to the installation guide the end of the file should look like

...
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
local all all trust
host all all 127.0.0.1/32 trust
host all all ::1/128 trust
host all all HostIP/32 trust

PostgreSQL and dCache

187

This gives access to all databases in the PostgreSQL server to all users on the admin host.

The databases can be secured by restricting access with this file. E.g.

...
TYPE DATABASE USER IP-ADDRESS METHOD
local all postgres ident sameuser
local all pnfsserver password
local all all md5
host all all 127.0.0.1/32 md5
host all all ::1/128 md5
host all all HostIP/32 md5

To make the server aware of this you need to reload the configuration file as the user postgres by:

[root] # su - postgres
[postgres] # pg_ctl reload

And the password for e.g. the user pnfsserver can be set with

[postgres] # psql template1 -c "ALTER USER pnfsserver WITH PASSWORD 'yourPassword'"

The pnfs server is made aware of this password by changing the variable dbConnectString in the
file /usr/etc/pnfsSetup:

...
export dbConnectString="user=pnfsserver password=yourPassword"

User access should be prohibited to this file with

[root] # chmod go-rwx /usr/etc/pnfsSetup

Performance of the PostgreSQL Server
On small systems it should never be a problem to use one single PostgreSQL server for all the functions
listed above. In the standard installation, the ReplicaManager, the pnfs companion are not activated
by default. The billing will only write to a file by default.

Whenever the PostgreSQL server is going to be used for another functionality, the impact on performance
should be checked carefully. To improve the performance, the functionality should be installed on a
separate host. Generally, a PostgreSQL server for a specific funcionality should be on the same host as
the dCache cell accessing that PostgreSQL server, and the PostgreSQL server containing the databases
for the pnfs server should run on the same host as the pnfs server and the PnfsManager cell of
the dCache system accessing it. Accordingly, the pnfs companion and the pnfs server itself will use
the same PostgreSQL server.

It is especially useful to use a separate PostgreSQL server for the billing cell.

Note

The following is work-in-progress.

Create PostgreSQL user with the name you will be using to run pnfs server. Make sure it has CRE-
ATEDB privilege.

[user] $ psql -U postgres template1 -c "CREATE USER johndoe with CREATEDB"

PostgreSQL and dCache

188

[user] $ dropuser pnfsserver
[user] $ createuser --no-adduser --createdb --pwprompt pnfsserver

Table 22.1. Protocol Overview

Component Database Host Database
Name

Database
User

Database
Password

SRM srmDatabaseHostor if not set: sr-
mDbHost or if not set: localhost

dcache srmdcache srmdcache

pin manag pinManagerDatabaseHost or if not
set: srmDbHost or if not set: local-
host

dcache srmdcache srmdcache

SpaceMan-
ager

spaceManagerDatabaseHost or if
not set: srmDbHost or if not set: lo-
calhost

dcache srmdcache srmdcache

companion companionDatabaseHost or if not
set: localhost

companion srmdcache srmdcache

Replica-
Manager

replicaManagerDatabaseHost or
if not set: localhost

replicas srmdcache srmdcache

pnfs server localhost admin, data1,
exp0, ...

pnfsserver --free--

billing billingDatabaseHost or if not set:
localhost

billing srmdcache srmdcache

Outdated Outdated

189

OUTDATED

OUTDATED

OUTDATED

Chapter 23. Complex Network
Configuration
This chapter contains solutions for several non-trivial network configurations. The first section discuss-
es the interoperation of dCache with firewalls and does not require any background knowledge about
dCache other than what is given in the installation guide (Chapter 2, Installing dCache) and the first
steps tutorial (Chapter 3, Getting in Touch with dCache). The following sections will deal with more
complex network topologies, e.g. private subnets. Even though not every case is covered, these cases
might help solve other problems, as well. Intermediate knowledge about dCache is required. Since most
tasks require changes in the start-up configuration, the background information on how to configure the
cell start-up, given in Chapter 6, The Cell Package will be useful.

Firewall Configuration
The components of a dCache instance may be distributed over several hosts (nodes). Some of these
components are accessed from outside and consequently the firewall needs to be aware of that. This
section assumes that all nodes are behind a firewall and have full access to each other. More complex
setups are described in the following sections. Depending on the access method, certain ports have to be
opened to only some of the nodes. We will describe the behaviour of a standard installation using the
default values. Since dCache is very flexible, most port numbers may be changed in the configuration.
The location (node) of any dCache component might also be changed from this standard.

The dCap Protocol
The dCap protocol should be used for local, trusted access only, because it is not authenticated. The
traditional method is to mount pnfs locally on the client and use paths to the files on this local mount
to address files. For this, the client has to be able to mount the NFS export of the pnfs server. It is
also possible to use the dCap protocol with a URL instead of a local path within a pnfs mount. The
URL has the form

dcap://dCapDoorHostFQN:dCapDoorPort/fullPnfsPath

If the dCapDoorPort is not specified, 22125 is used to establish a TCP connection to dCap-
DoorHostFQN (see next paragraph). In this case no NFS mount is needed anymore. However, the ac-
cess is unauthenticated and therefore access is only granted if the “other” part of the UNIX rights are set
accordingly. In other words: The user is mapped to nobody for unauthenticated dCap access.

In both cases (pnfs mount and URL access) the dCap client (dCap library or dccp command) will
connect to the dCap door (doorDomain) on the admin node with TCP port 22125 (can be changed in
config/dCacheSetup with dCapPort). After the pool manager selected a pool to be used for the
transfer (the section called “The Pool Selection Mechanism” describes how to configure that selection
mechanism.) this pool will establish the data connection to the client on a TCP port which has been
selected by the client. The port range to use may be specified on the client side (e.g. by the -p option
of the dccp command.)

The GSIdCap Protocol
The GSIdCap protocol is the dCap protocol with a GSI authentication wrapper (tunnel). The mecha-
nism is the same as described for the URL-stype dCap protocol in the previous section. The only differ-

Outdated Complex Network Configuration Outdated

190

OUTDATED

OUTDATED

OUTDATED

ence is the default port number: For the GSIdCap door the default port number is 22128. It is specified
in config/dCacheSetup with the parameter dCapGsiPort.

Another difference between the dCap door and GSIdCap doors is that the dCap door is started on
the admin node and there can only be one in the standard configuration, while there may be several
GSIdCap doors on separate nodes. Correspondingly, ports have to be opened in a firewall. Note that
it should not be necessary to run as many GSIdCap doors as GridFTP doors (see below), because no
data is transfered through the GSIdCap door.

The GridFTP Protocol
A GridFTP client connects to one of the GridFTP doors on TCP port 2811. The data connections are
established independent of the direction of the data transfer. In “active” FTP mode the server connects
to the client while in “passive” FTP mode the client connects to the server.

In “active” FTP mode the pool selected by the pool manager (see the section called “The Pool Selection
Mechanism”) will open one or more data connections to the client on a TCP port in the range between
20000 and 25000. In “passive” FTP mode, the client will establish the data connections to the GridFTP
door in the same port range. The pool will connect to the door and the door will route the data traffic. It is
not possible to establish a direct connection between pool and client in “passive” mode, because the FTP
protocol redirection mechanism has to be triggered before the client sends the name of the requested file.

The SRM Protocol
An SRM is a webservice which uses the https as transport protocol and negotiates data transfers between
the client and the server as well as between the server and another server. For the actual data transfer
one of the other protocols is negotiated. Usually this is GridFTP - especially for wide-area transfers.
There are two things to note about SRM-initiated GridFTP transfers:

For reading data, only “active” FTP mode will be used, i.e. the pool containing the data will connect
to the client or to the server which should receive the data. For writing, only “passive” FTP mode will
be used, i.e. the client or the pool containing the data will connect to the client or to the server which
should receive the data.

Apart from SRM put and get operations which always copy data between one SRM and the client there
is also a true SRM copy from one SRM to another SRM. There are two modes for SRM copy: “pull” and
“push” mode. If the destination SRM is dCache based and SRM pull mode (default) is used, the destination
pool will play the role of the GridFTP client, will contact the GridFTP door of the source instance
and receive the data directly from the source pool (if the source system is a dCache system). If push
mode is used and the source is a dCache based SRM, the source pool will be the GridFTP client and
will send the data to the GridFTP door of the destination. All this might have to be considered when
designing the system and configuring the firewall.

Pool Selection
Restricting wide-area transfers to a subset of your dCache pools may be done with the pool selection unit
in the pool manager. the section called “The Pool Selection Mechanism” contains a describtion on how
to do that. This can be useful to ease firewall configurations, optimize throughput, and improve security.

Protocol Overview
The following table gives an overview about the default ports used by the client protocols supported by
dCache. Note that all of them may be changed in config/dCacheSetup.

Outdated Complex Network Configuration Outdated

191

OUTDATED

OUTDATED

OUTDATED

Table 23.1. Protocol Overview

Protocol Port(s) Direction Nodes

dCap 22125 incoming doorDomain (admin node)

 any outgoing pools

GSIdCap 22128 incoming gsidcapDomain (where GSIDCAP=yes in
node_config)

 any outgoing pools

GridFTP 2811 incoming gridftpDomain (where GRIDFTP=yes in
node_config)

 20000-25000 outgoing (active FTP) pools

 20000-25000 incoming (passive FTP) gridftpDomain

SRM 8443 incoming srmDomain

GridFTP Connections via two or more
Network Interfaces

Description
The host on which the GridFTP door is running has several network interfaces and is supposed to
accept client connections via all those interfaces. The interfaces might even belong to separate networks
with no routing from one network to the other.

As long as the data connection is opened by the GridFTP server (active FTP mode), there is no problem
with having more than one interface. However, when the client opens the data connection (passive FTP
mode), the door (FTP server) has to supply it with the correct interface it should connect to. If this is the
wrong interface, the client might not be able to connect to it, because there is no route or the connection
might be inefficient.

Also, since a GridFTP server has to authenticate with an SSL grid certificate and key, there needs to
be a separate certificate and key pair for each name of the host. Since each network interface might
have a different name, several certificates and keys are needed and the correct one has to be used, when
authenticating via each of the interfaces.

Solution
Start a separate GridFTP server cell on the host for each interface on which connections should be
accepted.

The cells may be started in one domain or in separate domains. The cells have to have different names,
since they are well known cells. Each cell has to be configured, only to listen on the interface it should
serve with the -listen option. The locations of the grid host certificate and key files for the interface
have to be specified explicitly with the -service-cert and -service-key options.

The following example shows a setup for two network interfaces with the hostnames door-
a.grid.domain (111.111.111.5) and door-b.other.domain (222.222.222.5) which are served
by two GridFTP door cells in one domain:

Outdated Complex Network Configuration Outdated

192

OUTDATED

OUTDATED

OUTDATED

Example 23.1. Batch file for two GridFTP doors serving separate network
interfaces

set printout default 2
set printout CellGlue none
onerror shutdown
check -strong setupFile
copy file:${setupFile} context:setupContext
import context -c setupContext
check -strong serviceLocatorPort serviceLocatorHost
check -strong sshPort ftpPort
create dmg.cells.services.RoutingManager RoutingMgr
create dmg.cells.services.LocationManager lm \
 "${serviceLocatorHost} ${serviceLocatorPort}"

create dmg.cells.services.login.LoginManager GFTP-door-a \
 "2811 \
 -listen=111.111.111.5 \
 -export \
 diskCacheV111.doors.GsiFtpDoorV1 \
 -prot=raw \
 -service-cert=/etc/grid-security/door-a.grid.domain-cert.pem \
 -service-key=/etc/grid-security/door-a.grid.domain-key.pem \
 ..
 ..
"

create dmg.cells.services.login.LoginManager GFTP-door-b \
 "2811 \
 -listen=222.222.222.5 \
 -export \
 diskCacheV111.doors.GsiFtpDoorV1 \
 -prot=raw \
 -service-cert=/etc/grid-security/door-b.other.domain-cert.pem \
 -service-key=/etc/grid-security/door-b.other.domain-key.pem \
 ..
 ..
"

This batch file is very similar to the batch file for the GridFTP door in the standard setup. (Comments
have been left out.) It only contains an additional create command for the second cell and the emphasized
changes within the two create commands: The cell names, the -listen option with the IP address
of the corresponding interface and the -service-cert and -service-key options with the host
certificate and key files.

GridFTP with Pools in a Private Subnet

Description

If pool nodes of a dCache instance are connected to a secondary interface of the GridFTP door, e.g.
because they are in a private subnet, the GridFTP door will still tell the pool to connect to its primary
interface, which might be unreachable.

The reason for this is that the control communication between the door and the pool is done via the net-
work of TCP connections which have been established at start-up. In the standard setup this communica-
tion is routed via the dCache domain. However, for the data transfer, the pool connects to the GridFTP
door. The IP address it connects to is sent by the GridFTP door to the pool via the control connection.
Since the GridFTP door cannot find out which of its interfaces the pool should use, it normally sends
the IP address of the primary interface.

Outdated Complex Network Configuration Outdated

193

OUTDATED

OUTDATED

OUTDATED

Solution
Tell the GridFTP door explicitly which IP it should send to the pool for the data connection with the
-ftp-adapter-internal-interface option. E.g. if the pools should connect to the secondary
interface of the GridFTP door host which has the IP address 10.0.1.1, the following batch file would
be appropriate:

Example 23.2. Batch file for two GridFTP doors serving separate network
interfaces

set printout default 2
set printout CellGlue none
onerror shutdown
check -strong setupFile
copy file:${setupFile} context:setupContext
import context -c setupContext
check -strong serviceLocatorPort serviceLocatorHost
check -strong sshPort ftpPort
create dmg.cells.services.RoutingManager RoutingMgr
create dmg.cells.services.LocationManager lm \
 "${serviceLocatorHost} ${serviceLocatorPort}"

create dmg.cells.services.login.LoginManager GFTP \
 "2811 \
 -export \
 diskCacheV111.doors.GsiFtpDoorV1 \
 -prot=raw \
 -clientDataPortRange=${clientDataPortRange} \
 -root=${ftpBase} \
 -kpwd-file=${kpwdFile} \
 -tlog=/tmp/dcache-ftp-tlog \
 -maxLogin=100 \
 -brokerUpdateTime=5 \
 -protocolFamily=gsiftp \
 -loginBroker=LoginBroker \
 -poolManagerTimeout=5400 \
 -pnfsTimeout=120 \
 -maxRetries=80 \
 -maxStreamsPerClient=10 \
 -ftp-adapter-internal-interface=10.0.1.1 \
"

This batch file is very similar to the batch file for the GridFTP door in the standard setup. (Comments
have been left out.) The emphasized last line has the desired effect.

Doors in the DMZ

Description
Some doors - e.g. for grid access - are located in the DMZ while the rest of the dCache instance is in
the intranet. The firewall is configured in such a way that the doors cannot reach the location manager
(usually on the admin node together with the pool manager) via port 11111 (or as configured in the
variable serviceLocatorPort in config/lmSetup).

Solution
Please contact <support@dcache.org> if you need a solution for this problem.

Outdated Outdated

194

OUTDATED

OUTDATED

OUTDATED

Chapter 24. Accounting
The raw information about all dCache activities can be found in /var/lib/dcache/billing/
YYYY/MM/billing-YYYY.MM.DD. A typical line looks like

05.31 22:35:16 [pool:pool-name:transfer] [000100000000000000001320,24675] myStore:STRING@osm 24675
 474 true {GFtp-1.0 client-host-fqn 37592} {0:""}

The first bracket contains the pool name, the second the pnfs ID and the size of the file which is
transferred. Then follows the storage class, the actual amount of bytes transferred, and the number of
milliseconds the transfer took. The next entry is true if the transfer was a wrote data to the pool. The
first braces contain the protocol, client FQN, and the client host data transfer listen port. The final bracket
contains the return status and a possible error message.

The dCache web interface (described in the section called “The Web Interface for Monitoring dCache”)
contains under the menu point “Actions Log” summary information extracted from the information in
the billing-directory.

The accounting information can also be redirected into a database. When interested in this feature, please
contact <support@dcache.org>.

Outdated Outdated

195

OUTDATED

OUTDATED

OUTDATED

Chapter 25. Protocols

dCap options mover and client options
Patrick Fuhrmann
Tigran Mkrtchyan

dCap is the native random access I/O protocol for files within dCache. In additition to the usual data
transfer mechanisms, it supports all necessary file metadata and name space manipulation operations.

In order to optimize I/O transferrates and memory consumption dCap allows to configure parameters
within the client and the server. e.g:

• TCP Socket send and receive buffer sizes.

• I/O buffers sizes.

TCP send/recv buffer sizes from the servers point
of view
There are two parameters per I/O direction, determining the actual TCP send/recv buffer size used for
each transfer. Those values can be set within the config/pool.batch file on the pool nodes.

• defaultSend/RecvBufferSize : this value is used if the dCap client doesn’t try to set this
value. The default value for this parameter is 256K Bytes.

• maxSend/RecvBufferSize : this value is the maximum value, the mover is allowed to use. It’s
used if either the defaultSend/RecvBufferSize is larger or the client asks for a larger value.
The default value for this parameter is 1MBytes.

On the server side, the max/defaultSend/RecvBuffer value can either be set in the con-
fig/pool.batch file or in the config/*.poollist files.

Using the batch context :

set context dCap3-maxSendBufferSize value in bytes
set context dCap3-maxRecvBufferSize value in bytes
set context dCap3-defaultSendBufferSize value in bytes
set context dCap3-defaultRecvBufferSize value in bytes

Or it may specified in the create ... command line

 create diskCacheV111.pools.MultiProtocolPool2 ${0} \
 "!MoverMap \
 ${1} \
 -defaultSendBufferSize=value in bytes \
 *** \
 -${2} -${3} -${4} -${5} -${6} -${7} -${8} \
"

The most appropriate way to specify those values on the server side is certainly to add the corresponding
entry in the config/...poollist. The entry would look like

Outdated Protocols Outdated

196

OUTDATED

OUTDATED

OUTDATED

dcache30_1 /dcache/pool sticky=allowed maxSendBufferSize=value in bytes tag.hostname=dcache30

Please note the different ways of using the ’=’ and the ’-’ sign in the different alternatives.

TCP send/recv buffer sizes from the dCap clients
point of view
For a full list of dCap library API calls and dccp options, please refer to to http://
www.dcache.org/manuals/libdcap.shtml and http://www.dcache.org/manu-
als/dccp.shtml respectively. To set the local and remote TCP buffer send and receive buffers either
use the API call dc_setTCPSend/ReceiveBuffer(int size) or the -r SIZE -s SIZE
dccp options. In both cases the value is transferred to the remote mover which tries to set the correspond-
ing values. Please not the the server protects itself by having a maximum size for those values which
it doesn’t exceed. Please check the section ’TCP send/recv buffer sizes from the servers point of view’
to learn how to change those values.

Specifying dCap open timeouts
Patrick Fuhrmann

In cases where dccp/dcap requests a file which is still on tertiary storage, the user resp. the administrator
might what to limit the time, dccp/dCap waits in the open call until the file has been fetched from backend
storage. This, so called openTimeout, can be specified on the server or on the client. In all cases the
-keepAlive must be specified with an appropriate number of seconds on the cell create command in
the door batch files. The following mechanisms are available to specify open timeouts :

Table 25.1. Open Timeout mechanisms

Precedence Mechanism Key Name Example

Lowest context dCap-openTimeout set context dCap-openTimeout 200

... context openTimeout set context openTimeout 200

... cell create
command line

openTimeout -openTimeout=200

Highest dccp com-
mand line

-o dccp -o200 SOURCE DESTINATION

#
dCap D o o r (create command line example)
#
create dmg.cells.services.login.LoginManager DCap-2 \
 "${specialDCapPort} \
 diskCacheV111.doors.DCapDoor \
 -export \
 *** \
 -keepAlive=60 \
 -openTimeout=300 \
 *** \
 -loginBroker=LoginBroker"

#
dCap D o o r (context example)

Outdated Protocols Outdated

197

OUTDATED

OUTDATED

OUTDATED

#
set context dCap-openTimeout 200
#
create dmg.cells.services.login.LoginManager DCap-2 \
 "${specialDCapPort} \
 diskCacheV111.doors.DCapDoor \
 -export \
 *** \
 -keepAlive=60 \
 *** \
 -loginBroker=LoginBroker"

[user] $ dccp -o200 /pnfs/desy.de/data/dteam/private/myfile /dev/null

If the openTimeout expires while a read transfer is already active, this transfer will be interrupted, but it
will automatically resume because the client can’t destinguish between a network failure and a timeout.
So the timeout disturbes the read but it will finally succeed. This is different for write. If a write is
interrupted by a timeout in the middle of a transfer, dccp will stuck. (This is not a feature and needs
further investigation).

Using the dCap protocol for strict file
checking
Patrick Fuhrmann
Tigran Mkrtchyan

The dCap protocol allows to check whether a dataset is on tape only or has a copy on a dCache
disk. The dCap library API call is int dc_check(const char *path, const char
*location) and the dccp options are -t -1 -P. For a full list of dCap library API calls and
dccp options, please refer to to http://www.dcache.org/manuals/libdcap.shtml and
http://www.dcache.org/manuals/dccp.shtml respectively. Using a standard dCache in-
stallation those calls will return a guess on the file location only. It is neither checked whether the file
is really on that pool or if the pool is up. To get a strict checking a dCap door has to be started with
a special (-check=strict) option.

#
dCap D o o r
#
create dmg.cells.services.login.LoginManager DCap-strict \
 "${specialDCapPort} \
 diskCacheV111.doors.DCapDoor \
 -check=strict \
 -export \
 -prot=telnet -localOk \
 -maxLogin=1500 \
 -brokerUpdateTime=120 \
 -protocolFamily=dcap \
 -loginBroker=LoginBroker"

This door will do a precise checking (-check=strict). To get the dCap lib and dccp to use this door only,
the DCACHE_DOOR environment variable has to be set to doorHost:specialDCapPort in the
shell, dccp is going to be used. In the following example we assume that the specialDCapPort has
been set to 23126 :

[user] $ export DCACHE_DOOR=dcachedoorhost:23126
[user] $ dccp -P -t -1 /pnfs/domain.tv/data/cms/users/waste.txt

Outdated Protocols Outdated

198

OUTDATED

OUTDATED

OUTDATED

If dccp returns File is not cached and this dCache instance is connected to an HSM, the file is no
longer on one of the dCache pools but is assumed to have a copy within the HSM. If the dccp returns this
message and no HSM is attached, the file is either on a pool which is currently down or the file is lost.

Passive dCap
Tigran Mkrtchyan
Patrick Fuhrmann

The dCap protocol, similiar to FTP, uses a control channel to request a transfer which is subsequently
done through data channels. Per default, the data channel is initiated by the server, connecting to an
open port in the client library. This is commonly known as active transfer. Starting with dCache 1.7.0
the dCap protocol supports passive transfer mode as well, which consequently means that the client
connects to the server pool to initiate the data channel. This is essential to support dCap clients running
behind firewalls and within private networks.

Preparing the server for dCap passive transfer
The port(s), the server pools should listens on, can be specified by the
org.dcache.net.tcp.portrange variable, as part of the ’java_options’ directive in the con-
fig/dCacheSetup configuration file. A range has to be given if pools are split amoung multiple
JVMs. E.g:

java_options="-server ... -Dorg.dcache.dcap.port=0 -Dorg.dcache.net.tcp.portrange=33115:33145"

Switching the dCap library resp. dccp to PASSIVE

Note

The commonly used expression ’passive’ is seen from the server perspective and actually means
’server passive’. From the client perspective this is of course ’active’. Both means that the client
connects to the server to establish the data connection. This mode is supported by the server
starting with 1.7.0 and dccp with 1-2-40 (included in 1.7.0)

The following dCap API call switches all subsequent dc_open calls to server-passive mode if this mode
is supported by the corresponding door. (dCache Version >= 1.7.0).

void dc_setClientActive()

The environment variable DCACHE_CLIENT_ACTIVE switches the dCap library to server-passive.
This is true for dCap, dCap preload and dccp.

dccp switches to server-passive when issuing the -A command line option.

Access to SRM and GridFTP server from
behind a firewall
Timur Perelmutov
Mathias de Riese

Outdated Protocols Outdated

199

OUTDATED

OUTDATED

OUTDATED

This describes firewall issues from the clients perspective. the section called “Firewall Configuration”
discusses the server side.

When files are transferred in GridFTP active mode from GridFTP server to the GridFTP client,
server establishes data channel(s) by connecting to the client. In this case client creates a TCP socket,
bound to some particular address on the client host, and sends the client host IP and port to the server.
If the client host is running a firewall, firewall might refuse server’s connection to the client’s listening
socket. Common solution to this problem is establishing a range of ports on the client’s host that are
allowed to be connected from Internet by changing firewall rules.Once the port range is defined the client
can be directed to use one of the ports from the port ranges when creating listening tcp sockets.

Access with srmcp
If you are using srmcp as a client you need to do the following:

• create a directory $HOME/.globus if it does not exist.

• create and/or edit a file $HOME/.globus/cog.properties by appending a new line reading

tcp.port.range=min,max

where min and max are the lower and upper bounds of the port range.

With the latest srmcp release you can use the globus_tcp_port_range option:

[user] $ srmcp -globus_tcp_port_range=minValue:maxValue ...

A range of ports open for TCP connections is specified as a pair of positive integers separated by ":".
This is not set by default.

Access with globus-url-copy
If you are transferring files from gridftp server using globus-url-copy, you need to define an environment
variable GLOBUS_TCP_PORT_RANGE, in the same shell in which globus-url-copy will be executed.

In sh/bash you do that by invoking the following command:

[user] $ export GLOBUS_TCP_PORT_RANGE="min,max"

in csh/tcsh you invoke:

[user] $ setenv GLOBUS_TCP_PORT_RANGE "min,max"

here min and max are again the lower and upper bounds of the port range

Disableing unauthenticated dCap via SRM
In some cases SRM transfers fail because they are tried via the plain dCap protocol (URL starts with
dcap://). Since plain dCap is unauthenticated, the dCache server will have no information about the
user trying to access the system. While the transfer will succeed if the UNIX file permissions allow
access to anybody (e.g. mode 777), it will fail otherwise.

Outdated Protocols Outdated

200

OUTDATED

OUTDATED

OUTDATED

Usually all doors are registered in SRM as potential access points for dCache. During a protocol negoti-
ation the SRM chooses one of the available doors. You can force srmcp to use the GSIdCap protocol
(-protocol=gsidcap) or you can unregister plain, unauthenticated dCap from known protocols:
From the file config/door.batch remove -loginBroker=LoginBroker and restart dCap
door with

[root] # jobs/door stop
[root] # jobs/door -logfile=dCacheLocation/log/door.log start

201

Chapter 26. Advanced Tuning
The use cases described in this chapter are only relevant for large-scale dCache instances which require
special tuning according to a longer experience with client behaviour.

Multiple Queues for Movers in each Pool

Description
Client requests to a dCache system may have rather diverse behaviour. Sometimes it is possible to classi-
fy them into several typical usage patterns. An example are the following two concurrent usage patterns:

Data is copied with a high transfer rate to the dCache system from an external source. This is done via
the GridFTP protocol. At the same time batch jobs on a local farm process data. Since they only need a
small part of each file, they use the dCap protocol via the dCap library and seek to the position in the file
they are interested in, read a few bytes, do a few hours of calculations, and finally read some more data.

As long as the number of active requests does not exceed the maximum number of allowed active re-
quests, the two types of requests are processed concurrently. The GridFTP transfers complete at a high
rate while the processing jobs take hours to finish. This maximum number of allowed requests is set with
mover set max active and should be tuned according to capabilities of the pool host.

However, if requests are queued, the slow processing jobs might clog up the queue and not let the fast
GridFTP request through, even though the pool just sits there waiting for the processing jobs to request
more data. While this could be temporarily remedied by setting the maximum active requests to a higher
value, then in turn GridFTP request would put a very high load on the pool host.

The above example is pretty realistic: As a rule of thumb, GridFTP requests are fastest, dCap requests
with the dccp program are a little slower and dCap requests with the dCap library are very slow.
However, the usage patterns might be different at other sites and also might change over time.

Solution
Use separate queues for the movers, depending on the door initiating them. This easily allows for a
separation of requests of separate protocols. (Transfers from and to a tape backend and pool-to-pool
transfers are handled by separate queues, one for each of these transfers.)

A finer grained queue selection mechanism based on, e.g. the IP address of the client or the file which
has been requested, is not possible with this mechanism. However, the pool selection unit (PSU) may
provide a separation onto separate pools using those criteria.

In the above example, two separate queues for fast GridFTP transfers and slow dCap library access
would solve the problem. The maximum number of active movers for the GridFTP queue should be
set to a lower value compared to the dCap queue since the fast GridFTP transfers will put a high load
on the system while the dCap requests will be mostly idle.

Configuration
For a multi mover queue setup, the pools have to be told to start several queues and the doors have to
be configured to use one of these. It makes sense to create the same queues on all pools. This is done by
the following change to the file /etc/dcache/dcache.conf:

Advanced Tuning

202

poolIoQueue=queueA,queueB

Each door may be configured to use a particular mover queue. The pool, selected for this request, does
not depend on the selected mover queue. So a request may go to a pool which does not have the particular
mover queue configured and will consequently end up in the default mover queue of that pool.

gsiftpIoQueue=queueA
dcapIoQueue=queueB

All requests send from this kind of door will ask to be scheduled to the given mover queue. The selection
of the pool is not affected.

The doors are configured to use a particular mover queue as in the following example:

Create the queues queueA and queueB, where queueA shall be the queue for the GridFTP transfers
and queueB for dCap.

poolIoQueue=queueA,queueB
gsiftpIoQueue=queueA
dcapIoQueue=queueB

If the pools should not all have the same queues you can define queues for pools in the layout file. Here
you might as well define that a specific door is using a specific queue.

In this example queueCis defined for pool1 and queueD is defined for pool2. The GridFTP door
running in the domain myDoors is using the queue queueB.

[myPools]
[myPools/pool1]
poolIoQueue=queueC
[myPools/pool2]
poolIoQueue=queueD

[myDoors]
[myDoors/dcap]
dcapIoQueue=queueC
[myDoors/gridftp]
gsiftpIoQueue=queueD

There is always a default queue called regular. Transfers not requesting a particular mover queue or
requesting a mover queue not existing on the selected pool, are handled by the regular queue.

The pool cell commands mover ls and mover set max active have a -queue option to select the mover
queue to operate on. Without this option, mover set max active will act on the default queue while
mover ls will list all active and waiting client transfer requests.

For the dCap protocol, it is possible to allow the client to choose another queue name than the one
defined in the file dcache.conf. To achieve this the property dcapIoQueueOverwrite needs
to be set to allowed.

Create the queues queueA and queue_dccp, where queueA shall be the queue for dCap.

poolIoQueue=queueA,queue_dccp
dcapIoQueue=queueA
dcapIoQueueOverwrite=allowed

With the dccp command the queue can now be specified as follows:

Advanced Tuning

203

[user] $ dccp -X-io-queue=queue_dccp source destination

Since dccp requests may be quite different from other requests with the dCap protocol, this feature may
be used to use separate queues for dccp requests and other dCap library requests. Therefore, the dccp
command may be changed in future releases to request a special dccp-queue by default.

Tunable Properties for Multiple Queues
Property Default Value Description

poolIoQueue Not set I/O queue name

dcapIoQueue Not set Insecure dCap I/O queue name

gsidcapIoQueue Not set GSIdCap I/O queue name

dcapIoQueueOverwrite denied Controls whether an application is allowed to overwrite a queue name

gsidcapIoQueueOverwrite denied Controls whether an application is allowed to overwrite a queue name

kerberosdcapIoQueueOverwrite denied Controls whether an application is allowed to overwrite a queue name

gsiftpIoQueue Not set GSI-FTP I/O queue name

nfsIoQueue Not set NFS I/O queue name

remoteGsiftpIoQueue Not set queue used for SRM third-party transfers (i.e. the srmCopy command)

webdavIoQueue Not set WebDAV and HTTP I/O queue name

xrootdIoQueue Not set xrootd I/O queue name

Tunable Properties

dCap

Table 26.1. Property Overview

Property Default Value Description

gsidcapIoQueue Not set GSIdCap I/O queue name

dcapIoQueue Not set Insecure dCap I/O queue name

gsidcapIoQueueOverwrite denied Is application allowed to overwrite queue name?

dcapIoQueueOverwrite denied Is application allowed to overwrite queue name?

GridFTP

Table 26.2. Property Overview

Property Default Value Description

gsiFtpPortNumber 2811 GSI-FTP port listen port

spaceReservation False Use the space reservation service

spaceReservationStrict False Use the space reservation service

performanceMarkerPeriod 180 Performance markers in seconds

gplazmaPolicy ${ourHomeDir}/etc/
dcachesrm-gplazma.policy

Location of the gPlazma Policy File

useGPlazmaAuthorizationModule False Use the gPlazma module

useGPlazmaAuthorizationCell True Use the gPlazma cell

gsiftpPoolManagerTimeout 5400 Pool Manager timeout in seconds

gsiftpPoolTimeout 600 Pool timeout in seconds

Advanced Tuning

204

Property Default Value Description

gsiftpPnfsTimeout 300 Pnfs timeout in seconds

gsiftpMaxRetries 80 Number of PUT/GET retries

gsiftpMaxStreamsPerClient 10 Number of parallel streams per FTP PUT/GET

gsiftpDeleteOnConnectionClosed True Delete file on connection closed

gsiftpMaxLogin 100 Maximum number of concurrently logged in users

gsiftpAdapterInternalInterface Not set In case of two interfaces

clientDataPortRange 20000:25000 The client data port range

kpwdFile ${ourHomeDir}/etc/
dcache.kpwd

Legacy authorization

SRM

Table 26.3. Property Overview

Property Default Value Description

srmPort 8443 srmPort

srmDatabaseHost localhost srmDatabaseHost

srmTimeout 3600 srmTimeout

srmVacuum True srmVacuum

srmVacuumPeriod 21600 srmVacuumPeriod

srmProxiesDirectory /tmp srmProxiesDirectory

srmBufferSize 1048576 srmBufferSize

srmTcpBufferSize 1048576 srmTcpBufferSize

srmDebug True srmDebug

srmGetReqThreadQueueSize 1000 srmGetReqThreadQueueSize

srmGetReqThreadPoolSize 100 srmGetReqThreadPoolSize

srmGetReqMaxWaitingRequests 1000 srmGetReqMaxWaitingRequests

srmGetReqReadyQueueSize 1000 srmGetReqReadyQueueSize

srmGetReqMaxReadyRequests 100 srmGetReqMaxReadyRequests

srmGetReqMaxNumberOfRetries 10 srmGetReqMaxNumberOfRetries

srmGetReqRetryTimeout 60000 srmGetReqRetryTimeout

srmGetReqMaxNumOfRunningBySameOwner 10 srmGetReqMaxNumOfRunningBySameOwner

srmPutReqThreadQueueSize 1000 srmPutReqThreadQueueSize

srmPutReqThreadPoolSize 100 srmPutReqThreadPoolSize

srmPutReqMaxWaitingRequests 1000 srmPutReqMaxWaitingRequests

srmPutReqReadyQueueSize 1000 srmPutReqReadyQueueSize

srmPutReqMaxReadyRequests 100 srmPutReqMaxReadyRequests

srmPutReqMaxNumberOfRetries 10 srmPutReqMaxNumberOfRetries

srmPutReqRetryTimeout 60000 srmPutReqRetryTimeout

srmPutReqMaxNumOfRunningBySameOwner 10 srmPutReqMaxNumOfRunningBySameOwner

srmCopyReqThreadQueueSize 1000 srmCopyReqThreadQueueSize

srmCopyReqThreadPoolSize 100 srmCopyReqThreadPoolSize

srmCopyReqMaxWaitingRequests 1000 srmCopyReqMaxWaitingRequests

srmCopyReqMaxNumberOfRetries 30 srmCopyReqMaxNumberOfRetries

srmCopyReqRetryTimeout 60000 srmCopyReqRetryTimeout

srmCopyReqMaxNumOfRunningBySameOwner 10 srmCopyReqMaxNumOfRunningBySameOwner

Part IV. Reference

Table of Contents
27. dCache Clients .. 206

The SRM Client Suite .. 206
dccp ... 207

28. dCache Cell Commands ... 210
Common Cell Commands .. 210
PnfsManager Commands ... 211
Pool Commands .. 214
PoolManager Commands ... 224

29. dCache Default Port Values ... 226
30. Glossary .. 227

206

Chapter 27. dCache Clients

The SRM Client Suite
An SRM URL has the form srm://dmx.lbl.gov:6253//srm/DRM/srmv1?SFN=/tmp/try1
and the file URL looks like file:////tmp/aaa.

srmcp
srmcp — Copy a file from or to an SRM or between two SRMs.

Synopsis
srmcp [option...] sourceUrl destUrl

Arguments

sourceUrl The URL of the source file.

destUrl The URL of the destination file.

Options

gss_expected_name To enable the user to specify the gss expected name in the DN (Dis-
tinguished Name) of the srm server. The default value is host.

If the CN of host where srm server is running is CN=srm/
tam01.fnal.gov, then gss_expected_name should be srm.

[user] $ srmcp --gss_expected_name=srm sourceUrl destinationUrl

globus_tcp_port_range To enable the user to specify a range of ports open for tcp connections
as a pair of positive integers separated by “:”, not set by default.

This takes care of compute nodes that are behind firewall.

globus_tcp_port_range=40000:50000

[user] $ srmcp --
globus_tcp_port_range=minVal:maxVal sourceUrl destinationUrl

streams_num To enable the user to specify the number of streams to be used for
data transfer. If set to 1, then stream mode is used, otherwise extended
block mode is used.

[user] $ srmcp --streams_num=1 sourceUrl destinationUrl

server_mode To enable the user to set the (gridftp) server mode for data transfer.
Can be active or passive, passive by default.

dCache Clients

207

This option will have effect only if transfer is performed in a stream
mode (see streams_num)

[user] $ srmcp --streams_num=1 --
server_mode=active sourceUrl destinationUrl

Description

srmstage
srmstage — Request staging of a file.

Synopsis
srmstage [srmUrl...]

Arguments

srmUrl The URL of the file which should be staged.

Description

Provides an option to the user to stage files from HSM to dCache and not transfer them to the user right
away. This case will be useful if files are not needed right away at user end, but its good to stage them
to dcache for faster access later.

dccp

dccp
dccp — Copy a file from or to a dCache server.

Synopsis

dccp [option...] sourceUrl destUrl

Arguments

The following arguments are required:

sourceUrl The URL of the source file.

destUrl The URL of the destination file.

Description

The dccp utility provides a cp(1) like functionality on the dCache file system. The source must be a
single file while the destination could be a directory name or a file name. If the directory is a destination,

dCache Clients

208

a new file with the same name as the source name will be created there and the contents of the source
will be copied. If the final destination file exists in dCache, it won’t be overwritten and an error code
will be returned. Files in regular file systems will always be overwritten if the -i option is not specified.
If the source and the final destination file are located on a regular file system, the dccp utility can be
used similar to the cp(1) program.

Options

The following arguments are optional:

-a Enable read-ahead functionality.

-b bufferSize Set read-ahead buffer size. The default value is 1048570 Bytes.
To disable the buffer this can be set to any value below the default.
dccp will attempt to allocate the buffer size so very large values
should be used with care.

-B bufferSize Set buffer size. The size of the buffer is requested in each request,
larger buffers will be needed to saturate higher bandwidth connec-
tions. The optimum value is network dependent. Too large a value
will lead to excessive memory usage, too small a value will lead to
excessive network communication.

-d debug level Set the debug level. debug level is a integer between 0 and
127. If the value is 0 then no output is generated, otherwise the
value is formed by adding together one or more of the following
values:
Value Enabled output
1 Error messages
2 Info messages
4 Timing information
8 Trace information
16 Show stack-trace
32 IO operations
32 IO operations
64 Thread information

-h replyHostName Bind the callback connection to the specific hostname interface.

-i Secure mode. Do not overwrite the existing files.

-l location Set location for pre-stage. if the location is not specified, the local
host of the door will be used. This option must be used with the -
P option.

-p first_port:last_port Bind the callback data connection to the specified TCP
port/rangeSet port range. Delimited by the ’:’ character, the
first_port is required but the last_port is optional.

-P Pre-stage. Do not copy the file to a local host but make sure the file
is on disk on the dCache server.

-r bufferSize TCP receive buffer size. The default is 256K. Setting to 0 uses
the system default value. Memory useage will increase with higher
values, but performance better.

dCache Clients

209

-s bufferSize TCP send buffer size. The default is 256K. Setting to 0 uses the
system default value.

-t time Stage timeout in seconds. This option must be used with the -P
option.

Examples:

To copy a file to dCache:

[user] $ dccp /etc/group dcap://example.org/pnfs/desy.de/gading/

To copy a file from dCache:

[user] $ dccp dcap://example.org/pnfs/desy.de/gading/group /tmp/

Pre-Stage request:

[user] $ dccp -P -t 3600 -l example.org /acs/user_space/data_file

stdin:

[user] $ tar cf - data_dir | dccp - /acs/user_space/data_arch.tar

stdout:

[user] $ dccp /acs/user_space/data_arch.tar - | tar xf -

See also

cp

210

Chapter 28. dCache Cell Commands
This is the reference to all (important) cell commands in dCache. You should not use any command not
documented here, unless you really know what you are doing. Commands not in this reference are used
for debugging by the developers.

This chapter serves two purposes: The other parts of this book refer to it, whenever a command is men-
tioned. Secondly, an administrator may check here, if he wonders what a command does.

Common Cell Commands

pin
pin — Adds a comment to the pinboard.

Synopsis
pin comment

Arguments

comment A string which is added to the pinboard.

Description

info
info — Print info about the cell.

Synopsis
info [-a] [-l]

Arguments

-a Display more information.

-l Display long information.

Description

The info printed by info depends on the cell class.

dump pinboard
dump pinboard — Dump the full pinboard of the cell to a file.

dCache Cell Commands

211

Synopsis
dump pinboard filename

Arguments

filename The file the current content of the pinboard is stored in.

Description

show pinboard
show pinboard — Print a part of the pinboard of the cell to STDOUT.

Synopsis
show pinboard [lines]

Arguments

lines The number of lines which are displayed. Default: all.

Description

PnfsManager Commands

pnfsidof
pnfsidof — Print the pnfs id of a file given by its global path.

Synopsis
pnfsidof globalPath

Description

Print the pnfs id of a file given by its global path. The global path always starts with the “VirtualGlob-
alPath” as given by the “info”-command.

flags remove
flags remove — Remove a flag from a file.

Synopsis

dCache Cell Commands

212

flags remove pnfsId key ...

Arguments

pnfsId The pnfs id of the file of which a flag will be removed.

key flags which will be removed.

Description

flags ls
flags ls — List the flags of a file.

Synopsis
flags ls pnfsId

pnfsId The pnfs id of the file of which a flag will be listed.

Description

flags set
flags set — Set a flag for a file.

Synopsis
flags set pnfsId key=value ...

Arguments

pnfsId The pnfs id of the file of which flags will be set.

key The flag which will be set.

value The value to which the flag will be set.

Description

metadataof
metadataof — Print the meta-data of a file.

Synopsis
metadataof [pnfsId] | [globalPath] [-v] [-n] [-se]

dCache Cell Commands

213

Arguments

pnfsId The pnfs id of the file.

globalPath The global path of the file.

Description

pathfinder
pathfinder — Print the global or local path of a file from its PNFS id.

Synopsis
pathfinder pnfsId [[-global] | [-local]]

Arguments

pnfsId The pnfs Id of the file.

-global Print the global path of the file.

-local Print the local path of the file.

Description

set meta
set meta — Set the meta-data of a file.

Synopsis
set meta [pnfsId] | [globalPath] uid gid perm levelInfo...

Arguments

pnfsId The pnfs id of the file.

globalPath The global path oa the file.

uid The user id of the new owner of the file.

gid The new group id of the file.

perm The new file permitions.

levelInfo The new level information of the file.

Description

dCache Cell Commands

214

storageinfoof
storageinfoof — Print the storage info of a file.

Synopsis
storageinfoof [pnfsId] | [globalPath] [-v] [-n] [-se]

Arguments

pnfsId The pnfs id of the file.

globalPath The global path oa the file.

Description

cacheinfoof
cacheinfoof — Print the cache info of a file.

Synopsis
cacheinfoof [pnfsId] | [globalPath]

Arguments

pnfsId The pnfs id of the file.

globalPath The global path oa the file.

Description

Pool Commands

rep ls
rep ls — List the files currently in the repository of the pool.

Synopsis
rep ls [pnfsId...] | [-l= s | p | l | u | nc | e ...] [-s= k | m | g | t]

pnfsId The pnfs ID(s) for which the files in the repository will be listed.

-l List only the files with one of the following properties:

s sticky files
p precious files
l locked files

dCache Cell Commands

215

u files in use
nc files which are not cached
e files with an error condition

-s Unit, the filesize is shown:

k data amount in KBytes
m data amount in MBytes
g data amount in GBytes
t data amount in TBytes

Description

st set max active
st set max active — Set the maximum number of active store transfers.

Synopsis
st set max active maxActiveStoreTransfers

maxActiveStoreTransfers The maximum number of active store transfers.

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.

rh set max active
rh set max active — Set the maximum number of active restore transfers.

Synopsis
rh set max active maxActiveRetoreTransfers

maxActiveRetoreTransfers The maximum number of active restore transfers.

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.

mover set max active
mover set max active — Set the maximum number of active client transfers.

Synopsis
mover set max active maxActiveClientTransfers [-queue=moverQueueName]

dCache Cell Commands

216

maxActiveClientTransfers The maximum number of active client transfers.

moverQueueName The mover queue for which the maximum number of active trans-
fers should be set. If this is not specified, the default queue is as-
sumed, in order to be compatible with previous versions which
did not support multiple mover queues (before version 1.6.6).

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.

mover set max active -queue=p2p
mover set max active -queue=p2p — Set the maximum number of active pool-to-pool server transfers.

Synopsis
mover set max active -queue=p2p maxActiveP2PTransfers

maxActiveP2PTransfers The maximum number of active pool-to-pool server transfers.

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.

pp set max active
pp set max active — Set the value used for scaling the performance cost of pool-to-pool client transfers
analogous to the other set max active-commands.

Synopsis
pp set max active maxActivePPTransfers

maxActivePPTransfers The new scaling value for the cost calculation.

Description

All pool-to-pool client requests will be performed immediately in order to avoid deadlocks. This value
will only used by the cost module for calculating the performance cost.

set gap
set gap — Set the gap parameter - the size of free space below which it will be assumed that the pool
is full within the cost calculations.

Synopsis

dCache Cell Commands

217

set gap gapPara

gapPara The size of free space below which it will be assumed that the pool is full. Default is 4GB.

Description

The gap parameter is used within the space cost calculation scheme described in the section called “The
Space Cost”. It specifies the size of free space below which it will be assumed that the pool is full and
consequently the least recently used file has to be removed if a new file has to be stored on the pool.
If, on the other hand, the free space is greater than gapPara, it will be expensive to store a file on the
pool which exceeds the free space.

set breakeven
set breakeven — Set the breakeven parameter - used within the cost calculations.

Synopsis
set breakeven breakevenPara

breakevenPara The breakeven parameter has to be a positive number smaller than 1.0. It specifies
the impact of the age of the least recently used file on space cost. It the LRU file
is one week old, the space cost will be equal to (1 + breakeven). Note that
this will not be true, if the breakeven parameter has been set to a value greater
or equal to 1.

Description

The breakeven parameter is used within the space cost calculation scheme described in the section called
“The Space Cost”.

mover ls
mover ls — List the active and waiting client transfer requests.

Synopsis
mover ls [-queue | -queue=queueName]

queueName The name of the mover queue for which the transfers should be listed.

Description

Without parameter all transfers are listed. With -queue all requests sorted according to the mover queue
are listed. If a queue is explicitly specified, only transfers in that mover queue are listed.

migration cache
migration cache — Caches replicas on other pools.

dCache Cell Commands

218

SYNOPSIS

migration cache [options] target...

DESCRIPTION

Caches replicas on other pools. Similar to migration copy, but with different defaults. See migration
copy for a description of all options. Equivalent to: migration copy -smode=same -tmode=cached

migration cancel
migration cancel — Cancels a migration job

SYNOPSIS

migration cancel [-force] job

DESCRIPTION

Cancels the given migration job. By default ongoing transfers are allowed to finish gracefully.

migration clear
migration clear — Removes completed migration jobs.

SYNOPSIS

migration clear

DESCRIPTION

Removes completed migration jobs. For reference, information about migration jobs are kept until ex-
plicitly cleared.

migration concurrency
migration concurrency — Adjusts the concurrency of a job.

SYNOPSIS

migration concurrency job n

DESCRIPTION

Sets the concurrency of job to n.

migration copy
migration copy — Copies files to other pools.

dCache Cell Commands

219

SYNOPSIS

migration copy [options] target...

DESCRIPTION

Copies files to other pools. Unless filter options are specified, all files on the source pool are copied.

The operation is idempotent, that is, it can safely be repeated without creating extra copies of the files. If
the replica exists on any of the target pools, then it is not copied again. If the target pool with the existing
replica fails to respond, then the operation is retried indefinitely, unless the job is marked as eager.

Please notice that a job is only idempotent as long as the set of target pools does not change. If pools
go offline or are excluded as a result of an exclude or include expression then the job may stop being
idempotent.

Both the state of the local replica and that of the target replica can be specified. If the target replica already
exists, the state is updated to be at least as strong as the specified target state, that is, the lifetime of sticky
bits is extended, but never reduced, and cached can be changed to precious, but never the opposite.

Transfers are subject to the checksum computiton policy of the target pool. Thus checksums are verified
if and only if the target pool is configured to do so. For existing replicas, the checksum is only verified
if the verify option was specified on the migration job.

Jobs can be marked permanent. Permanent jobs never terminate and are stored in the pool setup file with
the save command. Permanent jobs watch the repository for state changes and copy any replicas that
match the selection criteria, even replicas added after the job was created. Notice that any state change
will cause a replica to be reconsidered and enqueued if it matches the selection criteria — also replicas
that have been copied before.

Several options allow an expression to be specified. The following operators are recognized: <, <=, ==,
!=, >=, >, lt, le, eq, ne, ge, gt, ~=, !~, +, -, *, /, %, div, mod, |, &, ^, ~, &&, ||, !, and, or,
not, ?:, =. Literals may be integer literals, floating point literals, single or double quoted string literals,
and boolean true and false. Depending on the context, the expression may refer to constants.

Please notice that the list of supported operators may change in future releases. For permanent jobs we
recommend to limit expressions to the basic operators <, <=, ==, !=, >=, >, +, -, *, /, &&, || and !.

Options

-accessed=n|[n]..[m] Only copy replicas accessed n seconds ago, or accessed within the
given, possibly open-ended, interval; e.g. -accessed=0..60
matches files accessed within the last minute; -accesed=60..
matches files accessed one minute or more ago.

-al=ONLINE|NEARLINE Only copy replicas with the given access latency.

-pnfsid=pnfsid[,pnfsid] ... Only copy replicas with one of the given PNFS IDs.

-rp=CUSTODIAL|REPLICA|OUT-
PUT

Only copy replicas with the given retention policy.

-size=n|[n]..[m] Only copy replicas with size n, or a size within the given, possibly
open-ended, interval.

dCache Cell Commands

220

-state=cached|precious Only copy replicas in the given state.

-sticky[=owner[,owner...]] Only copy sticky replicas. Can optionally be limited to the list
of owners. A sticky flag for each owner must be present for the
replica to be selected.

-storage=class Only copy replicas with the given storage class.

-concurrency=concurrency Specifies how many concurrent transfers to perform. Defaults to
1.

-order=[-]size|[-]lru Sort transfer queue. By default transfers are placed in ascending
order, that is, smallest and least recently used first. Transfers are
placed in descending order if the key is prefixed by a minus sign.
Failed transfers are placed at the end of the queue for retry re-
gardless of the order. This option cannot be used for permanent
jobs. Notice that for pools with a large number of files, sorting
significantly increases the initialization time of the migration job.

size Sort according to file size.

lru Sort according to last access time.

-pins=move|keep Controls how sticky flags owned by the PinManager are han-
dled:

move Ask PinManager to move pins to the target pool.

keep Keep pins on the source pool.

-smode=same|cached|
precious|remov-
able|delete[+owner[(lifetime)] ...]

Update the local replica to the given mode after transfer:

same does not change the local state (this is the de-
fault).

cached marks it cached.

precious marks it precious.

removable marks it cached and strips all existing sticky flags
exluding pins.

delete deletes the replica unless it is pinned.
An optional list of sticky flags can be specified. The lifetime is
in seconds. A lifetime of 0 causes the flag to immediately expire.
Notice that existing sticky flags of the same owner are overwrit-
ten.

-tmode=same|cached|
precious[+owner[(lifetime)]...]

Set the mode of the target replica:

same applies the state and sticky bits excluding pins of
the local replica (this is the default).

cached marks it cached.

precious marks it precious.

dCache Cell Commands

221

An optional list of sticky flags can be specified. The lifetime is
in seconds.

-verify Force checksum computation when an existing target is updated.

-eager Copy replicas rather than retrying when pools with existing repli-
cas fail to respond.

-exclude=pool[,pool...] Exclude target pools. Single character (?) and multi character (*)
wildcards may be used.

-exclude-when=expression Exclude target pools for which the expression evaluates to true.
The expression may refer to the following constants:

source.name or target.name pool name

source.spaceCost or
target.spaceCost

space cost

source.cpuCost or target.cpuCost cpu cost

source.free or target.free free space in bytes

source.total or target.total total space in bytes

source.removable or
target.removable

removable space in bytes

source.used or target.used used space in bytes

-include=pool[,pool...] Only include target pools matching any of the patterns. Single
character (?) and multi character (*) wildcards may be used.

-include-when=expression Only include target pools for which the expression evaluates to
true. See the description of -exclude-when for the list of allowed
constants.

-refresh=time Specifies the period in seconds of when target pool information
is queried from the pool manager. The default is 300 seconds.

-select=proportional|best|random Determines how a pool is selected from the set of target pools:

proportional selects a pool with a probability inversely
proportional to the cost of the pool.

best selects the pool with the lowest cost.

random selects a pool randomly.
The default is proportional.

-target=pool|pgroup|link Determines the interpretation of the target names. The default is
’pool’.

-pause-when=expression Pauses the job when the expression becomes true. The job con-
tinues when the expression once again evaluates to false. The fol-
lowing constants are defined for this pool:

dCache Cell Commands

222

queue.files The number of files remaining to be
transferred.

queue.bytes The number of bytes remaining to be
transferred.

source.name Pool name.

source.spaceCost Space cost.

source.cpuCost CPU cost.

source.free Free space in bytes.

source.total Total space in bytes.

source.removable Removable space in bytes.

source.used Used space in bytes.

targets The number of target pools.

-permanent Mark job as permanent.

-stop-when=expression Terminates the job when the expression becomes true. This option
cannot be used for permanent jobs. See the description of -pause-
when for the list of constants allowed in the expression.

migration info
migration info — Shows detailed information about a migration job.

SYNOPSIS

migration info job

DESCRIPTION

Shows detailed information about a migration job. Possible job states are:

INITIALIZING Initial scan of repository

RUNNING Job runs (schedules new tasks)

SLEEPING A task failed; no tasks are scheduled for 10 seconds

PAUSED Pause expression evaluates to true; no tasks are scheduled for 10 seconds.

STOPPING Stop expression evaluated to true; waiting for tasks to stop.

SUSPENDED Job suspended by user; no tasks are scheduled

CANCELLING Job cancelled by user; waiting for tasks to stop

CANCELLED Job cancelled by user; no tasks are running

dCache Cell Commands

223

FINISHED Job completed

FAILED Job failed. Please check the log file for details.

Job tasks may be in any of the following states:

Queued Queued for execution

GettingLocations Querying PnfsManager for file locations

UpdatingExistingFile Updating the state of existing target file

CancellingUpdate Task cancelled, waiting for update to complete

InitiatingCopy Request send to target, waiting for confirmation

Copying Waiting for target to complete the transfer

Pinging Ping send to target, waiting for reply

NoResponse Cell connection to target lost

Waiting Waiting for final confirmation from target

MovingPin Waiting for pin manager to move pin

Cancelling Attempting to cancel transfer

Cancelled Task cancelled, file was not copied

Failed The task failed

Done The task completed successfully

migration ls
migration ls — Lists all migration jobs.

SYNOPSIS

migration ls

DESCRIPTION

Lists all migration jobs.

migration move
migration move — Moves replicas to other pools.

SYNOPSIS

migration move [options] target...

dCache Cell Commands

224

DESCRIPTION

Moves replicas to other pools. The source replica is deleted. Similar to migration copy, but with different
defaults. Accepts the same options as migration copy. Equivalent to: migration copy -smode=delete
-tmode=same -pins=move

migration suspend
migration suspend — Suspends a migration job.

SYNOPSIS

migration suspend job

DESCRIPTION

Suspends a migration job. A suspended job finishes ongoing transfers, but is does not start any new
transfer.

migration resume
migration resume — Resumes a suspended migration job.

SYNOPSIS

migration resume job

DESCRIPTION

Resumes a suspended migration job.

PoolManager Commands

rc ls
rc ls — List the requests currently handled by the PoolManager

Synopsis
rc ls [regularExpression] [-w]

Description

Lists all requests currently handled by the pool manager. With the option -w only the requests currently
waiting for a response are listed. Only requests satisfying the regular expression are shown.

cm ls
cm ls — List information about the pools in the cost module cache.

dCache Cell Commands

225

Synopsis
cm ls [-r] [-d] [-s] [fileSize]

-r Also list the tags, the space cost, and performance cost as calculated by the cost module for a file
of size fileSize (or zero)

-d Also list the space cost and performance cost as calculated by the cost module for a file of size
fileSize (or zero)

-t Also list the time since the last update of the cached information in milliseconds.

Description

A typical output reads

(PoolManager) admin > cm ls -r -d -t 12312434442
poolName1={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
 (...line continues...) SP={t=2147483648;f=924711076;p=1222772572;r=0;lru=0;{g=20000000;b=0.5}}}
poolName1={Tag={{hostname=hostname}};size=543543543;SC=1.7633947200606475;CC=0.0;}
poolName1=3180
poolName2={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
 (...line continues...) SP={t=2147483648;f=2147483648;p=0;r=0;lru=0;{g=4294967296;b=250.0}}}
poolName2={Tag={{hostname=hostname}};size=543543543;SC=0.0030372862312942743;CC=0.0;}
poolName2=3157

set pool decision
set pool decision — Set the factors for the calculation of the total costs of the pools.

Synopsis
set pool decision [-spacecostfactor=scf] [-cpucostfactor=ccf] [-costcut=cc]

scf The factor (strength) with which the space cost will be included in the total cost.

ccf The factor (strength) with which the performance cost will be included in the total cost.

cc Deprecated since version 5 of the pool manager.

Description

226

Chapter 29. dCache Default Port
Values
Table 29.1.

Port number Description Component

32768 and 32768 is used by the NFS layer within
dCache which is based upon rpc.
This service is essential for rpc.

NFS

1939 and 33808 is used by portmapper which is
also involved in the rpc depen-
dencies of dCache.

portmap

34075 is for postmaster listening to re-
quests for the PostgreSQL data-
base for dCache database func-
tionality.

Outbound for SRM, PnfsDomain,
dCacheDomain and doors; in-
bound for PostgreSQL server.

33823 is used for internal dCache com-
munication.

By default: outbound for all
components, inbound for dCache
domain.

8443 is the SRM port. See Chapter 14,
dCache Storage Resource Man-
ager

Inbound for SRM

2288 is used by the web interface to
dCache.

Inbound for httpdDomain

22223 is used for the dCache admin in-
terface. See the section called
“The Admin Interface”

Inbound for adminDomain

22125 is used for the dCache dCap
protocol.

Inbound for dCap door

22128 is used for the dCache GSId-
Cap .

Inbound for GSIdCap door

Outdated Outdated

227

OUTDATED

OUTDATED

OUTDATED

Chapter 30. Glossary
The following terms are used in dCache.

tertiary storage system A mass storage system which stores data and is connected to the dCache
system. Each dCache pool will write files to it as soon as they have
been completely written to the pool (if the pool is not configured as a
LFS). The tertiary storage system is not part of dCache. However, it is
possible to connect any mass storage system as tertiary storage system
to dCache via a simple interface.

tape backend A tertiary storage system which stores data on magnetic tapes.

Hierarchical Storage Manag-
er (HSM)

See tertiary storage system.

HSM Type The type of HSM which is connected to dCache as a tertiary storage
system. The choice of the HSM type influences the communication be-
tween dCache and the HSM. Currently there are osm and enstore.
osm is used for most HSMs (TSM, HPSS, ...).

Large File Store (LFS) A Large File Store is the name for a dCache instance that is acting as
a filesystem independent to, or in cooperation with, an HSM system.
When dCache is acting as an LFS, files may be stored and later read
without involving any HSM system.

Whether a dCache instance provides an LFS depends on whether there
are pools configured to do so. The LFS option, specified for each pool
within the poollist file, describes how that pool should behave. This
option can take three possible values:

none the pool does not contribute to
any LFS capacity. All newly writ-
ten files are regarded precious and
sent to the HSM backend.

precious Newly create files are regarded as
precious but are not scheduled for
the HSM store procedure. Conse-
quently, these file will only disap-
pear from the pool when deleted
in the namespace.

volatile (or transient) Newly create files are regard-
ed cached and are not sched-
uled for the HSM store procedure.
Though they will never be stored
on tape, these file are part of the
aging procedure and will be re-
moved as soon as new space is
needed.

Outdated Glossary Outdated

228

OUTDATED

OUTDATED

OUTDATED

Note

The volatile lfs
mode is deprecated and
should not be used.

to store Copying a file from a dCache pool to the tertiary storage system.

to restore Copying a file from the tertiary storage system to one of the dCache
pools.

to stage See to restore.

transfer Any kind of transfer performed by a dCache pool. There are store, re-
store, pool to pool (client and server), read, and write transfers. The
latter two are client transfers.
See Also mover.

mover The process/thread within a pool which performs a transfer. Each pool
has a limited number of movers that may be active at any time; if this
limit is reached then further requests for data are queued.

In many protocols, end clients connect to a mover to transfer file con-
tents. To support this, movers must speak the protocol the end client
is using.
See Also transfer.

The dCacheSetup File This is the primary configuration file of a dCache host. It is lo-
cated at $dcache_home/config/dCacheSetup (typically /
etc/dcache/dCacheSetup). Each domain uses the file con-
fig/domainNameSetup which is in fact a symbolic link to con-
fig/dCacheSetup. The config/dCacheSetup file might even
be the same across the hosts of a dCache instance.

Primary Network Interface

poollist File The poollist files are a collection of files in the /etc/dcache di-
rectory. Each poollist file describes the set of pools that should
be available for a given node. These files have a filename like
hostname.poollist, where hostname is the simple hostname
of the node the pools are to run on.

The file consists of one or more lines, with each line describing a pool.

Location Manager The location manager is a cell that instructs a newly started domains to
which domain they should connect. This allows domains to form arbi-
trary network topologies; although, by default, a dCache instance will
form a star topology with the dCacheDomain domain at the centre.

Cell A cell is a collection of Java threads that provide a discrete and simple
service within dCache. Each cell is hosted within a domain.

Cells have an address derived from concatenating their name, the @
symbol and their containing domain name.

Outdated Glossary Outdated

229

OUTDATED

OUTDATED

OUTDATED

Domain A domain is a collection of one or more cells that provide a set of related
services within a dCache instance. Each domain requires its own Java
Virtual Machine. A typical domain might provide external connectivity
(i.e., a door) or manage the pools hosted on a machine.

Each domain has at least one cell, called the System cell and many
tunnel cells for communicating with other Domains. To provide a use-
ful service, a domain will contain other cells that provide specific be-
haviour.

Door Door is the generic name for special cells that provides the first point of
access for end clients to communicate with a dCache instance. There are
different door implementations (e.g., GSIdCap door and GridFTP
door), allowing a dCache instance to support multiple communication
protocols.

A door will (typically) bind to a well-known port number depending
on the protocol the door supports. This allows for only a single door
instance per machine for each protocol.

A door will typically identify which pool will satisfy the end user’s op-
eration and redirect the client to the corresponding pool. In some cases
this is not possible; for example, some protocols (such as GridFTP
version 1) do not allow servers to redirect end-clients, in other cas-
es pool servers may be behind a firewall, so preventing direct access.
When direct end-client access is not possible, the door may act as a data
proxy, streaming data to the client.

By default, each door is hosted in a dedicated domain. This allows easy
control of whether a protocol is supported from a particular machine.

Java Virtual Machine (JVM) Java programs are typically compiled into a binary form called Java
byte-code. Byte-code is comparable to the format that computers un-
derstand native; however, no mainstream processor understands Java
byte-code. Instead compiled Java programs typically require a transla-
tion layer for them to run. This translation layer is called a Java Virtual
Machine (JVM). It is a standardised execution environment that Java
programs may run within. A JVM is typically represented as a process
within the host computer.

Well Known Cell A well-known cell is a cell that registers itself centrally. Within the
admin interface, a well-known cell may be referred to by just its cell
name.

Pinboard The pinboard is a collection of messages describing events within
dCache and is similar to a log file. Each cell will (typically) have its
own pinboard.

Breakeven Parameter

Secondary Network Inter-
face

least recently used (LRU)
File

Outdated Glossary Outdated

230

OUTDATED

OUTDATED

OUTDATED

Default Mover Queue

Namespace The namespace is a core component of dCache. It maps each stored
file to a unique identification number and allows storing of metadata
against either files or directories.

dCache supports two (independent) namespace implementations: pn-
fs and Chimera.

pnfs filesystem pnfs is a filesystem that uses a database to store all information, in-
cluding the contents of files. This filesystem is made available via NFS,
so authorised hosts can mount pnfs and use it like any other file sys-
tem.

dCache may use pnfs as its namespace. Although it is possible to store
file contents in pnfs, dCache does not do this. Instead dCache stores
the file data on one (or more) pools.

pnfs includes some unique additional properties. These include dot
commands, pnfs IDs, levels, directory tags and wormholes.

pnfs dot command To configure and access some of the special features of the pnfs
filesystem, special files may be read, written to or created. These files
all start with a dot (or period) and have one or more parameters after,
each parameter is contained within a set of parentheses; for example,
the file .(tag)(foo) is the pnfs dot command for reading or writ-
ing the foo directory tag value.

Care must be taken when accessing a dot command from a shell. Shells
will often expand parentheses so the filename must be protected against
this; for example, by quoting the filename or by escaping the parenthe-
ses.

pnfs level In pnfs, each file can have up to eight independent contents; these file-
contents, called levels, may be accessed independently. dCache will
store some file metadata in levels 1 and 2, but dCache will not store
any file data in pnfs.

pnfs directory tag pnfs includes the concept of tags. A tag is a keyword-value pair as-
sociated with a directory. Subdirectories inherit tags from their parent
directory. New values may be assigned, but tags cannot be removed.
The dot command .(tag)(foo) may be used to read or write tag
foo’s value. The dot command .(tags)() may be read for a list of
all tags in that file’s subdirectory.

More details on directory tags are given in the section called “Directory
Tags”.

pnfs ID Each component (file, directory, etc) in a pnfs instance has a unique
ID: a 24-digit hexadecimal number. This unique ID is used in dCache
to refer to files without knowing the component’s name or in which
directory the component is located.

More details on pnfs IDs are given in the section called “pnfsIDs”.

Outdated Glossary Outdated

231

OUTDATED

OUTDATED

OUTDATED

Pool to Pool Transfer A pool-to-pool transfer is one where a file is transferred from one
dCache pool to another. This is typically done to satisfy a read request,
either as a load-balancing technique or because the file is not available
on pools that the end-user has access.

Storage Class The storage class is a string of the form

 StoreName:StorageGroup@type-of-storage-system

containing exactly one @-symbol.

• StoreName:StorageGroup is a string describing the storage
class in a syntax which depends on the storage system.

• type-of-storage-system denotes the type of storage system
in use.

In general use type-of-storage-system=osm.

A storage class is used by a tertiary storage system to decide where to
store the file (i.e. on which set of tapes). dCache can use the storage
class for a similar purpose, namely to decide on which pools the file
can be stored.

batch File A batch file describes which cells in a domain are to be started and with
what options. They typically have filenames from combining the name
of a domain with .batch; for example, the dCacheDomain domain
has a corresponding batch file dCache.batch

Although the cells in a domain may be configured by altering the cor-
responding batch file, most typical changes can be altered by editing
the dCacheConfig file and this is the preferred method.

Context

Wormhole A wormhole is a feature of the pnfs filesystem. A wormhole is a file
that is accessible in all directories; however, the file is not returned
when scanning a directory(e.g., using the ls command).

More details on wormholes are given in the section called “Global Con-
figuration with Wormholes”.

Chimera Chimera is a namespace implementation that is similar to pnfs but
provides better integration with a relational database. Because of this,
it allows additional functionality to be added, so some dCache features
require a chimera namespace.

Many pnfs features are available in Chimera, including levels, direc-
tory tags and many of the dot commands.

Chimera ID A Chimera ID is a 36 hexadecimal digit that uniquely defines a file or
directory. It’s equivalent to a pnfs ID.

Outdated Glossary Outdated

232

OUTDATED

OUTDATED

OUTDATED

Replica It is possible that dCache will choose to make a file accessible from
more than one pool using a pool-to-pool copy. If this happens, then each
copy of the file is a replica.

A file is independent of which pool is storing the data whereas a replica
is uniquely specified by the pnfs ID and the pool name it is stored on.

Precious Replica A precious replica is a replica that should be stored on tape.

Cached Replica A cached replica is a replica that should not be stored on tape.

Replica Manager The replica manager keeps track of the number of replicas of each file
within a certain subset of pools and makes sure this number is always
within a specified range. This way, the system makes sure that enough
versions of each file are present and accessible at all times. This is espe-
cially useful to ensure resilience of the dCache system, even if the hard-
ware is not reliable. The replica manager cannot be used when the sys-
tem is connected to a tertiary storage system. The activation and config-
uration of the replica manager is described in Chapter 7, The replica
Service (Replica Manager).

Storage Resource Manager
(SRM)

An SRM provides a standardised webservice interface for managing a
storage resource (e.g. a dCache instance). It is possible to reserve space,
initiate file storage or retrieve, and replicate files to another SRM. The
actual transfer of data is not done via the SRM itself but via any pro-
tocol supported by both parties of the transfer. Authentication and au-
thorisation is done with the grid security infrastructure. dCache comes
with an implementation of an SRM which can turn any dCache instance
into a grid storage element.

pnfs Companion The pnfs companion is a (database) table that stores dCache specific
information; specifically, on which pools a file may be found. dCache
can operate without a companion and will store file location informa-
tion within a level.

Storing replica location information in the companion database greatly
improves the performance of dCache as the location information is of-
ten queried by the pool manager.

Although a companion database may be used with Chimera, doing so
provides no performance improvements and is not recommended.

Billing/Accounting Accounting information is either stored in a text file or in a PostgreSQL
database by the billing cell usually started in the httpdDomain
domain. This is described in Chapter 24, Accounting.

Pool Manager The pool manager is the cell running in the dCacheDomain domain.
It is a central component of a dCache instance and decides which pool
is used for an incoming request.

Cost Module The cost module is a Java class responsible for combining the different
types of cost associated with a particular operation; for example, if a file
is to be stored, the cost module will combine the storage costs and CPU
costs for each candidate target pool. The pool manager will choose the
candidate pool with the least combined cost.

Outdated Glossary Outdated

233

OUTDATED

OUTDATED

OUTDATED

Pool Selection Unit The pool selection unit is a Java class responsible for determining the
set of candidate pools for a specific transaction. A detailed account of
its configuration and behaviour is given in the section called “The Pool
Selection Mechanism”.

Pin Manager The pin manager is a cell by default running in the utility domain.
It is a central service that can “pin” files to a pool for a certain time. It
is used by the SRM to satisfy prestage requests.

Space Manager The (SRM) Space Manager is a cell by default running in the srm do-
main. It is a central service that records reserved space on pools. A space
reservation may be either for a specific duration or never expires. The
Space Manager is used by the SRM to satisfy space reservation requests.

Pool A pool is a cell responsible for storing retrieved files and for providing
access to that data. Data access is supported via movers. A machine
may have multiple pools, perhaps due to that machine’s storage being
split over multiple partitions.

A pool must have a unique name and all pool cells on a particular
machine are hosted in a domain that derives its name from the host
machine’s name.

The list of directories that are to store pool data are found in the pool-
list File, which is located on the pool node.

sweeper A sweeper is an activity located on a pool. It is responsible for delet-
ing files on the pool that have been marked for removal. Files can be
marked for removal because their corresponding namespace entry has
been deleted or because the local file is a cache copy and more disk
space is needed.

HSM sweeper The HSM sweeper, if enabled, is a component that is responsible for
removing files from the HSM when the corresponding namespace entry
has been removed.

cost The pool manager determines the pool used for storing a file by calcu-
lating a cost value for each available pool. The pool with the lowest
cost is used. The costs are calculated by the cost module as described
in . The total cost is a linear combination of the I.e.,

where ccf and scf are configurable with the command set pool de-
cision.

performance cost See Also gl-cost.

space cost See Also gl-cost.

	The dCache Book
	Table of Contents
	Preface
	Part I. Getting started
	Chapter 1. Introduction
	Chapter 2. Installing dCache
	Chapter 3. Getting in Touch with dCache

	Part II. Configuration of dCache
	Chapter 4. Chimera
	Chapter 5. pnfs
	Chapter 6. The Cell Package
	Chapter 7. The replica Service (Replica Manager)
	Chapter 8. The poolmanager Service
	Chapter 9. The dCache Tertiary Storage System Interface
	Chapter 10. File Hopping
	Chapter 11. dCache Partitioning
	Chapter 12. Authorization in dCache
	Chapter 13. dCache as xRootd-Server
	Chapter 14. dCache Storage Resource Manager
	Chapter 15. The statistics Service
	Chapter 16. dCache Webadmin-Interface
	Chapter 17. ACLs in dCache
	Chapter 18. GLUE Info Provider
	Chapter 19. Stage Protection

	Part III. Cookbook
	Chapter 20. dCache Clients.
	Chapter 21. Pool Operations
	Chapter 22. PostgreSQL and dCache
	Chapter 23. Complex Network Configuration
	Chapter 24. Accounting
	Chapter 25. Protocols
	Chapter 26. Advanced Tuning

	Part IV. Reference
	Chapter 27. dCache Clients
	Chapter 28. dCache Cell Commands
	Chapter 29. dCache Default Port Values
	Chapter 30. Glossary

