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Abstract

The dCache Book is the guide for administrators of dCache systems. The first part describes the installation of a
simple single-host dCache instance. The second part describes the components of dCache and in what ways they can
be configured. This is the place for finding information about the role and functionality of components in dCache as
needed by an administrator. The third part contains solutions for several problems and tasks which might occur during
operating of a dCache system. Finally, the last two parts contain a glossary and a parameter and command reference.
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In this part is intended for people who are new to dCache. It gives an introduction to dCache, including how
configure a simple setup, and details some simple and routine administrative operations.
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Chapter 1. Introduction
dCache is a distributed storage solution. It organises storage across computers so the combined storage can
be used without the end-users being aware of on precisely which computer their data is stored; end-users
see simply a large amount of storage.

Because end-users need not know on which computer their data is stored, their data can be migrated from
one computer to another without any interruption of service. This allows dCache storage computers to be
taken out of service or additional machines (with additional storage) to be added without interrupting the
service the end-users enjoy.

dCache supports requesting data from a tertiary storage system. A tertiary storage system typically uses a
robotic tape system, where data is stored on a tape from a library of available tapes, which must be loaded
and unloaded using a tape robot. Tertiary storage systems typically have a higher initial cost, but can be
extended cheaply by added additional tapes. This results in tertiary storage systems being popular where
large amounts of data must be read.

dCache also provides many transfer protocols (allowing users to read and write to data). These have a modu-
lar deployment, allowing dCache to support expanded capacity by providing additional front-end machines.

Another performance feature of dCache is hot-spot data migration. In this process, dCache will detect when a
few file are being requested very often. If this happens, dCache can make duplicate copies of the popular files
on other computers. This allows the load to be spread across multiple machines, so increasing throughput.

The flow of data within dCache can also be carefully controlled. This is especially important for large sites as
chaotic movement of data may lead to suboptimal usage; instead, incoming and outgoing data can be mar-
shaled so they use designated resources; allowing better throughput and guaranteeing end-user experience.

dCache provides a comprehensive administrative interface for configuring the dCache instance. This is de-
scribed in the later sections of this book.

Cells and Domains
dCache, as distributed storage software, can provide a coherent service using multiple computers or nodes
(the two terms are used interchangeable). Although dCache can provide a complete storage solution on a
single computer, one of its strengths is the ability to scale by spreading the work over multiple nodes.

A cell is dCache’s most fundamental executable building block. Even a small dCache deployment will have
many cells running. Each cell has a specific task to perform and most will interact with other cells to achieve
it.

Cells can be grouped into common types; for example, pools, doors. Cells of the same type behave in a
similar fashion and have higher-level behaviour (such as storing files, making files available). Later chapters
will describe these different cell types and how they interact in more detail.

There are only a few cells where (at most) only a single instance is required. The majority of cells within a
dCache instance can have multiple instances and dCache is designed to allow load-balancing over these cells.

A domain is a container for running cells. Each domain runs in its own Java Virtual Machine (JVM) instance,
which it cannot share with any other domain. In essence, a domain is a JVM with the additional functionality
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necessary to run cells (such as system administration and inter-cell communication). Since domains running
on the same node and each have an independent JVM, they share the node’s resources such as memory,
available CPU and network bandwidth.

dCache comes with a set of domain definitions, each specifying a useful set of cells to run within that domain
to achieve a certain goal. These goals include storing data, providing a front-end to the storage, recording
filenames, and so on. The list of cells to run within these domains are recommended deployments: the vast
majority of dCache deployments do not need to alter these lists.

A node is free to run multiple domains, provided there’s no conflicting requirement from the domains for
exclusive access to hardware. A node may run a single domain; but, typically a node will run multiple
domains. The choice of which domains to run on which nodes will depend on expected load of the dCache
instance and on the available hardware. If this sounds daunting, don’t worry: starting and stopping a domain
is easy and migrating a domain from one node to another is often as easy as stopping the domain on one
node and starting it on another.

dCache is scalable storage software. This means that (in most cases) the performance of dCache can be
improved by introducing new hardware. Depending on the performance issue, the new hardware may be
used by hosting a domain migrated from a overloaded node, or by running an additional instance of a domain
to allow load-balancing.

Most cells communicate in such a way that they don’t rely on in which domain they are running. This
allows a site to move cells from one domain to another or to create new domain definitions with some subset
of available cells. Although this is possible, it is rare that redefining domains or defining new domains is
necessary. Starting or stopping domains is usually sufficient for managing load.

Figure 1.1. The dCache Layer Model
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The layer model shown in Figure 1.1, “The dCache Layer Model” gives an overview of the architecture of
the dCache system.
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Chapter 2. Installing dCache
Michael Ernst

Patrick Fuhrmann

Mathias de Riese

The first section describes the installation of a fresh dCache instance using RPM files downloaded from the
dCache home-page [http://www.dcache.org]. It is followed by a guide to upgrading an existing installation.
In both cases we assume standard requirements of a small to medium sized dCache instance without an
attached tertiary storage system. The third section contains some pointers on extended features.

Installing a Single Node dCache Instance
In the following the installation of a single node dCache instance will be described. The Chimera name space
provider, some management components, and the SRM need a PostgreSQL server installed. We recommend
running this PostgreSQL on the local node. The first section describes the configuration of a PostgreSQL
server. After that the installation of Chimera and of the dCache components will follow. During the whole
installation process root access is required.

Prerequisites
In order to install dCache the following requirements must be met:

• An RPM-based Linux distribution is required for the following procedure. For Debian derived systems
the RPM may be converted to a DEB using alien. Solaris is supported using either the Solaris package
or the tarball.

• dCache 1.9 requires Java 1.5 or 1.6 SDK. We recommend Java 1.6. It is recommended to use the newest
Java release available within the release series used.

• PostgreSQL must be installed and running. See the section called “Installing a PostgreSQL Server” for
more details. It is strongly recommended to use version 8 or higher.

Installation of the dCache Software
The RPM packages may be installed right away, for example using the command:

[root] # rpm -ivh dcache-server-version-release.i386.rpm
[root] # rpm -ivh dcache-client-version-release.i386.rpm

The actual sources lie at http://www.dcache.org/downloads.shtml. To install for example Version 1.9.4-2
of the server you would use this:

[root] # rpm -ivh http://www.dcache.org/downloads/1.9/dcache-server-1.9.4-2.noarch.rpm

The Client can be found in the download-section of the above url, too.

http://www.dcache.org
http://www.dcache.org
http://www.dcache.org
http://www.dcache.org/downloads.shtml
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Readying the PostgreSQL server
You must configure PostgreSQL for use by dCache and create the necessary PostgreSQL user accounts and
database structure. This section describes how to do this.

Configuring the PostgreSQL server

Using a PostgreSQL server with dCache places a number of requirements on the database. This section
describes what configuration is necessary to ensure PostgreSQL operates so dCache can use it.

Restarting PostgreSQL

If you have edited PostgreSQL configuration files, you must restart PostgreSQL for those changes
to take effect. On many systems, this can be done with the following command:

[root] # /etc/init.d/postgresql restart

Enabling TCP connections

Important
For Versions of PostgreSQL newer than 8.0 the TCP connections are already enabled and this section
has to be ignored.

When connecting to PostgreSQL, dCache will always use TCP connections. So, for dCache to use Post-
greSQL, support for TCP sockets must be enabled. We realize UNIX domain sockets are easier to work with
from a security point of view, however there is no way to use UNIX domain sockets from a Java application.

In contrast to dCache, the PostgreSQL stand-alone client application psql can connect using either a TCP
socket or via a UNIX domain socket. Because of this, it is common for PostgreSQL to disable TCP sockets by
default, requiring the admin to explicitly configure PostgreSQL so connecting via a TCP socket is supported.

To enable TCP sockets, edit the PostgreSQL configuration file postgresql.conf. This is often
found in the /var/lib/pgsql/data, but may be located elsewhere. You should ensure that the line
tcpip_socket is set to true; for example:

tcpip_socket = true

Enabling local trust

Perhaps the simplest configuration is to allow password-less access to the database and the following doc-
umentation assumes this is so.

To allow local users to access PostgreSQL without requiring a password, ensure the file pg_hba.conf,
usually located in /var/lib/pgsql/data, contains the following lines.

local   all         all                        trust
host    all         all         127.0.0.1/32   trust
host    all         all         ::1/128        trust



Installing dCache

7

Note

Please note it is also possible to run dCache with all PostgreSQL accounts requiring passwords.

Configuring Chimera

Chimera is a library providing a hierarhical name space with associated meta data. Where pools in dCache
store the content of files, Chimera stores the names and meta data of those files. Chimera itself stores the
data in a relational database. We will use PostgreSQL in this tutorial.

Note

dCache used to use another name space implementation called pnfs. pnfs is still available, we
do however recommend that new installations use Chimera.

Initialize the database

Create the Chimera user and database and add the Chimera-specific tables and stored procedures:

[root] # createdb -U postgres chimera
CREATE DATABASE
                
[root] # createuser -U postgres --no-superuser --no-createrole --createdb --pwprompt chimera
Enter password for new role:
Enter it again:
CREATE ROLE

[root] # psql -U chimera chimera -f /opt/d-cache/libexec/chimera/sql/create.sql
psql:/opt/d-cache/libexec/chimera/sql/create.sql:23: NOTICE:  CREATE TABLE / PRIMARY KEY will create
implicit index "t_inodes_pkey" for table "t_inodes"
CREATE TABLE
psql:/opt/d-cache/libexec/chimera/sql/create.sql:35: NOTICE:  CREATE TABLE / PRIMARY KEY will create
implicit index "t_dirs_pkey" for table "t_dirs"
CREATE TABLE
psql:/opt/d-cache/libexec/chimera/sql/create.sql:45: NOTICE:  CREATE TABLE / PRIMARY KEY will create
implicit index "t_inodes_data_pkey" for table "t_inodes_data"
many more like this...
INSERT 0 1
many more like this...
INSERT 0 1
CREATE INDEX
CREATE INDEX
psql:/opt/d-cache/libexec/chimera/sql/create.sql:256: NOTICE:  CREATE TABLE / PRIMARY KEY will create
implicit index "t_storageinfo_pkey" for table "t_storageinfo"
CREATE TABLE
psql:/opt/d-cache/libexec/chimera/sql/create.sql:263: NOTICE:  CREATE TABLE / PRIMARY KEY will create
implicit index "t_access_latency_pkey" for table "t_access_latency"
CREATE TABLE
psql:/opt/d-cache/libexec/chimera/sql/create.sql:270: NOTICE:  CREATE TABLE / PRIMARY KEY will create
implicit index "t_retention_policy_pkey" for table "t_retention_policy"
CREATE TABLE
psql:/opt/d-cache/libexec/chimera/sql/create.sql:295: NOTICE:  CREATE TABLE / PRIMARY KEY will create
implicit index "t_locationinfo_pkey" for table "t_locationinfo"
CREATE TABLE
psql:/opt/d-cache/libexec/chimera/sql/create.sql:311: NOTICE:  CREATE TABLE / PRIMARY KEY will create
implicit index "t_locationinfo_trash_pkey" for table "t_locationinfo_trash"
CREATE TABLE
CREATE INDEX
psql:/opt/d-cache/libexec/chimera/sql/create.sql:332: NOTICE:  CREATE TABLE / PRIMARY KEY will create
implicit index "t_acl_pkey" for table "t_acl"
CREATE TABLE
CREATE INDEX
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[root] # createlang -U postgres plpgsql chimera
[root] # psql -U chimera chimera -f /opt/d-cache/libexec/chimera/sql/pgsql-procedures.sql
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE TRIGGER
CREATE FUNCTION
CREATE TRIGGER
CREATE SEQUENCE
CREATE FUNCTION
CREATE TRIGGER

Database connection settings can be customized in /opt/d-cache/config/chimera-config.xml
Specifically you should change the user to “chimera”.

<?xml version="1.0"?>
<config>
        <db fsid="0" url="jdbc:postgresql://localhost/chimera?prepareThreshold=3" drv="org.postgresql
.Driver" user="chimera" pass="" dialect="PgSQL" />
        <nfs>
                <port>2049</port>
                <logLevel>0</logLevel>
                <logFile>/tmp/himera.log</logFile>
        </nfs>
</config>

Mounting Chimera through NFS

Although most components in dCache access the Chimera database directly, some rely on a mounted file
system for access. The mounted file system is also nice for administrative access. This offers the opportunity
to use OS-level tools like ls and mkdir for Chimera. However, direct I/O-operations like cp are not possible,
since the NFSV3 interface provides the namespace part only. This section describes how to start the Chimera
NFS3 server and mount the name space.

Chimera NFS server uses /etc/exports file to manage exports. So it has to exist or be created. The
typical exports file looks like this:

/ localhost(rw)
/pnfs
# or
# /pnfs *.my.domain(rw)

Since Chimera is coupled with dCache it uses the same configuration file and won’t start without it. So copy
the /opt/d-cache/etc/dCacheSetup.template to /opt/d-cache/config/dCacheSet-
up.

Note

On some linux distributions you might have to switch the portmap daemon off before starting
chimera:

[root] # /etc/init.d/portmap stop
Stopping portmap: portmap

Start it via script:
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[root] # /opt/d-cache/libexec/chimera/chimera-nfs-run.sh start

To automate the launching of that script at startup time, link to it from /etc/init.d/. Then announce
it to chkconfig:

[root] # chkconfig --add chimera-nfs-run.sh
[root] # chkconfig chimera-nfs-run.sh on

First we create the root of the Chimera namespace, called ’pnfs’ for legacy reasons.

[root] # /opt/d-cache/libexec/chimera/chimera-cli.sh Mkdir /pnfs

Now we need to add directory tags. For more information on tags see the section called “Directory Tags”.:

[root] # /opt/d-cache/libexec/chimera/chimera-cli.sh Mkdir /pnfs/your domain
[root] # /opt/d-cache/libexec/chimera/chimera-cli.sh Mkdir /pnfs/your domain/data
[root] # echo "chimera" | /opt/d-cache/libexec/chimera/chimera-cli.sh Writetag /pnfs/your domain
/data sGroup
[root] # echo "StoreName sql" | /opt/d-cache/libexec/chimera/chimera-cli.sh Writetag /pnfs/your do
main/data OSMTemplate

If you plan to use dCap with mounted file system instead of the URL-syntax (e.g. dccp /pnfs/desy.de/
data/file1 /tmp/file1), we need to mount the root of Chimera locally (remote mounts are not al-
lowed yet). This will allow us to establish wormhole files so dCap clients can discover the dCap doors.

[root] # mount localhost:/ /mnt
[root] # mkdir /mnt/admin/etc/config/dCache
[root] # touch /mnt/admin/etc/config/dCache/dcache.conf
[root] # touch /mnt/admin/etc/config/dCache/'.(fset)(dcache.conf)(io)(on)'
[root] # echo "door host:port" > /mnt/admin/etc/config/dCache/dcache.conf

The default values for ports can be found in Chapter 31, dCache default port values. They can be altered
in /opt/d-cache/config/dCacheSetup

The configuration is done now, so unmount Chimera:

[root] # umount /mnt

Please note that whenever you need to change the configuration, you have to remount the root local-
host:/ to a temporary location like /mnt.

The “user's view” of Chimera is automatically mounted by the dCache init script. You have to make sure
that the mountpoint is created on the machine (/pnfs). Chimera can be mounted manually with:

[root] # mkdir /pnfs
[root] # mount localhost:/pnfs /pnfs

Creating users and databases for dCache

The dCache components will access the database server with the user srmdcache which can be created with
the createuser; for example:
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[root] # createuser -U postgres --no-superuser --no-createrole --createdb --pwprompt srmdcache

Several management components running on the head node as well as the SRM will use the database dcache
for state information:

[root] # createdb -U srmdcache dcache

There might be several of these on several hosts. Each is used by the dCache components running on the
respective host.

[root] # createdb -U srmdcache companion
[root] # psql -U srmdcache companion -f /opt/d-cache/etc/psql_install_companion.sql

If the resilience feature provided by the replica manager is used, the database “replicas” has to be prepared
on the head node with the command:

[root] # createdb -U srmdcache replicas
[root] # psql -U srmdcache replicas -f /opt/d-cache/etc/psql_install_replicas.sql

Note

Note that the disk space will at least be cut in half if the replica manager is used.

If the billing information should also be stored in a database (in addition to files) the database billing has
to be created:

[root] # createdb -U srmdcache billing

However, we strongly advise against using the same database server for Chimera and the billing information.
For how to configure the billing to write into this database, see below.

Installing dCache Components

The main configuration file of a dCache instance is /opt/d-cache/config/dCacheSetup. Set the
variable java to the binary of the Java VM and the variable serviceLocatorHost to the hostname
of the single node running dCache.

Use the templates of the configuration files found in /opt/d-cache/etc/ to create the following files.

The installation and start-up scripts use the information in /opt/d-cache/etc/node_config. First
copy it from the template. For a setup with a single node, set NODE_TYPE to “admin”. To enable doors
on this node, add the respective doors to SERVICES, for instance “dcap” or “gridftp”. Set NAMESPACE
to “chimera”.

For authorization of grid users the file /opt/d-cache/etc/dcache.kpwd is needed. You can simply
copy the template that is in the same directory. Note that it may be generated from the standard /etc/



Installing dCache

11

grid-security/grid-mapfile with the tool grid-mapfile2dcache-kpwd which is distribut-
ed with the WLCG software.

We proceed by finalising the initial configuration by executing /opt/d-cache/install/install.sh, for example:

[root] # /opt/d-cache/install/install.sh
INFO:Skipping ssh key generation

 Checking MasterSetup  ./config/dCacheSetup O.k.

   Sanning dCache batch files

    Processing adminDoor
    Processing chimera
    Processing dCache
    Processing dir
    Processing door
    Processing gPlazma
    Processing gridftpdoor
    Processing gsidcapdoor
    Processing httpd
    Processing info
    Processing infoProvider
    Processing lm
    Processing maintenance
    Processing chimera
    Processing pool
    Processing replica
    Processing srm
    Processing statistics
    Processing utility
    Processing xrootdDoor

 Checking Users database .... Ok
 Checking Security       .... Ok
 Checking JVM ........ Ok
 Checking Cells ...... Ok
 dCacheVersion ....... Version production-1-9-3-1
        

No pools have been created on the node yet. Adding pools to a node is a two step process:

1. The directory layout of the pool is created and filled with a skeleton configuration using dcache pool
create poolSize poolDirectory, where poolDirectory is the full path to the directory which
will contain the data files as well as some of the configuration of the pool, and poolSize is the size of the
pool, specified in bytes or with a M, G, or T suffix (for mibibytes, gibibytes and tibibytes, respectively).

Make sure that there is always enough space under poolDirectory. Be aware that only pure data
content is counted by dCache. Leave enough room for configuration files and filesystem overhead.

Creating a pool does not modify the dCache configuration.

2. The pool is given a unique name and added to the dCache configuration using dcache pool add pool-
Name poolDirectory, where poolDirectory is the directory in which the pool was created and
poolName is a name for the pool. The name must be unique throughout the whole dCache installation,
not just on the node.

Adding a pool to a configuration does not modify the pool or the data in it and can thus safely be undone
or repeated.
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Note

The default gap for poolsizes is 4GiB. This means you should make a bigger pool than 4GiB oth-
erwise you would have to change this gap in the dCache admin tool. See the example below. See
also the section called “The Admin Interface”.

(local) admin > cd poolName
(poolname) admin > set gap 2G
(poolname) admin > save

An example may help to clarify the use of these commands:

[root] # /opt/d-cache/bin/dcache pool create 500G /q/pool1
Created a 500 GiB pool in /q/pool1. The pool cannot be used until it has
been added to a domain. Use 'pool add' to do so.

Please note that this script does not set the owner of the pool directory.
You may need to adjust it.
[root] # /opt/d-cache/bin/dcache pool add myFirstPool /q/pool1/

Added pool myFirstPool in /q/pool1 to dcache-vmDomain.

The pool will not be operational until the domain has been started. Use
'start dcache-vmDomain' to start the pool domain.
[user] $ /opt/d-cache/bin/dcache pool ls
Pool        Domain                       Size   Free Path
myFirstPool dcache-vmDomain               500    550 /q/pool1
Disk space is measured in GiB.
        

All configured components can now be starting with dcache start, for example:

[root] # /opt/d-cache/bin/dcache start
Starting lmDomain  Done (pid=7514)
Starting dCacheDomain  Done (pid=7574)
Starting pnfsDomain  Done (pid=7647)
Starting dirDomain  Done (pid=7709)
Starting adminDomain  Done (pid=7791)
Starting httpdDomain  Done (pid=7849)
Starting utilityDomain  Done (pid=7925)
Starting gPlazma-dcache-vmDomain  Done (pid=8002)
Starting infoProviderDomain  Done (pid=8081)
Starting dcap-dcache-vmDomain  Done (pid=8154)
Starting gridftp-dcache-vmDomain  Done (pid=8221)
Starting gsidcap-dcache-vmDomain  Done (pid=8296)
Starting dcache-vmDomain  Done (pid=8369)
        

Installing a Multi Node dCache Instance
The previous section decsribed how to install a single node dCache installation. A typically medium-sized
dCache installation will however have a single head node hosting the name space provider and other central
components, and a number of pool nodes. It is common to also use pool nodes as FTP and DCAP doors.

The Chimera file system must be mounted on all nodes running either the SRM or GridFTP. Client nodes
relying on dCap access without using URLs also need to mount Chimera. Pools do not need a mount any-
more. Having a mount on the Chimera/NFS3-server node itself is always a good idea as it eases maintenance.
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To mount the Chimera file system, either modify config/chimera-config.xml such that it points
towards the correct PostgreSQL host and start a local Chimera NFSv3 server locally, or mount the NFS file
system exported from the head node. In the latter case, set NAMESPACE_NODE in etc/node_config
to the host running the Chimera NFSv3 server.

For the head node, follow the description of the previous chapter, but do not create any pools. For pools
and for dCap or GridFTP doors, PostgreSQL is not needed and installation of PostgreSQL can be skipped
on nodes that only hosts these services. Proceed by creating config/dCacheSetup; serviceLoca-
torHost has to be set to the name of the head node. In etc/node_config leave NODE_TYPE empty.
Add any doors you want to start on this node to SERVICES and set NAMESPAE to “chimera”. Run in-
stall/install.sh to finish the installation. Finally, use dcache pool create and dcache pool add to
create and add pools on this node.

Upgrading a dCache Instance
Upgrading to bugfix releases within one version (e.g. from 1.9.3-1 to 1.9.3-2) may be done by shutting down
the server and upgrading the packages with

[root] # rpm -Uvh packageName

Follow this by rerunning install/install.sh. For details on the changes, please refer to the change log on the
download page.
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Chapter 3. Getting in Touch with
dCache
This section is a guide for exploring a newly installed dCache system. The confidence obtained by this
exploration will prove very helpful when encountering problems in the running system. This forms the basis
for the more detailed stuff in the later parts of this book. The starting point is a fresh installation according
to the the section called “Installing a Single Node dCache Instance”.

Checking the Functionality
First, we will get used to the client tools. On the dCache head node, change into the pnfs directory, where
the users are going to store their data:

[user] $ cd /pnfs/site.de/data/
[user] $

The mounted Chimera filesystem is not intended for reading or writing actual data with regular file operations
via the NFS protocol.

Reading and writing data to and from a dCache instance can be done with a number of protocols. After a
standard installation, these protocols are dCap, GSIdCap, and GridFTP. In addition dCache comes with
an implementation of the SRM protocol which negotiates the actual data transfer protocol.

We will first try dCap with the dccp command:

[user] $ export PATH=/opt/d-cache/dcap/bin/:$PATH
[user] $ cd /pnfs/site.de/data/
[user] $ dccp /bin/sh my-test-file
541096 bytes in 0 seconds

This command succeeds if the user user has the Unix rights to write to the current directory /pn-
fs/site.de/data/.

The dccp command also accepts URLs. We can copy the data back using the dccp command and the dCap
protocol but this time describing the location of the file using a URL.

[user] $ dccp dcap://adminNode/pnfs/site.de/data/my-test-file /tmp/test.tmp
541096 bytes in 0 seconds

However, this command only succeeds if the file is world readable. The following shows how to ensure the
file is not world readable and illustrates dccp consequently failing to copy the file.

[user] $ chmod o-r my-test-file
[user] $ dccp dcap://adminNode/pnfs/site.de/data/my-test-file /tmp/test2.tmp
Command failed!
Server error message for [1]: "Permission denied" (errno 2).
Failed open file in the dCache.
Can't open source file : "Permission denied"
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System error: Input/output error

This command did not succeed, because dCap access is unauthenticated and the user is mapped to a non-
existent user in order to determine the access rights. However, you should be able to access the file with
the NFS mount:

[user] $ dccp my-test-file /tmp/test2.tmp
541096 bytes in 0 seconds

If you have a valid grid proxy with a certificate subject which is properly mapped in the configuration file
/opt/d-cache/etc/dcache.kpwd you can also try grid-authenticated access via the GSI-authenti-
cated version of dCap:

[user] $ chgrp yourVO my-test-file
[user] $ export LD_LIBRARY_PATH=/opt/d-cache/dcap/lib/:$LD_LIBRARY_PATH
[user] $ dccp gsidcap://adminNode:22128/pnfs/site.de/data/my-test-file /tmp/test3.tmp
541096 bytes in 0 seconds

Or we let the SRM negotiate the protocol:

[user] $ export PATH=/opt/d-cache/srm/bin/:$PATH
[user] $ srmcp srm://adminNode:8443/pnfs/desy.de/data/my-test-file file:////tmp/test4.tmp
configuration file not found, configuring srmcp
created configuration file in ~/.srmconfig/config.xml

If the dCache instance is registered as a storage element in the LCG/EGEE grid and the LCG user interface
software is available the file can be accessed via SRM:

[user] $ lcg-cp -v --vo yourVO \
srm://dCacheAdminFQN/pnfs/site.de/data/my-test-file \
file:///tmp/test5.tmp
Source URL: srm://dCacheAdminFQN/pnfs/site.de/data/my-test-file
File size: 541096
Source URL for copy: gsiftp://dCacheAdminFQN:2811//pnfs/site.de/data/my-test-file
Destination URL: file:///tmp/test5.tmp
# streams: 1
Transfer took 770 ms

and it can be deleted with the help of the SRM interface:

[user] $ srm-advisory-delete srm://dCacheAdminFQN:8443/pnfs/site.de/data/my-test-file
 srmcp error :  advisoryDelete(User [name=...],pnfs/site.de/data/my-test-file)
Error user User [name=...] has no permission to delete 000100000000000000BAF0C0

This works only if the grid certificate subject is mapped to a user which has permissions to delete the file:

[user] $ chown yourVO001 my-test-file
[user] $ srm-advisory-delete srm://dCacheAdminFQN:8443/pnfs/site.de/data/my-test-file

If the grid functionality is not required the file can be deleted with the NFS mount of the pnfs filesystem:

[user] $ rm my-test-file
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The Web Interface for Monitoring dCache
In the standard configuration the dCache web interface is started on the head node and can be reached via port
2288. Point a web browser to http://adminNode:2288/ [http://headNode:2288/] to get to the main menue
of the dCache web interface. The contents of the web interface are self-explanatory and are the primary
source for most monitoring and trouble-shooting tasks.

The “Cell Services” page displays the status of some important cells of the dCache instance. You might
observe that some cells are marked “OFFLINE”. In general dCache has no knowledge about which cells are
supposed to be online, but for purposes of monitoring, some cells may be hard coded in the file /opt/d-
cache/config/httpd.batch:

#
create diskCacheV111.cells.WebCollectorV3 collector \
    "PnfsManager \
     PoolManager \
     -loginBroker=LoginBroker,srm-LoginBroker \
     -replyObject"
#

Additional cells may be added. To take effect, the httpDomain domain must be restarted by executing

[root] # /opt/d-cache/bin/dcache restart httpd

More information about the domainName.batch will follow in the next section.

The “Pool Usage” page gives a good overview of the current space usage of the whole dCache instance. In
the graphs, free space is marked yellow, space occupied by cached files (which may be deleted when space
is needed) is marked green, and space occupied by precious files, which cannot be deleted. Other states (e.g.,
files which are currently written) are marked purple.

The page “Pool Request Queues” (or “Pool Transfer Queues”) gives information about the number current
requests handled by each pool. “Actions Log” keeps track of all the transfers performed by the pools up
to now.

The remaining pages are only relevant with more advanced configurations: The page “Pools” (or “Pool
Attraction Configuration”) can be used to analyze the current configuration of the pool selection unit in the
pool manager. The remaining pages are relevant only if a tertiary storage system (HSM) is connected to
the dCache instance.

Files
In this section we will have a look at the configuration and log files of dCache.

The dCache software is installed in one directory, normally /opt/d-cache/. All configuration files can
be found here. In the following relative filenames will always be relative to this directory.

In the previous section we have already seen how a domain is restarted:

[root] # /opt/d-cache/bin/dcache restart domainName

http://headNode:2288/
http://headNode:2288/


Getting in Touch with dCache

17

Log files of domains are by default stored in /var/log/domainName.log. We strongly encourage to
configure logrotate to rotate the dCache log files to avoid filling up the log file system. This can typically
be achieved by creating the file /etc/logrotate.d/dcache with the following content:

/var/log/*Domain.log {
    compress
    rotate 100
    missingok
    copytruncate
}

The files config/domainNameSetup contain configuration parameters for the domain. These files are
typically symbolic links to config/dCacheSetup. This is the primary configuration file of dCache.

The only files which are different for each domain are config/domainName.batch. They describe
which cells are started in the domains. Normally, changes in these files should not be necessary. However,
if you need to change something, consider the following:

Since the standard config/domainName.batch files will be overwritten when updating to a newer
version of dCache (e.g. with RPM), it is a good idea to modify only private copies of them. When choosing
a name like config/newDomainName.batch you give the domain the name newDomainName. The
necessary links can be created with

[root] # cd /opt/d-cache/config/
[root] # ../jobs/initPackage.sh

Then the old domain can be stopped and the new one started:

[root] # /opt/d-cache/bin/dache stop domainName
[root] # /opt/d-cache/bin/dcache start newDomainName

More details about domains and cells can be found in Chapter 5, The Cell Package.

The most central component of a dCache instance is the PoolManager cell. It reads additional configu-
ration information from the file config/PoolManager.conf at start-up. However, in contrast to the
config/domainNameSetup files, it is not necessary to restart the domain when changing the file. We
will see an example of this below.

Similar to config/PoolManager.conf, pools read their configuration from poolDir/pool/set-
up at startup.

The Admin Interface
Note

If you attempt to log into the admin interface without generating the ssh-keys you will get an error
message.

[user] $ ssh -c blowfish -p 22223 -l admin headnode.example.org
Connection closed by 192.0.2.11
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See ???.

dCache has a powerful administration interface. It is accessed with the ssh protocol. The server is part of
the adminDoor domain. Connect to it with

[user] $ ssh -c blowfish -p 22223 -l admin headnode.example.org

The initial password is “dickerelch” (which is German for “fat elk”) and you will be greeted by the
prompt

   dCache Admin (VII) (user=admin)

(local) admin >

The password can now be changed with

(local) admin > cd acm
(acm) admin > create user admin
(acm) admin > set passwd -user=admin newPasswd newPasswd
(acm) admin > ..
(local) admin > logoff

This already illustrates how to navigate within the administration interface: Starting from the local prompt
((local) admin >) the command cd takes you to the specified cell (here acm, the access control
manager). There two commands are executed. The escape sequence .. takes you back to the local prompt
and logoff exits the admin shell.

Note that cd only works from the local prompt. If the cell you are trying to access does not exist, the cd
command will not complain. However, trying to execute any command subsequently will result in an error
message “No Route to cell...”. Type .. to return to the (local) admin > prompt.

To create a new user, new-user, set a new password and to give him/her an access to a particular cell (for
example to the PoolManager) run following command sequence:

(local) admin > cd acm
(acm) admin > create user new-user
(acm) admin > set passwd -user=new-user newPasswd newPasswd
(acm) admin > create acl cell.PoolManager.execute
(acm) admin > add access -allowed cell.PnfsManager.execute 

Now you can check the permissions by:

(acm) admin > check cell.PnfsManager.execute new-user
Allowed
(acm) admin > show acl cell.PnfsManager.execute new-user
<noinheritance>
<new-user> -> true

Following commands allow to a particular user an access to every cell:

(acm) admin >  create acl cell.*.execute
(acm) admin > add access -allowed cell.*.execute new-user
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To make an user as powerful as admin (dCache’s equivalent to the root user):

(acm) admin > create acl *.*.*
(acm) admin > add access -allowed *.*.* new-user

All cells know the commands info for general information about the cell and show pinboard for listing the
last lines of the pinboard of the cell. The output of these commands contains useful information for solving
problems. It is a good idea to get aquainted with the normal output in the following cells: PoolManager,
PnfsManager, and the pool cells (e.g., poolHostname_1).

If you want to find out which cells are running on a certain domain, you can issue the command ps in the
System cell of the domain. For example, if you want to list the cells running on the adminDoor, cd to
its System cell and issue the ps command.

(local) admin > cd System@adminDoorDomain
(System@adminDoorDomain) admin > ps
  Cell List
------------------
acm
alm
skm
c-dCacheDomain-101-102
System
c-dCacheDomain-101
RoutingMgr
alm-admin-103
pam
lm

The cells in the domain can be accessed using cd together with the cell-name scoped by the domain-name.
So first, one has to get back to the local prompt, as the cd command will not work otherwise.

(System@adminDoorDomain) admin > ..
(local) admin > cd skm@adminDoorDomain
(skm) admin >

Note

If the cells are well-known, they can be accessed without adding the domain-scope. See Chapter 5,
The Cell Package for more information.

The domains that are running on the dCache-instance, can be viewed in the layout-configuration (see Chap-
ter 2, Installing dCache). Additionally, there is the topo cell, which keeps track of the instance’s domain
topology. If it is running, it can be used to obtain the list of domains the following way:

(local) admin > cd topo
(topo) admin > ls
dirDomain
infoDomain
adminDoorDomain
spacemanagerDomain
utilityDomain
gPlazmaDomain
nfsDomain
dCacheDomain
httpdDomain
statisticsDomain
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namespaceDomain

Note

The topo cell rescans periodically which domains are running, so it can take some time until ls
displays the full domain list.

There also is the command help for listing all commands the cell knows and their parameters. However,
many of the commands are only used for debugging and development purposes. Only commands described
in this documentation should be used for the administration of a dCache system.

The most useful command of the pool cells is rep ls. It lists the files which are stored in the pool by their
pnfs IDs:

000100000000000000001120 <-P---------(0)[0]> 485212 si={myStore:STRING}
000100000000000000001230 <C----------(0)[0]> 1222287360 si={myStore:STRING}

Each file in a pool has one of the 4 primary states: “cached” (<C---), “precious” (<-P--), “from client”
(<--C-), and “from store” (<---S).

Two commands in the pool manager are quite useful: rc ls lists the requests currently handled by the pool
manager. A typical line of output for a read request with an error condition is (all in one line):

000100000000000000001230@0.0.0.0/0.0.0.0 m=1 r=1 [<unknown>]
  [Waiting 08.28 19:14:16]
  {149,No pool candidates available or configured for 'staging'}

As the error message at the end of the line indicates, no pool was found containing the file and no pool could
be used for staging the file from a tertiary storage system.

Finally, cm ls with the option -r gives the information about the pools currently stored in the cost module
of the pool manager. A typical output is:

(PoolManager) admin > cm ls -r
poolName1={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
    (...continues...)   SP={t=2147483648;f=924711076;p=1222772572;r=0;lru=0;{g=20000000;b=0.5}}}
poolName1={Tag={{hostname=hostname}};size=0;SC=0.16221282938326134;CC=0.0;}
poolName2={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
    (...continues...)   SP={t=2147483648;f=2147483648;p=0;r=0;lru=0;{g=4294967296;b=250.0}}}
poolName2microcebus_2={Tag={{hostname=hostname}};size=0;SC=2.7939677238464355E-4;CC=0.0;}

While the first line for each pool gives the information stored in the cache of the cost module, the second
line gives the costs (SC: space cost, CC: performance cost) calculated for a (hypothetical) file of zero size.
For details on how these are calculated and their meaning, see the section called “The Cost Module”.

The ssh admin interface can be used non-interactively by scripts. For this the dCache-internal ssh server
uses public/private key pairs.

The file config/authorized_keys contains one line per user. The file has the same format as
~/.ssh/authorized_keys which is used by sshd. The keys in config/authorized_keys have
to be of type RSA1 as dCache only supports SSH protocol 1. Such a key is generated with
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[user] $ ssh-keygen -t rsa1 -C 'SSH1 key of user'
Generating public/private rsa1 key pair.
Enter file in which to save the key (/home/user/.ssh/identity):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/user/.ssh/identity.
Your public key has been saved in /home/user/.ssh/identity.pub.
The key fingerprint is:
c1:95:03:6a:66:21:3c:f3:ee:1b:8d:cb:46:f4:29:6a SSH1 key of user

The passphrase is used to encrypt the private key (now stored in /home/user/.ssh/identity). If
you do not want to enter the passphrase every time the private key is used, you can use ssh-add to add it to
a running ssh-agent. If no agent is running start it with

[user] $ if [ -S $SSH_AUTH_SOCK ] ; then echo "Already running" ; else eval `ssh-agent` ; fi

and add the key to it with

[user] $ ssh-add
Enter passphrase for SSH1 key of user:
Identity added: /home/user/.ssh/identity (SSH1 key of user)

Now, insert the public key ~/.ssh/identity.pub as a separate line into con-
fig/authorized_keys. The comment field in this line “SSH1 key of user” has to be changed to the
dCache user name. An example file is:

1024 35 141939124(... many more numbers ...)15331 admin

The key manager within dCache will read this file every minute.

Now, the ssh program should not ask for a password anymore. This is still quite secure, since the unencrypted
private key is only held in the memory of the ssh-agent. It can be removed from it with

[user] $ ssh-add -d
Identity removed: /home/user/.ssh/identity (RSA1 key of user)

In scripts, one can use a “Here Document” to list the commands, or supply them to ssh as standard-input
(stdin). The following demonstrates using a Here Document:

#!/bin/sh
#
#  Script to automate dCache administrative activity

outfile=/tmp/$(basename $0).$$.out

ssh -c blowfish -p 22223 admin@adminNode > $outfile << EOF
cd PoolManager
cm ls -r
(more commands here)
logoff
EOF

or, the equivalient as stdin.
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#!/bin/bash
#
#   Script to automate dCache administrative activity.

echo -e 'cd pool_1\nrep ls\n(more commands here)\nlogoff' \
  | ssh -c blowfish -p 22223 admin@adminNode \
  | tr -d '\r' > rep_ls.out

The Graphical User Interface
Instead of using ssh to access the admin interface, the dCache graphical user interface can be used. If
it is not included in the dCache distribution, it can be downloaded from the dCache homepage [http://
www.dcache.org/]. It is started by

[user] $ java -jar org.pcells.jar

First, a new session has to be created with Session → New.... After giving the session a name of your choice,
a login mask appears. The session is configured with the Setup button. The only thing that needs to be
configured is the hostname. After clicking Apply and Quit you are ready to log in. Pressing the right mouse
button clicking Login will scan the dCache instance for domains. Cells can be reached by clicking on their
name and the same commands can be entered as in the SSH login.

The other tabs of the GUI are very useful for monitoring the dCache system.

http://www.dcache.org/
http://www.dcache.org/
http://www.dcache.org/
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Chapter 4. Configuration in pnfs
This chapter gives background information about pnfs, the filesystem, dCache is based on. Only the aspects
of pnfs relevant to dCache will be explained here. A complete set of documentation is available from the
pnfs homepage [http://www-pnfs.desy.de/].

The Use of pnfs in dCache
dCache uses pnfs as a filesystem and for storing meta-data. pnfs is a filesystem not designed for storage of
actual files. Instead, pnfs manages the filesystem hierarchy and standard meta-data of a UNIX filesystem.
In addition, other applications (as for example dCache) can use it to store their meta-data. pnfs keeps the
complete information in a database.

pnfs implements an NFS server. All the meta-data can be accessed with a standard NFS client, like the
one in the Linux kernel. After mounting, normal filesystem operations work fine. However, IO operations
on the actual files in the pnfs will normally result in an error.

As a minimum, the pnfs filesystem needs to be mounted only by the server running the dCache core
services. In fact, the pnfs server has to run on the same system. For details see (has to be written).

The pnfs filesystem may also be mounted by clients. This should be done by

[root] # mount -o intr,hard,rw pnfs-server:/pnfs /pnfs/site.de

(assuming the system is configured as described in the installation instructions). Users may then access the
meta-data with regular filesystem operations, like ls -l, and by the pnfs-specific operations described in the
following sections. The files themselves may then be accessed with the dCap protocol (see dCache Book
Client Access and Protocols).

Mounting the pnfs filesystem is not necessary for client access to the dCache system if URLs are used to
refer to files. In the grid context this is the preferred usage.

Communicating with the pnfs Server
Many configuration parameters of pnfs and the application-specific meta-data is accessed by reading, writ-
ing, or creating files of the form .(command)(para). For example, the following prints the pnfsID of
the file /pnfs/site.de/some/dir/file.dat:

[user] $ cat /pnfs/site.de/any/sub/directory/'.(id)(file.dat)' 
0004000000000000002320B8
[user] $ 

From the point of view of the NFS protocol, the file .(id)(file.dat) in the directory /pn-
fs/site.de/some/dir/ is read. However, pnfs interprets it as the command id with the parameter
file.dat executed in the directory /pnfs/site.de/some/dir/. The quotes are important, because
the shell would otherwise try to interpret the parentheses.

http://www-pnfs.desy.de/
http://www-pnfs.desy.de/
http://www-pnfs.desy.de/
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Some of these command-files have a second parameter in a third pair of parentheses. Note, that files of
the form .(command)(para) are not really files. They are not shown when listing directories with ls.
However, the command-files are listed when they appear in the argument list of ls as in

[user] $ ls -l '.(tag)(sGroup)'
-rw-r--r--   11 root     root            7 Aug  6  2004 .(tag)(sGroup)

Only a subset of file operations are allowed on these special command-files. Any other operation will result
in an appropriate error. Beware, that files with names of this form might accidentally be created by typos.
They will then be shown when listing the directory.

pnfsIDs
Each file in pnfs has a unique 12 byte long pnfsID. This is comparable to the inode number in other
filesystems. The pnfsID used for a file will never be reused, even if the file is deleted. dCache uses the
pnfsID for all internal references to a file.

The pnfsID of the file filename can be obtained by reading the command-file .(id)(filename) in
the directory of the file.

A file in pnfs can be referred to by pnfsID for most operations. For example, the name of a file can be
obtained from the pnfsID with the command nameof as follows:

[user] $ cd /pnfs/site.de/any/sub/directory/
[user] $ cat '.(nameof)(0004000000000000002320B8)'
file.dat

And the pnfsID of the directory it resides in is obtained by:

[user] $ cat '.(parent)(0004000000000000002320B8)'
0004000000000000001DC9E8

This way, the complete path of a file may be obtained starting from the pnfsID. Precisely this is done by
the tool pathfinder:

[user] $ . /usr/etc/pnfsSetup
[user] $ PATH=$PATH:$pnfs/tools
[user] $ cd /pnfs/site.de/another/dir/
[user] $ pathfinder 0004000000000000002320B8
0004000000000000002320B8 file.dat
0004000000000000001DC9E8 directory
000400000000000000001060 sub
000100000000000000001060 any
000000000000000000001080 usr
000000000000000000001040 fs
000000000000000000001020 root
000000000000000000001000 -
000000000000000000000100 -
000000000000000000000000 -
/root/fs/usr/any/sub/directory/file.dat

The first two lines configure the pnfs-tools correctly. The path obtained by pathfinder does not agree with
the local path, since the latter depends on the mountpoint (in the example /pnfs/site.de/). The pnfsID
corresponding to the mountpoint may be obtained with
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[user] $ cat '.(get)(cursor)'
dirID=0004000000000000001DC9E8
dirPerm=0000001400000020
mountID=000000000000000000001080

The dirID is the pnfsID of the current directory and mountID that of the mountpoint. In the example, the
pnfs server path /root/fs/usr/ is mounted on /pnfs/site.de/.

Directory Tags
In the pnfs filesystem, each directory has a number of tags. The existing tags may be listed with

[user] $ cat '.(tags)()'
.(tag)(OSMTemplate)
.(tag)(sGroup)

and the content of a tag can be read with

[user] $ cat '.(tag)(OSMTemplate)'
StoreName myStore

A nice trick to list all tags with their contents is

[user] $ grep "" $(cat ".(tags)()")
.(tag)(OSMTemplate):StoreName myStore
.(tag)(sGroup):STRING

Directory tags may be used within dCache to control which pools are used for storing the files in the directory
(see the section called “The Pool Selection Mechanism”). They might also be used by a tertiary storage
system for similar purposes (e.g. controlling the set of tapes used for the files in the directory).

Even if the directory tags are not used to control the bahaviour of dCache, some tags have to be set for the
directories where dCache files are stored. The installation procedure takes care of this: In the directory /
pnfs/site.de/data/ two tags are set to default values:

[user] $ cd /pnfs/site.de/data/
[user] $ grep "" $(cat ".(tags)()")
.(tag)(OSMTemplate):StoreName myStore
.(tag)(sGroup):STRING

The following directory tags appear in the dCache context:

Directory Tags for dCache

OSMTemplate Contains one line of the form “StoreName storeName” and specifies the name of
the store that is used by dCache to construct the storage class if the HSM type is osm.

hsmType The HSM type is normally determined from the other existing tags. E.g., if the tag
OSMTemplate exists, HSM type osm is assumed. With this tag it can be set explicitly.
An class implementing that HSM type has to exist. Currently the only implementations
are osm and enstore.

sGroup The storage group is also used to construct the storage Class if the HSM type is osm.
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cacheClass The cache class is only used to control on which pools the files in a directory may be
stored, while the storage class (constructed from the two above tags) might also be used
by the HSM. The cache class is only needed if the above two tags are already fixed by
HSM usage and more flexibility is needed.

hsmInstance If not set, the HSM instance will be the same as the HSM type. Setting this tag will only
change the name as used in the storage class and in the pool commands.

There are more tags used by dCache if the HSM type enstore is used.

When creating or changing directory tags by writing to the command-file as in

[user] $ echo 'content' > '.(tag)(tagName)'

one has to take care not to treat the command-files in the same way as regular files, because tags are different
from files in the following aspects:

1. The tagName is limited to 62 characters and the content to 512 bytes. Writing more to the com-
mand-file, will be silently ignored.

2. If a tag which does not exist in a directory is created by writing to it, it is called a primary tag.

Removing a primary tag invalidates this tag. An invalidated tag behaves as if it does not exist. All filesys-
tem IO operations on that tag produce an “File not found” error. However, a lookup operation ( e.g. ls)
will show this tag with a 0 byte size. An invalidated tag can be revalidated with the help of the tool
repairTag.sh in the tools/ directory of the pnfs distribution. It has to be called in the directory where
the primary tag was with the tag name as argument.

3. Tags are inherited from the parent directory by a newly created directory. Changing a primary tag in one
directory will change the tags inherited from it in the same way, even if it is invalidated or revalidated.
Creating a new primary tag in a directory will not create a inherited tag in its subdirectories.

Moving a directory within the pnfs filesystem will not change the inheritance. Therefore, a directory
does not necessarily inherit tags from its parent directory. Removing an inherited tag does not have any
effect.

4. Writing to an inherited tag in the subdirectory will break the inheritance-link. A pseudo-primary tag will
be created. The directories which inherited the old (inherited) tag will inherit the pseudo-primary tag.
A pseudo-primary tag behaves exactly like a primary tag, except that the original inherited tag will be
restored if the pseude-primary tag is removed.

If directory tags are used to control the behaviour of dCache and/or a tertiary storage system, it is a good
idea to plan the directory structure in advance, thereby considering the necessary tags and how they should
be set up. Moving directories should be done with great care or even not at all. Inherited tags can only be
created by creating a new directory.

Global Configuration with Wormholes
pnfs provides a way to distribute configuration information to all directories in the pnfs filesystem. It
can be accessed in a subdirectory .(config)() of any pnfs-directory. It behaves similar to a hardlink.
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In the default configuration this link points to /pnfs/fs/admin/etc/config/. In it are three files:
'.(config)()'/serverId contains the domain name of the site, '.(config)()'/server-
Name the fully qualified name of the pnfs server, and '.(config)()'/serverRoot should contain
“000000000000000000001080 .”.

The dCache specific configuration can be found in '.(config)()'/dCache/dcache.conf. This
file contains one line of the format hostname:port per dCap door which may be used by dCap clients
when not using URLs. The dccp program will choose randomly between the doors listed here.

Normally, reading from files in pnfs is disabled. Therefore it is necessary to switch on I/O access to the
files in '.(config)()'/ by e.g.:

[root] # touch '.(config)()/.(fset)(serverRoot)(io)(on)'

After that, you will notice that the file is empty. Therefore, take care, to rewrite the information.

Deleted Files in pnfs
When a file in the pnfs filesystem is deleted the server stores information about is in the subdirectories
of /opt/pnfsdb/pnfs/trash/. For dCache, the cleaner cell in the pnfsDomain is responsible
for deleting the actual files from the pools asyncronously. It uses the files in the directory /opt/pnfs-
db/pnfs/trash/2/. It contains a file with the pnfs ID of the deleted file as name. If a pool containing
that file is down at the time the cleaner tries to remove it, it will retry for a while. After that, the file /opt/
pnfsdb/pnfs/trash/2/current/failed.poolName will contain the pnfs IDs which have not
been removed from that pool. The cleaner will still retry the removal with a lower frequency.

Access Control
The files /pnfs/fs/admin/etc/exports/hostIP and /pnfs/fs/admin/etc/ex-
ports/netMask..netPart are used to control the host-based access to the pnfs filesystem via mount
points. They have to contain one line per NFS mount point. The lines are made of the following four space-
separated fields fields:

• Mount point for NFS (the part after the colon in e.g. host:/mountpoint)

• The virtual PNFS path which is mounted

• Permission: 0 means all permissions and 30 means disabled I/O.

• Options (should always be nooptions)

In the initial configuration there is one file /pnfs/fs/admin/etc/exports/0.0.0.0..0.0.0.0
containing

/pnfs /0/root/fs/usr/ 30 nooptions

thereby allowing all hosts to mount the part of the pnfs filesystem containing the user data. There also is
a file /pnfs/fs/admin/etc/exports/127.0.0.1 containing
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/fs /0/root/fs 0 nooptions
/admin /0/root/fs/admin 0 nooptions

The first line is the mountpoint used by the admin node. If the pnfs mount is not needed for client opera-
tions (e.g. in the grid context) and if no tertiary storage system (HSM) is connected, the file /pnfs/fs/
admin/etc/exports/0.0.0.0..0.0.0.0 may be deleted. With an HSM, the pools which write
files into the HSM have to mount the pnfs filesystem and suitable export files have to be created.

In general, the user ID 0 of the root user on a client mounting the pnfs filesystem will be mapped to
nobody (not to the user nobody). For the hosts whose IP addresses are the file names in the directory /
pnfs/fs/admin/etc/exports/trusted/ this is not the case. The files have to contain only the
number 15.

The Databases of pnfs
pnfs stores all the information in GNU dbm database files. Since each operation will lock the database file
used globally and since GNU dbm cannot handle database files larger than 2GB, it is advisable to “split” them
sutably to future usage. Each database stores the information of a sub-tree of the pnfs filesystem namespace.
Which database is responsible for a directory and subsequent subdirectories is determined at creation time
of the directory. The following procedure will create a new database and connect a new subdirectory to it.

Each database is handled by a separate server process. The maximum number of servers is set by the variable
shmservers in file /usr/etc/pnfsSetup. Therefore, take care that this number is always higher
than the number of databases that will be used (restart pnfs services, if changed).

Prepare the environment with

[root] # . /usr/etc/pnfsSetup
[root] # PATH=${pnfs}/tools:$PATH

To get a list of currently existing databases, issue

[root] # mdb show
ID Name Type Status Path
-------------------------------
0 admin r enabled (r) /opt/pnfsdb/pnfs/databases/admin
1 data1 r enabled (r) /opt/pnfsdb/pnfs/databases/data1

Choose a new database name databaseName and a location for the database file databaseFilePath
(just a placeholder for the PostgreSQL version of pnfs) and create it with

[root] # mdb create databaseName databaseFilePath

e.g.

[root] # mdb create data2 /opt/pnfsdb/pnfs/databases/data2

Make sure the file databaseFilePath exists with

[root] # touch databaseFilePath
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This might seem a little strange. The reason is that the PostgreSQL version of the pnfs server only uses the
file as reference and stores the actual data in the PostgreSQL server.

In order to refresh database information run

[root] # mdb update
Starting data2

Running command mdb show shows the new database:

[root] # mdb show
ID Name Type Status Path
-------------------------------
0 admin r enabled (r) /opt/pnfsdb/pnfs/databases/admin
1 data1 r enabled (r) /opt/pnfsdb/pnfs/databases/data1
2 data2 r enabled (r) /opt/pnfsdb/pnfs/databases/data2

In the pnfs filesystem tree, create the new directory in the following way

[root] # cd /pnfs/site.de/some/sub/dir/
[root] # mkdir '.(newDbID)(newDirectory)'

where newDbID is the ID of the new database as listed in the output of mdb show and newDirectory
is the name of the new directory. E.g.

[root] # cd /pnfs/desy.de/data/zeus/
[root] # mkdir '.(2)(mcdata)'

The new database does not know anything about the wormhole '.(config)()', yet. For this, the pnfs
ID of the wormhole directory (/pnfs/fs/admin/etc/config/) has to be specified. It can be found
out with

[root] # sclient getroot ${shmkey} 0
0 000000000000000000001000 wormholePnfsId

The last pnfsID is the one of the wormhole directory of the database with ID 0 (already set correctly). Now
you can set this ID with

[root] # sclient getroot ${shmkey} newDbID wormholePnfsId
newDbID 000000000000000000001000 wormholePnfsId

For example, do the following

[root] # sclient getroot ${shmkey} 0
0 000000000000000000001000 0000000000000000000010E0
[root] # sclient getroot ${shmkey} 2 0000000000000000000010E0
2 000000000000000000001000 0000000000000000000010E0

Finally, add directory tags for the new directories. The default tags are added by

[root] # cd /pnfs/site.de/some/sub/dir/newDirectory
[root] # echo 'StoreName myStore' > '.(tag)(OSMTemplate)'
[root] # echo 'STRING' > '.(tag)(sGroup)'
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Chapter 5. The Cell Package
Apart from the pnfs server, all of dCache makes use of the cell package. It is a framework for a distributed
and scalable server system in Java. The dCache system divided into cells which communicate with each
other via messages. Several cells run simultaneously in one domain.

Each domain runs in a separate Java virtual machine and each cell is run as a separate thread therein. The
domains communicate with each other via TCP connections which are established at start-up. In the standard
setup all domains connect with the dCacheDomain which routes all messages to the appropriate domains.
Note, that actual data transfers are not done via these established connections.

At start-up a domain asks the serviceLocatorHost on the serviceLocatorPort (as configured in
config/domainNameSetup) for a domain to connect to. This request is handled by the location man-
ager in the lmDomain In the standard setup it will tell all other domains to connect to the dCacheDomain
and will provide the necessary connection information. A TCP connection between the new domain and the
dCacheDomain will be established.

Within this framework, cells send messages to other cells addressing them in the form
cellName@domainName. This way, cells can communicate without knowledge about the host they run
on. Some cells are well known, i.e. they can be addressed just by their name without @domainName. Evi-
dently, this can only work properly if the name of the cell is unique throuout the hole system.

If two well known cells with the same name are present, the system will behave in an undefined way.
Therefore it is wise to take care when starting, naming, and renaming the well known cells. Some cell
types, like the PoolManager will always be well known, while others may be made well known by the -
export option. Some cell types can and should never be well known. The same problem can arise if two
dCache instances which are meant to be separate use the same location manager due to a miss-configuration:
Messages meant for e.g. the pool manager of one instance get routed to the pool manager of the other instance
which generally will not be able to handle the request properly.

A domain is started with a shell script jobs/domainName (which in the standard setup is for all domains
a link to jobs/wrapper2.sh). This will use the configuration variables in config/domainName-
Setup (which normally is a link to config/dCacheSetup), start the Java virtual machine and execute
the cell package commands in config/domainName.batch. The main task of these commands is to
start up all the cells which should be running in the domain. It follows a typical batch file.
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Example 5.1. Example batch file config/gridftpdoor.batch

set printout default 2
set printout CellGlue none
onerror shutdown

check -strong setupFile
copy file:${setupFile} context:setupContext
import context -c setupContext
check -strong serviceLocatorPort serviceLocatorHost
check -strong sshPort ftpPort

create dmg.cells.services.RoutingManager  RoutingMgr
create dmg.cells.services.LocationManager lm \
       "${serviceLocatorHost} ${serviceLocatorPort}"

create dmg.cells.services.login.LoginManager GFTP \
            "2811 \
             -export \
             diskCacheV111.doors.GsiFtpDoorV1 \
             -prot=raw \
             -clientDataPortRange=${clientDataPortRange} \
             -root=${ftpBase} \
             -kpwd-file=${kpwdFile} \
             -tlog=/tmp/dcache-ftp-tlog \
             -maxLogin=100 \
             -brokerUpdateTime=5 \
             -protocolFamily=gsiftp \
             -loginBroker=LoginBroker \
             -poolManagerTimeout=5400 \
             -pnfsTimeout=120 \
             -maxRetries=80 \
             -maxStreamsPerClient=10 \
             -ftp-adapter-internal-interface=10.0.1.1 \
"

It is not necessary to understand every detail of the syntax of the batch files even for the most advanced
dCache administration tasks. The following explanations should be sufficient: The first tree lines set some
logging behaviour.

The next 5 lines import the variables from the config/domainNameSetup file into the context of the
domain. The values of the variables defined in the setup file are placed whereever ${variableName}
appears.

The create commands at the end start three cells. It takes up to three parameters: The Java class to start, the
name of the cell and the argument string which is passed to the class. In the standard setup, most parameters
to the cells are either set to reasonable values or are filled from variables defined in the setup file. This way,
the batch files only need to be changed for more advanced configuration tasks.

The routing manager and location manager cells are started in each domain are part of the underlying cell
package structure. Each domain will contain at least one cell in addition to them.
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Chapter 6. Resilience with the Replica
Manager
Alex Kulyavtsev

Mathias de Riese

If no tertiary storage system is connected to a dCache instance (i.e., it is configured as a large file store),
there might be only one copy of each file on disk. (At least the precious replica.) If a higher security and/or
availability is required, the resilience feature of dCache can be used: If running in the default configuration,
the replica manager will make sure that the number of replicas of a file will be at least 2 and not more than
3. If only one replica is present it will be copied to another pool by a pool to pool transfer. If 4 or more
replicas exist, some of them will be deleted.

Installation
To activate Replica Manager you need make changes in all 3 places:

1. etc/node_config on all admin nodes in this dCache instance.

2. replicaSetup file on node where replica manager is runnig

3. define Resilient pool group(s) in PoolManager.conf

#  - - - - Will Replica Manager be started?
#   Values:  no, yes
#   Default: no
#

This has to be set to “yes” on every node, if there is a replica manager in this dCache instance. Where the
replica manager is started is controlled in etc/node_config. If it is not started and this is set to “yes”
there will be error messages in log/dCacheDomain.log. If this is set to “no” and a replica manager is
started somewhere, it will not work properly.

#replicaManager=no

#  - - - - Which pool-group will be the group of resilient pools?
#   Values:  <pool-Group-Name>, a pool-group name existing in the PoolManager.conf
#   Default: ResilientPools
#

Only pools defined in pool group ResilientPools in config/PoolManager.conf will be managed by
ReplicaManager. You shall edit config/PoolManager.conf to make replica manager work. To use
another pool group defined in PoolManager.conf for replication, please specify group name by chang-
ing setting :

#resilientGroupName=ResilientPools
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Please scroll down “replica manager tuning” make this and other changes.

Starting the Replica Manager
Beginning with version 1.6.6 of dCache the replica manager can be started as follows:

The replica manager will use the same PostgreSQL database and database user srmdcache as the SRM. The
standard configuration assumes that the database server is installed on the same machine as the replica
manager — usually the admin node of the dCache instance. To create and configure the database replicas
used by the replica manager in the database server do:

[root] # su postgres
[user] $ createdb -U srmdcache replicas
[user] $ psql -U srmdcache -d replicas -f /opt/d-cache/etc/psql_install_replicas.sql
[user] $ exit

The start-up script bin/dcache-core already contains the correct lines to start and stop the domain
containing the replica manager as comments. Just remove the two hash (“#”) signs and restart the dCache
instance. The replica manager may also be started separately by

[root] # /opt/d-cache/jobs/replica -logfile=/opt/d-cache/log/replica.log start

and stopped by

[root] # /opt/d-cache/jobs/replica stop

In the default configuration, all pools of the dCache instance will be managed. The replica manager will
keep the number of replicas between 2 and 3 (including). At each restart of the replica manager the pool
configuration in the database will be recreated.

Operation
When file is transfered into the dCache its replica is copied into one of the pools. Since this is the only replica
and normally required range is higher (e.g., (2,3) ), this file will be replicated to other pools. When some
pool goes down the replica count for the files in that pool may fall below the valid range and these files
will be replicated. Replicas of the file with replica count below the valid range and which need replication
are called deficient replicas.

Later on some of the failed pools can come up and bring online more valid replicas. If there are too many
replicas for some file these extra replicas are called redundant replicas and they will be “reduced”. Extra
replicas will be deleted from pools.

Resilience Manager (RM) counts number of replicas for each file in the pools which can be used online (see
Pool States below) and keeps number of replicas within the valid range (min, max).

RM keeps information about pool state, list of the replicas ( file ID, pool ) and current copy/delete operations
in persistent database.



Resilience with the
Replica Manager

36

For each replica RM keeps list of pools where it can be found. For the pools pool state is kept in DB. There
is table which keeps ongoing operations (replication, deletion) for replica.

Figure 6.1. Pool State Diagram

This is description of pool states as it is in v1.0 of Risilience Manager. Some of the states and transitions
will be changed in the next release.

online normal operation. Replicas in this state are readable and can be counted. Files can
be written (copied) to this pool.

down dCache pool is stopped by operator or crashed. On startup, pool comes briefly to
the online state, and then it goes “down” to do pool “Inventory” — to cleanup files
which broke when pool crashed during transfer. When pool comes online again,
RM will update list of replicas in the pool and store it in the DB.

Replicas in pools which are “down” are not “counted”, so when pool crashes it
reduces number of “online” replicas for some files. The crash of the pool (pool
departure) may trigger replication of multiple files.

Pool recovery (arrival) may rigger massive deletition of file replicas, not necessar-
ily in this pool.

There are special situations when operator wants to change pool state and he/she
does not want to trigger massive replication. Or vice versa he/she wants to take
pool permanently out of operation and wants to make sure that files in the pool will
not be locked out and will be available later.

offline replicas in this pool are counted whether this pool is up or down. It does done matter
fore replication purpose if offline pool goes down or up. Rationale — operator
wants to bring pool down briefly and he/she knows that replicas in the pool are
safe. This state is introduced to avoid unnecessary massive replication. When pool
comes online from offline state replicas in the pool will be inventoried to make
sure we know the real list of replicas in the pool.
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down operator needs to set pool or set of pools down permanently and wants to make
sure that there no replicas “locked out” when all known replicas of the file are in
the pools which are unavailable. Thus whether pool is really up or down replicas
in it are not counted.

drainoff, offline-pre-
pare

transient states between online and down or offline states respectively. If there are
files which can be “locked out” in down or offline states, they will be evacuated —
at least one replica for each locked file will be copied out. It is unlikely that file will
be locked out when singly pool goes down — normally few replicas are online.
When several pools go down or set drainoff or offline file lockout may happens.

Note

Currently replicas counted separately in groups of offline-prepare and drainoff pools.

RM needs the single copy of the replica to be copied out and then you can turn pool down, the other replicas
will be made from the replica available online. To confirm that it is safe to turn pool down there is command
to check number of files which can be locked in this pool.

v1.0 — these states called “transient” but pool does not automatically turned down

Startup
The number of the pools in the system may be large and it may be inconvenient to keep configuration of the
system predefined in some file. On startup complete configuration is unknown and RM tries to keep number
of replicas in the valid range as pools arrive and departure and files are copied in. On the other hand when
groups of pools arrive or departure it leads to massive replica cloning or reduction. It is beneficial to suspend
ajustments until system arrives to more or less stable configuration.

When RM starts it cleans up DB. Then it waits for some time to give a chance to the pools to get connected.
RM tries do not start too early and give a chance to most of the pools in the system to connect. Otherwise
unnecessary massive replication will start. When configuration is unknown RM waits for some time until
“quorum” of the pools get connected. Currently this is implemented by some delay to start adjustments to
get chance to the pools to connect.

Normally (during Cold Start) all information in DB is cleaned up and recreated again by polling pools which
are online shortly after some minimum delay after RM starts. RM starts to track pools state (pool up/down
messages and polling list of online pools) and updates list of replicas in the pools which came online. This
process lasts for about 10-15 minutes to make sure all pools come up online and/or get connected. Pools
which once get connected to RM are in online or down state.

It can be annoying to wait for some large period of time until all known “good” pools get connected. There
is “Hot Restart” option to accelerate restart of the system after the crash of the head node.

On Hot Restart RM retrieves information about pools state before the crash from DB and saves pools state
to some internal structure. When pool gets connected RM checks the old pool state and registers old pools
state in DB again if the state was offline, offline-prepare or “drainoff” state. RM also checks if the pool was
online before the crash. When all pools which were “online” get connected once, RM supposes it recovered
it’s old configuration and RM starts adjustments. RM operates in the “fluid world”. It does not required that
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pools stay online. The point is when all online pools get connected online we can start adjustments. If some
pools went down during connection process they are already accounted and adjustment will take care of it.

Example: Suppose we had have ten pools in the system where eight pools were online and two were offline.
RM does not care about two offline pools get connected to start adjustments. For the other eight pools which
were online, suppose one pool get connected and then it falls down while the other pools try to connect. RM
considers this pool in known state, and when other seven pools get connected it can start adjustments and
does not wait any more. If system was in equilibrium state before the crash, RM may find some deficient
replicas because of the crashed pool and start replication right away.

More on operation
RM has few threads running at the same time. Adjuster keeps count of the replicas within the valid range,
the other threads help to do this.

Adjuster. Information about all replicas is kept in DB. Adjuster makes several queries in DB during adjust-
ment cycle to get the list of files for which replicas must be reduced or replicated:

• redundant replicas, Nrep > max

• unique replicas in drainoff pools

• unique replicas in offline-prepare pools

• deficient replicas, Nrep < min

Number of replicas is counted in pools which are online or offline. Offline-prepare or drainoff pools con-
sidered read-only and can be used as a source pool for replication. Last replica of the file in the system must
not be removed.

The information in DB updated when new replica is added or removed from the pool. When some pool
changes it’s state all replicas in the pool became available or unavailable. This changes the number of ac-
cessible replicas for the file. The current list is marked as invalid and RM restarts adjustment cycle from the
beginning. When nothing happens for some time adjustment cycle is triggered by timeout to make sure RM
did not miss anything because some messages get lost.

When it is found that replica needs replication or reduction the worker thread starts to do the job asyn-
chronously. Number of Worker threads is limited to the max [default=6], separately for reducers and repli-
cators. If no workers are available adjuster will wait for the worker thread. Worker thread starts operation
by sending message to dCache and waits until operation finishes or timeout expires. The timeout is different
for reduction (replica removal) and replication, the replication timout shall be larger to account for the time
to transfer the largest file between the pools. When the worker thread starts operation it marks replica as
“having the operation” in action table in DB, and this replica will be excluded from other operations in the
system until operation done or timeout expire. When there are few replicas for the same file found to be
replicated (or reduced), RM schedules one replica for replication and proceeds with processing the other
files. When Adjuster reaches the end of the list, it may return to the processing of the other replicas of the
first file without delay considering the previous operation with the file complete.

Sometimes Adjuster gets error on operation with replica and in some cases if it does the same operation with
the same replica again this “unresolved” error happens again and again blocking RM to keep from processing
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other replicas. To avoid such loops and “dynamic deadlock” RM can put the replica which encountered the
problem into “exclude” state. To return this replica into operation administrator shall manually “release”
this replica.

When pool changes its state RM receives a message which can be lost or is not sent in some cases like pool
crash. To make sure RM has correct information about pool states it runs PoolsWatchDog thread. WatchDog
polls pools states and compares it to the result of the previous poll to find out which pools departed from or
arrived into the system. Then it sleeps for some time and does the check again. When there were no changes
in the pool configuration WatchDog throttles messages “no pool configuration change” in the log file —
but it is still running.

Cyclical threads — Adjuster and WatchDog write and timestamps it’s current state in DB. It is displayed on
Web page so it is possible to check if it is running. Excluded files are listed there too.

Commands
If you are advanced user and have proper privileges and you know how to issue command to admin interface
you may connect to the ReplicaManager cell and issue the following commands. You may find more
commands in online help which are for debug only — do not use them as they can stop RM operating
properly.

set pool pool state set pool state

show pool pool show pool state

ls unique pool check if pool drained off (has unique pndfsIds). Reports number of
replicas in this pool. Zero if no locked replicas.

exclude pnfsId exclude pnfsId from adjustments

release pnfsId removes transaction/’BAD’ status for pnfsId

debug true | false enable/disable DEBUG messages in the log file

Hybrid dCache
“Hybrid” dCache operates on combination of “normal” pools (backuped to the tape or “scratch” pools) and
the set of resilient pools. Resilience manager takes care only for the subset of pools configured in the Pool
Group named “ResilientPools” and ignores all other pools. Currently resilient pool group name is hardcoded
as “ResilientPools”, and you shall create replica manager cell to use in hybrid dCache by instantiating class
diskCacheV111.replicaManager.ReplicaManagerV2 (note “V2” in the classname).

Add to PoolManager.conf:

psu create pgroup ResilientPools

psu addto  pgroup ResilientPools myPoolName001
psu addto  pgroup ResilientPools myPoolName002
psu addto  pgroup ResilientPools myPoolName003

Pools included in the resilient pool groop can also be included in other pool groups.
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Arguments for the ReplicaManager cell in the
batch file:
Default argument values as for $Id: ReplicaManager.java,v 1.22 2004/08/25 22:32:07
cvs Exp $

You do not need to put these arguments in the batch file until you want to change these defaults and you
know what are you doing. For normal operation you may want to chose “-ColdStart” or “-hotRestart” (is
default) mode of startup and (min,max) for desired range of number of replicas of the file.

General

-min=2 -max=3 Valid range for the replicas count in “available” pools.

-debug=false | true Disable / enable debug messages in the log file

Startup mode

-hotRestart

default Startup will be accelerated, when all “known” pools registered
in DB as “online” before the crash, will re-connect again during
hot restart. Opposite to -coldStart.

-coldStart

optional Good for the first time or big changes in pool configuration. Will
create new pool configuration in DB. Opposite to -hotRestart.

-delayDBStartTO=1200 on Cold Start:

20 min DB init thread sleep this time to get chance to pools to get con-
nected to prevent massive replications when not all pools con-
nected yet when the replication starts.

-delayAdjStartTO=1260 Normally Adjuster waits for DB init thread to finish. If by some
abnormal reason it can not find DB thread then it will sleep for
this delay. It should be slightly more then “delayDBStartTO”.

21 min

DB connection

-dbURL=jdbc:postgresql://
dbservernode.domain.edu:5432/replicas

Configure host:port where DB server is running and DB table
name. For DB on remote host you shall enable TCP connections
to DB from your host (see installation instructions).

-jdbcDrv=org.postgresql.Driver DB driver. Replica Manager was tested with Postgres DB only.

-dbUser=myDBUserName Configure different DB user

-dbPass=myDBUserPassword Configure different DB path

Delays

-maxWorkers=4 Number of worker threads to do the replication, the same num-
ber of worker threads used for reduction. Must be more for larger
system but avoid situation when requests get queued in the pool.

-waitReplicateTO=43200
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12 hours Timeout for pool-to-pool replica copy transfer.

-waitReduceTO=43200

12 hours Timeout to delete replica from the pool.

-waitDBUpdateTO=600

10 min Adjuster cycle period. If nothing changed, sleep for this time,
and restart adjustment cycle to query DB and check do we have
work to do?

-poolWatchDogPeriod=600

10 min

Pools Watch Dog pool period. Poll the pools with this period to find if some pool went south without sending
notice (messages). Can not be too short because pool can have high load and do not send pings for some
time. Can not be less than pool ping period.

Monitoring Installation
DRAFT

Scope of this document
This section briefly summarizes steps to install Monitoring for the Replica Manager. RM installation is de-
scribed here the section called “Installation”. It’s meant as “aide-memoire” for people doing dCache pack-
aging. The document is of very little use for dCache end users. You may find useful information on how to
operate the Resilience Manager at the Resilient Manual.

Resilience Manager uses Tomcat to monitor its operation. This package is not required for normal RM
operation, but it is highly desirable to install and run it to properly monitor RM.

Prerequisites
The PostgreSQL database must be installed and running on the machine hosting the replica manager module
and DB schema must be initalized as described in RM installation instructions (“Database Preparation”).
You will see something in the tables if Resilience Manager is running.

Tomcat Installation and Configuration
• get the binary Tomcat distribution (currently version 5.5.x) from Apache Jakarta Tomcat website http://

tomcat.apache.org/download-55.cgi#5.5.25 and install it folowing the instruction form the web site.

• Tomcat uses port 8080 by default, but we have changed it to 8090 in the conf/server.xml file because
8080 is too popular — check this port and change it !

<Connector port="8090"
...

http://tomcat.apache.org/download-55.cgi#5.5.25
http://tomcat.apache.org/download-55.cgi#5.5.25
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• You need to copy jdbc PostgreSQL driver into common/lib directory in Tomcat installation from URL :
http://jdbc.postgresql.org/download/pg74.215.jdbc3.jar This version of the driver works with Java 1.4 and
1.5 .

• deploy replica.war file into tomcat/apache-tomcat-5.5.x/webapps/

• start the Tomcat:

[root] # tomcat/apache-tomcat-5.5.x/bin/startup.sh

You can now access the Resilience Manager monitoring info using URL: http://your.hostname:8090/
replica

http://jdbc.postgresql.org/download/pg74.215.jdbc3.jar
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Chapter 7. Configuring the Pool
Manager
The heart of a dCache system is the pool manager. When a user performs an action on a file - reading or
writing - a transfer request is sent to the dCache system. The pool manager then decides how to handle
this request.

If a file the user wishes to read resides on one of the storage-pools within the dCache system, it will be
transferred from that pool to the user. If it resides on several pools, the file will be retrieved from the pool
which is least busy. If all pools the file is stored on are busy, a new copy of the file on an idle pool will be
created and this pool will answer the request.

A new copy can either be created by a pool to pool transfer (p2p) or by fetching it from a connected tertiary
storage system (sometimes called HSM - hierarchical storage manager). Fetching a file from a tertiary storage
system is called staging. It is also performed if the file is not present on any of the pools in the dCache system.
The pool manager also has to decide on which pool the new copy will be created, i.e. staged or p2p-copied.

The behaviour of the pool manager is highly configurable. In order to exploit the full potential of the software
it is essential to understand the mechanisms used and how they are configured. The pool manager is a unique
cell in the domain “dCacheDomain” and consists of several sub-modules: The important ones are the pool
selection unit (PSU) and the cost manager (CM).

The PSU is responsible for finding the pools which the pool manager is allowed to use for a specific trans-
fer-request. From those the CM selects the optimal one. By telling the PSU which pools are permitted for
which type of transfer-request, the administrator of the dCache system can adjust the system to any kind
of scenario: Separate organizations served by separate pools, special pools for writing the data to a tertiary
storage system, pools in a DMZ which serves only a certain kind of data (e.g. for the grid). The following
section explains the mechanism employed by the PSU and shows how to configure it with several examples.

The Pool Selection Mechanism
The PSU generates a list of allowable storage-pools for each incoming transfer-request. The PSU-configu-
ration described below tells the PSU which combinations of transfer-request and storage-pool are allowed.
Imagine a two-dimensional table with a row for each possible transfer-request and a column for each pool -
each field in the table containing either “yes” or “no”. For an incoming transfer-request the PSU will return
a list of all pools with “yes” in the corresponding row.

Instead of “yes” and “no” the table really contains a preference - a non-negative integer. However, the PSU
configuration is easier to understand if this is ignored.

Actually maintaining such a table in memory (and as user in a configuration file) would be quite inefficient,
because of the many possibilities for the transfer-requests. Instead, the PSU consults a set of rules in order
to generate the list of allowed pools. Each such rule is called a link because it links a set of transfer-requests
to a group of pools. A link consists of a set of condition and a list of pools. If all the conditions are satisfied,
the pools belonging to the link are added to the list of allowable pools.

The main task is to understand how the conditions in a link are defined. After we have dealt with that, the
preference values will be discussed and a few examples will follow.
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The Condition of a Link
The properties of a transfer-request, which are relevant for the PSU, are the following:

Location of the File The directory of the file in the file system (perfectly normal file system -
pnfs).

IP Address The IP address of the requesting host.

Type of Transfer The type of transfer is either “read”, “write”, or "cache". A request for read-
ing a file which is not stored in the cache, but has to be staged from a con-
nected tertiary storage system will trigger a “cache”-request and a subse-
quent “read”-request. These will be treated as two separate requests.

The location of the file in the file system is not used directly. Each file has the following two properties
which can be set per directory:

Storage Class The storage class is a string. It is used by a tertiary storage system to decide where
to store the file (i.e. on which set of tapes) and dCache can use the storage class for
a similar purpose (i.e. on which pools the file can be stored.). A detailed description
of the syntax and how to set the storage class of a directory in the PNFS is given in
the section called “Storage Classes”.

Cache Class The cache class is a string with essentially the same functionality as the storage class,
except that it is not used by a tertiary storage system. It is used in cases, where the
storage class does not provide enough flexibility. It should only be used, if an existing
configuration using storage classes does not provide sufficient flexibility

Each link contains one or more conditions, all of which have to be satisfied by the transfer-request. Each
condition in turn contains several elementary conditions. The condition is satisfied if at least one of the
elementary conditions is satisfied. For the mathematically inclined this logical structure can be expressed
by the following formula:

link ==     ( elemCond1 or elemCond2 ) 
        and ( elemCond3 or elemCond4 or elemCond5 ) 
        and ... and ( ... ),

where the parentheses are the conditions. The first condition contains the elementary conditions elem-
Cond1 and elemCond2, and the second one contains elemCond3, elemCond4, and elemCond5.

There are 3 types of elementary conditions: elementary network (-net), storage class (-store), and cache
class conditions (-dcache). Each type imposes a condition on the IP address, the storage class, and the
cache class, respectively.

An elementary network condition consists of an IP address and a net mask written as “IP-address/net
mask”, say “111.111.111.0/255.255.255.0”. It is satisfied, if the request is coming from a host
with IP address within the subnet given by the address/netmask pair.

An elementary storage class condition is given by a storage class. It is satisfied if the requested file has this
storage class. Simple wild cards are allowed: for this it is important to know that a storage class must always
contains exactly one @-symbol as will be explained in the section called “Storage Classes”. In an elementary
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storage class condition, either the part before the @-symbol or both parts may be replaced by a *-symbol; for
example, *@osm and *@* are both valid elementary storage class conditions whereas something@* is
invalid. The *-symbol represents a limited wildcard: any string that doesn’t contain an @-symbol will match.

An elementary cache class condition is given by a cache class. It is satisfied, if the cache class of the requested
file agrees with it.

The conditions for the type of transfer are not specified with elementary conditions. Instead, each link con-
tains three attributes “-readpref”, “-writepref”, and “-cachepref”, which specify a preference
value for the respective types of transfer. If all the conditions in the link are satisfied, the corresponding
preference is assigned to each pool the link points to. Since we are ignoring different preference values at
the moment, a preference of 0 stands for “no” and a non-zero preference stands for “yes”.

The following explanation of the preference values can be skipped at first reading. It will not be relevant, if all
non-zero preference values are the same. If you want to try configuring the pool manager right now without
bothering about the preferences, you should only use 0 (for “no”) and, say, 10 (for “yes”) as preferences.
The first examples below are of this type.

Preference Values
If more than one preference value different from zero is used, the PSU will not generate a single list but
a set of lists, each containing pools with the same preference. The Cost Manager will use the list of pools
with highest preference and select the one with the lowest cost for the transfer. Only if all pools with the
highest preference are unavailable, the next list will be considered by the Cost Manager. This can be used
to configure a set of fall-back pools which are used if none of the other pools are available.

Syntax and Examples
The syntax of the commands for configuring the PSU will be explained with the examples below. These
commands can be issued within the PoolManager-cell to change the configuration while the system
is running. The save-command can then be used to save the current configuration to the file con-
fig/PoolManager.conf in the dCache program-directory. This file will be parsed, whenever the
dCache system starts up. It is a simple text file containing the corresponding commands. It can therefore also
be edited before the system is started. It can also be loaded into a running system with the reload-command.

Pool Groups

Pools can be grouped together to pool groups. Consider a host pool1 with two pools, pool1_1 and
pool1_2, and a host pool2 with one pool pool2_1. If you want to treat them in the same way, you
would create a pool group and put all of them in it:

psu create pgroup normal-pools
psu create pool pool1_1
psu addto pgroup normal-pools pool1_1
psu create pool pool1_2
psu addto pgroup normal-pools pool1_2
psu create pool pool2_1
psu addto pgroup normal-pools pool2_1

If you later want to treat pool1_2 differently from the others, you would remove it from this pool group
and add it to a new one:
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psu removefrom pgroup normal-pools pool1_2
psu create pgroup special-pools
psu addto pgroup special-pools pool1_2

In the following, we will assume that the necessary pool groups already exist. All names ending with “-
pools” will denote pool groups.

Note that a pool-node will register itself with the pool manager: The pool will be created within the PSU and
added to the pool group “default”, if that exists. This is why the dCache system will automatically use
any new pool-nodes in the standard configuration: All pools are in “default” and can therefore handle
any request.

Separate Write and Read Pools

The dCache we are going to configure receives data from a running experiment, stores the data onto a tertiary
storage system, and serves as a read cache for users who want to analyze the data. While the new data from
the experiment should be stored on highly reliable and therefore expensive systems, the cache functionality
may be provided by inexpensive hardware. It is therefore desirable to have a set of pools dedicated for
writing the new data and a separate set for reading.

The simplest configuration for such a setup would consist of two links “write-link” and “read-link”. The
configuration is as follows:

psu create unit -net 0.0.0.0/0.0.0.0
psu create ugroup allnet-cond
psu addto ugroup allnet-cond 0.0.0.0/0.0.0.0

psu create link read-link allnet-cond
psu set link read-link -readpref=10 -writepref=0 -cachepref=10
psu add link read-link read-pools

psu create link write-link allnet-cond
psu set link write-link -readpref=0 -writepref=10 -cachepref=0
psu add link write-link write-pools

Why is the condition allnet-cond necessary? It is used as a condition which is always true in both links.
This is needed, because each link contains at least one condition. The commands contain the words unit
and ugroup for historical reasons. They denote elementary conditions and conditions in our nomenclature.

Restricted Access by IP Address

You might not want to give access to the pools for the whole network, as in the previous example (the section
called “Separate Write and Read Pools”), though. Assume, the experiment data is copied into the cache
from the hosts with IP 111.111.111.201, 111.111.111.202, and 111.111.111.203. As you
might guess, the subnet of the site is 111.111.111.0/255.255.255.0. Access from outside should
be denied. Then you would modify the above configuration as follows:

psu create unit -net 111.111.111.0/255.255.255.0
psu create ugroup allnet-cond
psu addto ugroup allnet-cond 111.111.111.0/255.255.255.0

psu create unit -net 111.111.111.201/255.255.255.255
psu create unit -net 111.111.111.202/255.255.255.255
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psu create unit -net 111.111.111.203/255.255.255.255
psu create ugroup write-cond
psu addto ugroup write-cond 111.111.111.201/255.255.255.255
psu addto ugroup write-cond 111.111.111.202/255.255.255.255
psu addto ugroup write-cond 111.111.111.203/255.255.255.255

psu create link read-link allnet-cond
psu set link read-link -readpref=10 -writepref=0 -cachepref=10
psu add link read-link read-pools

psu create link write-link write-cond
psu set link write-link -readpref=0 -writepref=10 -cachepref=0
psu add link write-link write-pools

Reserving Pools for Storage and Cache Classes

If pools are financed by one experimental group, they probably do not like it, if it is also used by another
group. The best way to restrict data belonging to one experiment to a set of pools is with the help of storage
class conditions. If more flexibility is needed, cache class conditions can be used for the same purpose.

Assume, data of experiment A obtained in 2004 is written into subdirectories in the PNFS tree which are
tagged with the storage class “exp-a:run2004@osm”, and similarly for the other years. (How this is
done is described in the section called “Storage Classes”.) Experiment B uses the storage class “exp-
b:alldata@osm” for all its data. Especially important data is tagged with the cache class “important”.
(This is described in the section called “Cache Class”.) A suitable setup would be

psu create ugroup exp-a-cond

psu create unit -store exp-a:run2003@osm
psu addto ugroup exp-a-cond exp-a:run2003@osm
psu create unit -store exp-a:run2004@osm
psu addto ugroup exp-a-cond exp-a:run2004@osm

psu create link exp-a-link allnet-cond exp-a-cond
psu set link exp-a-link -readpref=10 -writepref=10 -cachepref=10
psu add link exp-a-link exp-a-pools

psu create ugroup exp-b-cond

psu create unit -store exp-b:alldata@osm
psu addto ugroup exp-b-cond exp-b:alldata@osm

psu create ugroup imp-cond
psu create unit -dcache important
psu addto ugroup imp-cond important

psu create link exp-b-link allnet-cond exp-b-cond
psu set link exp-b-link -readpref=10 -writepref=10 -cachepref=10
psu add link exp-b-link exp-b-pools

psu create link exp-b-imp-link allnet-cond exp-b-cond imp-cond
psu set link exp-b-imp-link -readpref=20 -writepref=20 -cachepref=20
psu add link exp-b-link exp-b-imp-pools

Data tagged with cache class “important” will always be written and read from pools in the pool group
exp-b-imp-pools, except when all pools in this group cannot be reached. Then the pools in exp-a-
pools will be used.

Note again that these will never be used otherwise. Not even, if all pools in exp-b-imp-pools are very
busy and some pools in exp-a-pools have nothing to do and lots of free space.
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The central IT department might also want to set up a few pools, which are used as fall-back, if none of the
pools of the experiments are functioning. These will also be used for internal testing. The following would
have to be added to the previous setup:

psu create link fallback-link allnet-cond
psu set link fallback-link -readpref=5 -writepref=5 -cachepref=5
psu add link fallback-link it-pools

Note again that these will only be used, if none of the experiments pools can be reached, or if the storage class
is not of the form exp-a:run2003@osm, exp-a:run2004@osm, or exp-b:alldata@osm. If the
administrator fails to create the elementary condition exp-a:run2005@osm and add it to the condition
exp-a-cond, the fall-back pools will be used eventually.

Storage Classes
The storage class is a string of the form StoreDescriptor@hsm, where hsm denotes the type of
tertiary storage system in use, and StoreDescriptor is a string describing the storage class in a
syntax which depends on the used tertiary storage system. If no tertiary storage system is used, it is
probably best to use hsm=osm, since this is tested best. Then the StoreDescriptor has the syntax
Store:StorageGroup. These can be set within PNFS per directory. Consider for example the follow-
ing setup:

[root] # cd /pnfs/domain/experiment-a/
[root] # cat ".(tag)(OSMTemplate)"
StoreName myStore
[root] # cat ".(tag)(sGroup)"
STRING

This is the setup after a fresh installation and it will lead to the storage class myStore:STRING@osm. An
adjustment to more sensible values will look like

[root] # echo "StoreName exp-a" >! ".(tag)(OSMTemplate)"
[root] # echo "run2004" >! ".(tag)(sGroup)"

and will result in the storage class exp-a:run2004@osm. To summarize: The storage class will depend
on the directory, the data is stored in and is configurable.

Cache Class
Storage classes might already be in use for the configuration of a tertiary storage system. In most cases
they should be flexible enough to configure the PSU. However, in rare cases the existing configuration and
convention for storage classes might not be flexible enough.

Consider for example a situation, where data produced by an experiment always has the same storage class
exp-a:alldata@osm. This is good for the tertiary storage system, since all data is supposed to go to the
same tape set sequentially. However, the data also contains a relatively small amount of meta-data, which is
accessed much more often by analysis jobs than the rest of the data. You would like to keep the meta-data
on a dedicated set of dCache pools. However, the storage class does not provide means to accomplish that.

The cache class of a directory is set by the tag cacheClass as follows:
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[root] # echo "metaData" >! ".(tag)(cacheClass)"

In the above example the meta-data is stored in directories which are tagged in this way.

There is a nice trick for easy checking of the existing tags in one directory:

[root] # grep '' `cat '.(tags)()'`
.(tag)(OSMTemplate):StoreName exp-a
.(tag)(sGroup):run2004
.(tag)(cacheClass):metaData

This only works, if the quote-symbols are used correctly. (tick, tick, back-tick, tick, tick, back-tick).

Tags are inherited by sub-directories: Changing a tag of a directory will change the tag of each sub-directory,
if the tag has never been changed for this sub-directory directly. Changing tags breaks these inheritance
links. Directories in PNFS should never be moved, since this will mess up the inheritance structure and
eventually break the whole system.

The Cost Module
From the allowable pools as determined by the pool selection unit, the pool manager determines the pool used
for storing or reading a file by calculating a cost value for each pool. The pool with the lowest cost is used.

If a client requests to read a file which is stored on more than one allowable pool, the performance costs
are calculated for these pools. In short, this cost value describes how much the pool is currently occupied
with transfers.

If a pool has to be selected for storing a file, which is either written by a client or restored from a tape
backend, this performance cost is combined with a space cost value to a total cost value for the decision.
The space cost describes how much it “hurts” to free space on the pool for the file.

The cost module is responsible for calculating the cost values for all pools. The pools regularly send all
necessary information about space usage and request queue lengths to the cost module. It can be regarded as
a cache for all this information. This way it is not necessary to send “get cost” requests to the pools for each
client request. The cost module interpolates the expected costs until a new precise information package is
coming from the pools. This mechanism prevents clumping of requests.

Calculating the cost for a data transfer is done in two steps. First, the cost module merges all information
about space and transfer queues of the pools to calucate the performance and space costs separately. Second,
in the case of a write or stage request, these two numbers are merged to build the total cost for each pool.
The first step is isolated within a separate loadable class. The second step is done by the cost module.1

The Performance Cost
The load of a pool is determined by comparing the current number of active and waiting transfers to the
maximum number of concurrent transfers allowed. This is done separately for each of the transfer types
(store, restore, pool-to-pool client, pool-to-pool server, and client request) with the following equation:

1 The next development step will be to add the second calculation as well to the customizable (loadable) class.
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perfCost(per Type) = ( activeTransfers + waitingTransfers ) / maxAllowed .

The maximum number of concurrent transfers (maxAllowed) can be configured with the commands st set
max active (store), rh set max active (restore), mover set max active (client request), p2p set max active
(pool-to-pool server), and pp set max active (pool-to-pool client).

Then the average is taken for each mover type where maxAllowed is not zero. For a pool where store, restore
and client transfers are allowed, e.g.:

perfCost(total) = ( perfCost(store) + perfCost(restore) + perfCost(client) ) / 3 ,

and for a read only pool:

perfCost(total) = ( perfCost(restore) + perfCost(client) ) / 2 .

For a well balanced system, the performance cost should not exceed 1.0.

The Space Cost
In this section only the new scheme for calculating the space cost will be described. Be aware, that the old
scheme will be used if the breakeven parameter of a pool is larger or equal 1.0.

The cost value used for determining a pool for storing a file depends either on the free space on the pool or
on the age of the least recently used (LRU) file, which whould have to be deleted.

The space cost is calculated as follows:

If freeSpace > gapPara   then spaceCost = 3 * newFileSize / freeSpace

If freeSpace <= gapPara and lruAge < 60 then spaceCost = 1 + costForMinute

If freeSpace <= gapPara and lruAge >= 60 then spaceCost = 1 + costForMinute * 60 / lru-
Age

where the variable names have the following meanings:

freeSpace The free space left on the pool

newFileSize The size of the file to be written to one of the pools, and at least 50MB.

lruAge The age of the least recently used file on the pool.

gapPara The gap parameter. Default is 4GB. The size of free space below which it will be
assumed that the pool is full and consequently the least recently used file has to be
removed. If, on the other hand, the free space is greater than gapPara, it will be
expensive to store a file on the pool which exceeds the free space.

It can be set per pool with the set gap command. This has to be done in the pool cell
and not in the pool manager cell. Nevertheless it only influences the cost calculation
scheme within the pool manager and not the bahaviour of the pool itself.

costForMinute A parameter which fixes the space cost of a one-minute-old LRU file to (1 + cost-
ForMinute). It can be set with the set breakeven, where
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costForMinute = breakeven * 7 * 24 * 60.

I.e. the the space cost of a one-week-old LRU file will be (1 + breakeven). Not again,
that all this only applies if breakeven < 1.0

The prescription above can be stated a little differently as follows:

If freeSpace > gapPara then spaceCost = 3 * newFileSize / freeSpace

If freeSpace <= gapPara then spaceCost = 1 + breakeven * 7 * 24 * 60 * 60 / lruAge ,

where newFileSize is at least 50MB and lruAge at least one minute.

Rationale

As the last version of the formula suggests, a pool can be in two states: Either freeSpace > gapPara or
freeSpace <= gapPara - either there is free space left to store files without deleting cached files or there isn’t.

Therefore, gapPara should be around the size of the smallest files which frequently might be written to
the pool. If files smaller than gapPara appear very seldom or never, the pool might get stuck in the first
of the two cases with a high cost.

If the LRU file is smaller than the new file, other files might have to be deleted. If these are much younger
than the LRU file, this space cost calculation scheme might not lead to a selection of the optimal pool.
However, in praxis this happens very seldomly and this scheme turns out to be very efficient.

The Total Cost
The total cost is a linear combination of the performance and space cost. I.e. totalCost = ccf * perfCost +
scf * spaceCost , where ccf and scf are configurable with the command set pool decision. E.g.

(PoolManager) admin > set pool decision -spacecostfactor=3 -cpucostfactor=1

will give the space cost three times the weight of the performance cost.

Advanced Customization of the Cost Calculation
The cost calcuation scheme described above can be overwritten by the pool manager “create”-option:

-costCalculator=newCostCalculator

The default value for newCostCalculator is CostCalculationV5. The goal is to compare different
pool costs without intermediatly calculating scalar values for performance and space.

Devel
In addition, the PoolCellInfo now is just the CellInfo plus the PoolCostInfo. The WebCollectorV3 has been
modified accordingly. The WebCollectorV0 has been removed.



Configuring the Pool Manager

52

Pool 2 Pool transfer client
The pool 2 pool client transfers are now added to the total cost of a pool and they are reported to the ’pool
request’ web page as well.

Although client pool 2 pool transfers seem to be handled within regular queues, they are not. Queuing both,
p2p server and queue requests, has a (even though small) probability of deadlocks. So, p2p client requests
are never actually queued but they start immediately after they have been requested. The p2p client ’max
number of transfers’ is only used to calculate the costs for those transfers.
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Chapter 8. The Interface to a Tertiary
Storage System
Patrick Fuhrmann

dCache installations, used as a frontend to tertiary storage system, need, at some point, to exchange data
this such a system in order to store new, precious files and to retrieve files from the HSM if not yet, or no
longer, available on one of the dCache pools. Unfortunately there is no well defined interface for such HSM
operations. So the dCache overcomes this problem by calling configurable (dCache external) shell scripts
or binaries whenever an HSM store or retrieve operation becomes necessary. The local HSM administrator
is responsible for providing this procedure and to make it available and known to the dCache. This small
writeup defines the way dCache will call such an external method.

Note

Most dCache distributions do not expect to run together with an HSM backend system. To make
this work, make sure that neither in the pool.batch file, nor in the config/pool.poollist files
the option lfs=precious is specified.

Defining the HSM interface.
Each individual pool, which is expected to exchange data with an HSM, has to define a dCache external
method to flush/fetch datasets into/from one or more connected HSM’s. The command decribed below has
either to be given in the command line interface of the corresponding pool while the pool is active (don’t
forget so “save”) or may be added to the pool setup file commands prior to starting the pool.

     Syntax : hsm set <hsmName> -command=<fullPathToExternalCommand>
     
     Example :
         
      hsm set osm -command=/usr/d-cache/jobs/osm-hsmcp.sh
  or
      hsm set enstore -command=/usr/d-cache-deployment/jobs/real-enstore.sh

The external method, which might be a shell script or a binary, is called by the dCache with a set of positional
arguments (see below). In addition, options may be specified which are appended to the regular argument
list on calling the external method.

     Syntax : hsm set <hsmName> -<key>=<value>
     
     Example :
         
      hsm set osm -command=/usr/d-cache/jobs/osm-hsmcp.sh
      hsm set osm -pnfs=/pnfs/desy.de -somethingElse=true

This will result in excuting the following command line whenever a file has to be exchanged with an HSM.

/usr/d-cache/jobs/osm-hsmcp.sh put|get <pnfsId> <LocalFilename> \
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        -si=<See Below> \
        -pnfs=/pnfs/desy.de   \
        -somethingElse=true

Calling sequence
The external script or binary is launed with 3 positional arguments and at least one option (-
si=<storageInfo>). Additonial options may follow if defined so with the hsm set pool command. Ar-
guments and options are separated by at least on blank character.

    Syntax :
    
        <binary> put|get <pnfsid> <localFileName>   \
               -si=<storageInfo> [more options]

The put|get argument determines the data transfer direction seen from the HSM. put means, that data has to
be stored into the HSM while get means it has be fetched out of the HSM.

The <storageInfo> option is a collection of key value pairs, separated by semicola. All these values are
derived from the pnfs database. The possible keys slightly differ, depending on which HSM is addressed.
The order of the key value pairs is not determined and may vary between calls. The -si= string shouldn’t
contain blank TAB or newline characters.

Example:

    -si=size=1048576000;new=true;stored=false;sClass=desy:cms-sc3;cClass=-;hsm=osm;Host=desy;

Table 8.1. Mandatory StorageInfo keys

Key Meaning

size Size of the file in bytes

new False if file already in the dCache

stored True if file already stored in the HSM

sClass HSM depended. Used by the PoolManager for pool attraction

cClass Parent Director tag (cacheClass). Used by the PoolManager for poolattraction. May be
'-'

hsm Storage Manager name (enstore/osm). Can be overwritten by parent directory tag (hsm-
Type).

Table 8.2. Optional StorageInfo keys but used by all HSM’s

Key Meaning

flag-l Size of the file (if size exceeds 2G)

flag-s * if file is defined sticky

flag-c CRC value (currently 1:<hexAdler32>
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Table 8.3. Enstore specific

Key Meaning

group Storage Group (e.g. cdf,cms ...)

family File family (e.g. sgi2test,h6nxl8, ...)

bfid Bitfile Id (GET only) (e.g. B0MS105746894100000)

volume Tape Volume (GET only) (e.g. IA6912)

location Location on tape (GET only) (e.g. : 0000_000000000_0000117)

Table 8.4. OSM specific

Key Meaning

store OSM store (e.g. zeus,h1, ...)

group OSM Storage Group (e.g. h1raw99, ...)

bfid Bitfile Id (GET only) (e.g. 000451243.2542452542.25424524)

There might be more key values pairs which are used by the dCache internally and which should not affect
the behaviour of the hsm copy script.

Table 8.5. Return codes

Pool BehaviourReturn Code Meaning

Into HSM From HSM

30 <= rc < 40 User defined Deactivates request Reports Problem to PoolManager

41 No Space Left on device

42 Disk Read I/O Error

43 Disk Write I/O Error

Pool Retries Disables Pool

Reports Problem to PoolManager

All other  Pool Retries Reports Problem to PoolManager

Special Cases and exceptions

Reading vers. Writing HSM files

When fetching a file from an HSM, the command line contains sufficient information about the location of
the dataset within the HSM to get the file. No additional interaction with pnfs is needed. So pnfs doesn’t
need to be mounted on read-only pools.

This is different for storing files into an HSM. As a return from the actual HSM put operation, some data
has to be stored in pnfs. Currently this has to be done directly by the corresponding external HSM script.
So, other then for read pools, write pools still need to have pnfs mounted.

A future approache will be to transfer the necessay HSM information from the HSM copy script into the
dCache using STDOUT. The dCache subsequently performs the necessary pnfs store operation through
the PnfsManager.
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Precious files are removed from pnfs

In case a precious file is removed from pnfs before the hsmcopy-Script (osmcp.sh or real-encp.sh)
is called, the copy on disk is removed and the hsmcopy-Script is not called.

If the file is removed while the hsmcopy-Script is active, the script will encounter an error when writing
HSM data into the various pnfs layers. In this case it’s recommended to return an error code in the 30–39
range to have the request deactivated. So manual intervention is needed to get the situation cleaned up but
no attempt is made by the dCache to get the corresponding dataset stored into the HSM again.

Removing files from an backend HSM, trig-
gered by dCache
Whenever a file entry is removed from pnfs (the dCache namespace), dCache takes care that all copies of
this file are removed from the various pools. In case, dCache is attached to one or more tertiary storage
systems, it provides an interface to allow removing the file from those external systems as well.

As soon as a file entry is removed from pnfs, a new file is created within a special, so called, trash directory.
(For details, see next paragraph) The name of this newly created file is identical to its inode, resp. pnfsId.
A pnfsId is an internal unique identifier for each file within the dCache. PnfsIds don’t change if files are
renamed and pnfsIds are never reused. The content of the this (new) file is exactly the information written
into level 1 during the HSM store prodecure, discussed in the sections above. This information is usually
sufficient to get the file removed from the backend HSM storage system.

The trash directory is a local directory residing on the head node, or to be more precise, on the server
node where pnfs/chimera is running. In regular dCache installations, the directory is /opt/pnfsdb/pn-
fs/trash/1. After the installation of pnfs, only the path section /opt/pnfsdb/pnfs/trash exists.
In order to activate the signaling on pnfs file removes, a subdirectory named 1 has to be created within
/opt/pnfsdb/pnfs/trash. From that point in time, this directory is populated with file entries for
each file removed from pnfs/chimera. The mechanism, taking this file information and doing the appropriate
HSM specific actions, is resposible for removing those entries if no longer needed, resp. if the file has been
removed from the backend HSM.

For exotic dCache installations, the entry trash= in /usr/etc/pnfsSetup points to the trash di-
rectory within the local filesystem.
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Chapter 9. File Hopping
Patrick Fuhrmann

File hopping is a collective term in dCache, summarizing the possibility of having files being transferred
between dCache pools triggered by a variety of conditions. Most of the features described here will be
available starting with dCache release 1.6.7. The most prominent examples are:

• If a file is requested by a client but the file resides on a pool from which this client, by configuration, is
not allowed to read data, the dataset is transferred to an “allowed” pool first.

• If a pool encounters a steady high load, the system may, if configured, decide to replicate files to other
pools to achieve an equal load distribution.

• HSM restore operations may be split into two steps. The first one reads data from tertiary storage to
an “HSM connected” pool and the second step takes care that the file is replicated to a general read
pool. Under some conditions this separation of HSM and non-HSM pools might become necessary for
performance reasons.

• If a dataset has been written into dCache it might become necessary to have this file replicated instantly.
The reasons can be, to either have a second, safe copy, or to make sure that clients don’t access the file
for reading on the write pools.

File Hopping “on arrival” from outside
dCache
“File Hopping on arrival” is a term, denoting the possibility of initiating a pool to pool transfer as the result
of a file successfully arriving on a pool. The file must have been written by an external client using any
supported protocol (dCap, FTP, xrootd). Files restored from HSM or arriving on a pool as the result of
a pool to pool transfer will not yet be forwarded.

Forwarding of incoming files is enabled per pool in the hostname.poollist file. The pool is requested to
send a “replicateFile” message to either the PoolManager or to the HoppingManager, if available. The
different approaches are briefly described below and in more detail in the subsequent sections.

• The “replicateFile” message is sent to the PoolManager. This happens for all files arriving at that pool
from outside (no restore or p2p). No intermediate HoppingManager is needed. The restrictions are

• All files are replicated. No pre-selection, e.g. on the storage class can be done.

• The mode of the replicated file is determined by the destination pool and can’t be overwritten. See ’File
mode of replicated files’.

• The “replicateFile” message is sent to the HoppingManager. The HoppingManager can be config-
ured to replicate certain storage classes only and to set the mode of the replicated file according to rules.
The file mode of the source file can’t be modified.
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File mode of replicated files
The mode of a replicated file can either be determined by settings in the destination pool or by the Hop-
pingManager.

• If no HoppingManager is used for replication, the mode of the replicated file is determined by the
p2p=cached|precious setting in the hostname.poollist file of the destination pool. The default
setting is cached.

• If a HoppingManager is used for file replication, the mode of the replicated file is determined by
the HoppingManager rule responsible for this particular replication. If the destination mode is set to
“keep” in the rule, the mode of the destination pool determines the final mode of the replicated file.

File Hopping managed by the PoolManager
File hopping configuration instructs a pool to send a ’replicateFile’ request to the PoolManager as the
result of a file arriving on that pool from some external client. All arriving files will be treated the same. The
PoolManager will process this request by trying to find a ’link’ with the following attributes :

Table 9.1. PoolManager Hopping Request Attributes

Data Flow Direction Protocol Storage Class Client IP Number

Pool 2 Pool dCap/3 Class of file Configurable

In order to get pool 2 pool enabled for a particular pool, the corresponding entry of that pool in the
XXX.poollist file has to be extended by the replicateOnArrival key-value pair.

PoolName PoolPath  replicateOnArrival=PoolManager,ip-number ... 

where ip-number may be a real IP number of a farm node which may be taken as example node for
others intending to read the file, or the IP number may be taken from a non existing IP number range.
This range can be used to instruct the PoolManager to replicate files from this pool to a special set of
destination pools.

Please see the section "File mode of replicated files" for the mode of the file on the destination pool.

Example for File Hopping by the PoolManager only
We assume that we want of have all files, arriving on pool ocean of host earth to be immediately repli-
cated to a subset of read pools. This subset of pools is described by pool group ocean-copies. No other
pool is member of pool group ocean-copies. Other than that, files arriving at pool mountain should be
replicated to all read pools from which farm nodes on the 131.169.10.0/24 subnet are allowed to read.

The earth.poollist file must be modified as followes.

ocean     /bigdisk/pools/ocean     replicateOnArrival=PoolManager,192.1.1.1    more options
mountain  /bigdisk/pools/mountain  replicateOnArrival=PoolManager,131.169.10.1 more options

While 131.169.10.1 is a legal IP address e.g. of one of you farm nodes, the 192.1.1.1 IP address
must not exist anywhere at your site.
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Add the following lines to the PoolManager.conf in order to instruct the PoolManager to replicate
files, arriving at the ocean pool to be replicated to the ocean-copies subset of your read pools.

#
#  define the read-pools pool group and add pool members
#
psu create pgroup farm-read-pools
#
psu addto pgroup farm-read-pools read-pool-1
psu addto pgroup farm-read-pools read-pool-2
psu addto pgroup farm-read-pools read-pool-3
psu addto pgroup farm-read-pools read-pool-4

#
psu create unit -net 131.169.10.0/255.255.255.0
#
psu create ugroup farm-network
#
psu addto ugroup farm-network  131.169.10.0/255.255.255.0
#
psu create link farm-read-link any-store any-protocol farm-network
#
psu addto link farm-read-link farm-read-pools
#
psu set link farm-read-link -p2ppref=100 -readpref=100 -writepref=0 -cachepref=XXX...
#
#
#--------------------------------------------------------------
#
# create the faked net unit
#
psu create unit -net 192.1.1.1/255.255.255.255
#
psu create ugroup ocean-copy-network
#
psu addto ugroup ocean-copy-network  192.1.1.1/255.255.255.255
#
# we assume that 'any-protocol' and 'any-store' is already defined.
#
psu create link ocean-copy-link any-store any-protocol ocean-copy-network
#
psu addto link ocean-copy-link ocean-copy-pools
#
#  define the ocean-copy pool group and add pool members
#
psu create pgroup ocean-copy-pools
#
psu addto pgroup ocean-copy-pools  read-pool-1
#
psu set link ocean-copy-link -p2ppref=100 -readpref=100 -writepref=0 -cachepref=XXX...
#
#
#
#

File Hopping managed by the HoppingManager

Starting the FileHopping Manager service

The HoppingManager is not automatically started in 1.7.0. Please perform the following steps to get it
started :

• Create a file hopping.batch in the /opt/d-cache/config directory with the following content :
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    set printout default 3
    set printout CellGlue none
    onerror shutdown
    #
    check -strong setupFile
    #
    copy file:${setupFile} context:setupContext
    #
    #  import the variables into our $context.
    #  don't overwrite already existing variables.
    #
    import context -c setupContext
    #
    #   Make sure we got what we need.
    #
    check -strong serviceLocatorPort serviceLocatorHost
    #
    create dmg.cells.services.RoutingManager  RoutingMgr
    #
    #   The LocationManager Part
    #
    create dmg.cells.services.LocationManager lm \
           "${serviceLocatorHost} ${serviceLocatorPort}"
    #
    #
    create diskCacheV111.services.FileHoppingManager HoppingManager \
         "${config}/HoppingManager.conf -export"
    #

• change to /opt/d-cache/jobs

• Run ./initPackage.sh

• Start the service ./hopping start

Initially no rules are configured for the hopping manager. You may add rules by either edit the /opt/d-
cache/config/HoppingManager.conf and restart the hopping service, or use the admin interface
and save the modifications by ’save’ into HoppingManager.conf

Configuring pools to use the HoppingManager(x)

In order to instruct the pool to send a ’replicateFile’ message to the HoppingManager service, modify the
hostname.poolllist file as follows :

           ...
           ocean     /bigdisk/pools/ocean     replicateOnArrival=HoppingManager  more options
           ...

HoppingManager Configuration Introduction

• The HoppingManager essentially receives ’replicateFile’ messages from pools, configured to support
file hopping, and either discards or modifies and forwards them to the PoolManager, depending on
rules described below.

• The HoppingManager decides on the action to perform, based on a set of configurable rules. Each rule
has a name. Rules are checked in alphabetic order concerning their names.



File Hopping

61

• A rule it triggered if the storage class matches the storage class pattern assigned to that rule. If a rule is
triggered, it is processed and no further rule checking is performed. If no rule is found for this request
the file is not replicated.

• If for whatever reason, a file couldn’t be replicated, NO RETRY is being performed.

• Processing a triggered rule can be :

• The message is discarded. No replication is done for this particular storage class.

• The rule modifies the ’replicate message’, before it is forwarded to the PoolManager.

The ’destination ip number can be added to the ’replicate file’ message. This has the same effect as the
ip-number following the "PoolManager" keyword in the hostname.poollist file in the ’unconditional
replication section above. The rule assignes a ’destination’ ip number to the ’replicate message’, before
it is forwarded to the PoolManager. This has the same effect as the ip-number following the "PoolMan-
ager" keyword in the hostname.poollist file in the ’unconditional replication section above.

The mode of the replicated file can be specified. This can either be ’precious’, ’cached’ or ’keep’. ’keep’
means that the pool mode determines the replicated file mode.

The requested protocol can be specified.

HoppingManager Configuration Reference

         define hop OPTIONS name pattern precious|cached|keep
            OPTIONS
              -destination=cellDestination # default : PoolManager
              -overwrite
              -continue
              -source=write|restore|*   #  !!!! for experts only      StorageInfoOptions
              -host=destinationHostIp
              -protType=dCap|ftp...
              -protMinor=minorProtocolVersion
              -protMajor=majorProtocolVersion 

pattern is a storage class pattern which. If the incoming storage class matches this pattern, this rule is
processed.

precious|cached|keep determines the mode of the replicated file. ’keep’ leaves the destination mode to the
pool setting.

destination shouldn’t be used. For experts only.

overwrite In case, a rule with the same name already exists, it is overwritten. If this overwrite option is
specified, the error will occure.

continue If a rule has triggered and the corresponding action has been performed, no other rules are checked.
If the ’continue’ option is specified, rule checking continues. This is for debugging purposes only.

source Don’t use.

host, protType This is the ’host ip number’ and ’protocol type’used by the PoolManager in order find an
appropriate pool for the replication request. Please note that ’host’ is not the host of the destination pool.
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HoppingManager configuration examples

Define the HoppingManager as destination for the ’replicate file’ requests on the pool(s).

           ...
           ocean     /bigdisk/pools/ocean     replicateOnArrival=HoppingManager  more options
           ...

Replicate ’raw’ data files by all experiments.

          #
          define hop replicate-raw  .*:raw@osm -host=Farm Node Ip Number
          #

Replicate all CMS files to pools assigned to CMS farm nodes and all ATLAS files to pools assigned to
ATLAS farm nodes. Don’t replicate any other files.

          #
          define hop replicate-cms    cms:.*@osm    -host=Farm Node Ip Number of cms farm
          define hop replicate-atlas  atlase:.*@osm -host=Farm Node Ip Number of atlas farm
          #
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Chapter 10. dCache Partitioning
Patrick Fuhrmann

There are various parameters in the dCache PoolManager subsystem, determining the system behaviour
on particular events. These are e.g. the cost threshold at which the PoolManager initiates pool to pool
transfers to smooth the overall system cost, or the balance between performance and disk space related costs
to optimize request distribution among data pools. In pre 1.7.0 releases, those parameters were applied to
the a whole dCache instance. Starting with 1.7.0 a defined set of parameters (see next section) can have
different values for different sections of the complete dCache instance. dCache provides a web page, listing
section, assigned parameters and inheritance information.

Parameters, sections and inheritance
Parameters, currently part of the partitioning scheme, are listed within the next paragraph, together with
the old and new way of assigning values. A change in the command set has become necessary to reflect
the new schema. Each of those parameters may be set to different values for different, so called dCache
sections. The only section, existing without being created, is the default section. With the pre
1.7.0 command set, only the default section can be manipulated. With the new commmand set, all
sections can be created or modified. If only a subset of parameters of a non default section is
defined, the residual parameters of this section are inherited from the default section. So, changing
a parameter in the default section, will change the same parameter of all other sections for which
this particular parameter has not been overwritten.

Commands related to dCache partitioning :

• pm set [sectionName] -parameterName[=value|off] sets a parameter parameterName to a
new value. If sectionName is omitted, the default section is used. If sectionName doesn’t exist
yet, it is (silently) created. If a parameter is set to off this parameter is no longer overwritten and is
inherited from the default section. The off doesn’t make sense for the default section.

• pm ls [-l] [sectionName] lists a single or all sections. Except for the default, only those parameters
are shown which are explicitly set. Parameters, not shown, are inherited from the default section.

• pm destroy sectionName destroys a section.

The top menu of the PoolManager configuration web pages points to a page summerizing the section
status of the system. This is essentially the content of the pm ls -l.

List of partitionable parameters
The following list describes which parameters may be used in conjunction with dCache partitioning. The
’Old command set’ is still valid for the default parameter section, while new command set has to used to
manipulate non-default sections.
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Table 10.1. New and old PoolManager parameter names

Old Command New Command Parameter Type

set pool decision -
spacecostfactor=<value>

pm set [<section>] -
spacecostfactor=<value>

float

set pool decision -
cpucostfactor=<value>

pm set [<section>] -
cpucostfactor=<value>

float

set costcuts -idle=<value> pm set [<section>] -idle=<value> float

set costcuts -p2p=<value> pm set [<section>] -p2p=<value> float

set costcuts -alert=<value> pm set [<section>] -alert=<value> float

set costcuts -halt=<value> pm set [<section>] -halt=<value> float

set costcuts -fallback=<value> pm set [<section>] -
fallback=<value>

float

rc set slope <value> pm set [<section>] -
slope=<value>

float

rc set p2p on|off pm set [<section>] -p2p-allowed boolean

rc set p2p oncost pm set [<section>] -p2p-oncost boolean

rc set p2p fortransfer|notfortrans-
fer

pm set [<section>] -p2p-fortrans-
fer

boolean

rc set stage on|off pm set [<section>] -stage-allowed boolean

rc set stage oncost pm set [<section>] -stage-oncost boolean

rc set max copies <copies> pm set [<section>] -max-pn-
fs-copies=<copies>

integer

Assigning sections to real dCache parti-
tions
A section, so far, is just a set of parameters which may or may not differ from the default set. To let a section
relate to a part of the dCache, links are used. Each link may be assigned to exactly one section. If not set, or
the assigned section doesn’t exist, the link defaults to the default section.

 psu set link linkName -section=sectionName [other link options]

Whenever this link is chosen for pool selection, the assosiated parameters of the assigned section will become
active for further processing.

Warning

Depending on the way links are setup it may very well happen that more than just one link it trig-
gered for a particular dCache request. This is not illegal but leads to an ambiguity in selecting an
appropriate dCache section. If only one of the selected links has a section assigned, this section is
chosen. Otherwise, if different links point to different sections, the result is indeterminate. This issue
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is not yet solved and we recommend to clean up the PoolManager configuration to eliminate links
with the same preferences for the same type of requests.

Examples
For the subsequent examples we assume a basic PoolManager setup :

#
# define the units
#
psu create -protocol   */*
psu create -protocol   xrootd/*
psu create -net        0.0.0.0/0.0.0.0
psu create -net        131.169.0.0/255.255.0.0
psu create -store      *@*
#
#  define unit groups
#
psu create ugroup  any-protocol
psu create ugroup  any-store
psu create ugroup  world-net
psu create ugroup  xrootd
#
psu addto ugroup any-protocol */*
psu addto ugroup any-store    *@*
psu addto ugroup world-net    0.0.0.0/0.0.0.0
psu addto ugroup desy-net     131.169.0.0/255.255.0.0
psu addto ugroup xrootd       xrootd/*
#
#  define the pools
#
psu create pool poolName
psu create pool ...
#
#  define the pool groups
#
psu create pgroup default-pools
psu create pgroup special-pools
#
psu addto pgroup default-pools poolName
psu addto pgroup default-pools ...
#
psu addto pgrou  specail-pools poolName
psu addto pgroup special-pools ...

Disallowing pool to pool transfers for special pool
groups based on the access protocol
For a special set of pools, where we only allow the xrootd protocol, we don’t want the datasets to be
replicated on high load while for the rest of the pools we allow replication on hot spot detection.

#
# 
pm set default        -p2p=0.4
pm set xrootd-section -p2p=0.0
#
psu create link default-link any-protocol any-store world-net
psu add    link default-link default-pools
psu set    link default-link -readpref=10 -cachepref=10 -writepref=0
#
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psu create link xrootd-link xrootd any-store world-net
psu add    link xrootd-link special-pools
psu set    link xrootd-link -readpref=11 -cachepref=11 -writepref=0
psu set    link xrootd-link -section=xrootd-section
#        

Choosing ’random pool selection’ for incoming traf-
fic only
For the a set of pools we select pools following the default setting of cpu and space related cost factors. For
incoming trafic from outside, though, we select the same pools, but in a randomly distributed fashion.
Please note that this is not really a physical partitioning of the dCache system, but rather a virtual one, applied
to the same set of pools.

#
# 
pm set default          -cpucostfactor=0.2 -spacecostfactor=1.0
pm set incoming-section -cpucostfactor=0.0 -spacecostfactor=0.0
#
psu create link default-link any-protocol any-store desy-net
psu add    link default-link default-pools
psu set    link default-link -readpref=10 -cachepref=10 -writepref=10
#
psu create link default-link any-protocol any-store world-net
psu add    link default-link default-pools
psu set    link default-link -readpref=10 -cachepref=10 -writepref=0
#
psu create link incoming-link any-protocol any-store world-net
psu add    link incoming-link default-pools
psu set    link incoming-link -readpref=10 -cachepref=10 -writepref=10
psu set    link incoming-link -section=incoming-section
#
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Chapter 11. Central Flushing to tertiary
storage systems
Patrick Fuhrmann

This chapter is of interest for dCache instances connected to a tertiary storage system or making use of the
mass storage interface for any other reason.

Warning

The central flush control is still in the evaluation phase. The configuration description within this
chapter is mainly for the dCache team to get it running on their test systems. The final prodution
version will have most of this stuff already be configured.

dCache instances, connected to tertiary storage systems, collect incoming data, sort it by storage class and
flush it as soon as certain thresholds are reached. All this is done autonomously by each individual write
pool. Consequently those flush operations are coordinated on the level of a pool but not globally wrt a set of
write pools or even to the whole dCache instance. Experiences during the last years show, that for various
purposes a global flush management would be desirable.

Separation of read/write operations on write pools

The total thoughput of various disk storage systems tend to drop significantly if extensive
read and write operations have to be performed in parallel on datasets exceeding the filesys-
tem caches. To overcome this technical obstacle, it would be good if disk storage systems
would either allow writing into a pool or flushing data out of a pool into the HSM system,
but never both at the same time.

Overcoming HSM limitations and restictions

Some HSM systems, mainly those not coming with their own scheduler, apply certain re-
strictions on the number of requests being accepted simultaniously. For those, a central flush
control system would allow for limiting the number of requests or the number of storage
classes being flushed at the same time.

Basic configuration (Getting it to run)
This section describes how to setup a central flush control manager.

• Whitin the PoolManager, a pool-group (flushPoolGroup) has to be created and populated with
pools planned to be controlled by the central flush mechanism. An arbitrary number of flush control
managers may run within the same dCache instance as long as each can work on its own pool-group and
no pool is member of more than one flushPoolGroup.

• To start the flush control system, an corresponding dCache batch file has to be setup, installed and started.
As input parameter, the HsmFlushControl cell needs the name of the flushPoolGroup) and the
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name of the driver, controlling the flush behaviour. Within the same batch file more than one flush control
manager may be started as long as they get different cell-names and different pool-groups assigned.

• The flush control web pages have to be defined in the httpd.batch.

Creating the flush pool group
Creating flushPoolGroup and adding pools is done within the config/PoolManager.config
setup file or using the PoolManager command line interface. Pools may be member of other pool-groups,
as long as those pool-groups are not managed by other flush control managers.

psu create pool pool-1
psu create pool ...
#
psu create pgroup flushPoolGroup
#
psu addto pgroup flushPoolGroup  pool-1
psu addto pgroup flushPoolGroup  ...
#

Creating and activating the hsmcontrol batch file
#
set printout default errors
set printout CellGlue none
#
onerror shutdown
#
check -strong setupFile
#
copy file:${setupFile} context:setupContext
#
import context -c setupContext
#
check -strong serviceLocatorHost serviceLocatorPort
#
create dmg.cells.services.RoutingManager  RoutingMgr
#
create dmg.cells.services.LocationManager lm \
     "${serviceLocatorHost} ${serviceLocatorPort}"
#
create diskCacheV111.hsmControl.flush.HsmFlushControlManager FlushManagerName  \
        "flushPoolGroup  \
         -export   -replyObject \
         -scheduler=SchedulerName  \
         Scheduler specific options \
        "
#

Which the following meaning of the variables :

• flushPoolGroup needs to be the name of the pool group defined in the PoolManager.conf files.

• SchedulerName is the name of a class implementing the
diskCacheV111.hsmControl.flush.HsmFlushSchedulable interface.

• Scheduler specific options may be options specific to the selected scheduler.

Initially there are three schedulers available :
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• diskCacheV111.hsmControl.flush.driver.HandlerExample may be used as an exam-
ple implementation of the HsmFlushScheduler interface. The functionality is useless in an production
environment but can be useful to check the functionality of the central flush framework. If one allows this
driver to take over control it will initiate the flushing of data as soon as it becomes aware of it. One the
other hand it supports a mode where is doesn’t do anything except preventing the individual pools from
doing the flush autonomously. In that mode, the driver assumes the flushes to be steered manually by the
flush web pages decribed in the next paragraph. The latter mode is enabled by starting the flush driver
with the Scheduler specific options set to -do-nothing

• diskCacheV111.hsmControl.flush.driver.AlternateFlush is intended to provide
suffient functionality to cope with issues described in the introduction of the paragraph. Still quite some
code and knowledge has to go into this driver.

• diskCacheV111.hsmControl.flush.driver.AlternatingFlushSchedulerV1 is cer-
tainly the most useful driver. It can be configured to flush all pools on a single machine simultaniously. It
is trigger by space consumption, number of files within a pool or the time the oldest file resides on a pool
without having been flushed. Please checkout the next section for details on configuration and usage.

The AlternatingFlushSchedulerV1 driver
The AlternatingFlushSchedulerV1 is an alternating driver, which essentially means that it either allows data
to flow into a pool, or data going from a pool onto an HSM system but never both at the same time. Data
transfers from pools to other pools or from pools to clients are not controlled by this driver. In order to
minimize the latter one should configure HSM write pools to not allow transfers to clients but doing pool
to pool transfers first.

Configuration

#
create diskCacheV111.hsmControl.flush.HsmFlushControlManager FlushManagerName  \
        "flushPoolGroup  \
         -export   -replyObject \
         -scheduler=diskCacheV111.hsmControl.flush.driver.AlternatingFlushSchedulerV1  \
         -driver-config-file=${config}/flushDriverConfigFile \
        "
#

Where flushPoolGroup is a PoolGroup defined in the PoolManager.conf file, containing all pools
which are intended to be managed by this FlushManager. flushDriverConfigFile is a file within the
dCache config directory holding property values for this driver. The driver reloads the file whenever it
changes its modification time. One should allow for a minute of two before new setting are getting activated.
The configuration file has to contain key value pairs, separated by the = sign. Keys, not corresponding to a
driver property are silently ignored. Properties, not set in the configuration file, are set to some reasonable
default value.

Properties
Driver properties may be specified by a configuration file as described above or by talking to the driver
directly using the command line interface. Driver property commands look like :
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driver properties -PropertyName=value

Because the communication with the driver is asynchronous, this command will never return an error. To
check if the new property value has been accepted by the driver, run the sequence

            driver properties
            info

It will list all available properties together with the currently active values.

Table 11.1. Driver Properties

Property Name Default Value Meaning

max.files 500 Collect this number of files per pool, before flushing

max.minutes 120 Collect data for this amount of minutes before flushing

max.megabytes 500 * 1024 Collecto this number of megabytes per pool before
flushing

max.rdonly.fraction 0.5 Do not allow more than this percentage of pools to be set
read only

flush.atonce 0 Never flush more than that in one junk

timer 60 Interval timer (minimum resolution)

print.events false Print events delivered by the FlushManager

print.rules false Print remarks from the rule engine

print.poolset.progress false Print progress messages

The selection process

Finding all flush candidates

A pool is becoming a flush candidate if either the number of files collected exceeds
max.files or the number of megabytes collected exceeds max.megabytes or the old-
est file, not flushed yet, is becoming older than max.minutes.

Selecting the best candidate

Pool Candidates are sorted according to a metric, which is essentially the sum of three
items. The number of files devided by max.files, the number of megabytes devided by
max.megabytes and the age of the oldest file devided by max.minutes.

The pool with the highest metric is chosen first. The driver determines the hardware unit, this
pools resides on. The intention is to flush all pools of this unit simultanionsly. Depending
on the configuration, the unit can be either a disk partition or a host. After the hardware
unit is determined, the driver adds the number of pools on that unit to the number of pools
already in ’read only’ mode. If this sum exceeds the total number of pools in the flush pool
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group, multiplied by the max.rdonly.fraction property, the pool is NOT selected.
The process proceeds until a pool, resp. a hardware unit complies with these contrains.

The hardware unit, a pool belongs to, is set by the ’tag.hostname’ field in the con-
fig/hostname file.

The actual flush process

If a pool is flushed, all storage groups of that pool are flushed, and within each storage
group all precious files are flushed simultaniously. Setting the property flush.atonce
to some positive nonzero number will advise each storage group not to flush more than this
number of files per flush operation. There is no way to stop a flush operation which has
been triggered by the FlushManager. The pool will proceed until all files, belonging to this
flush operation, have been successfully flushed or failed to flush. Though, the next section
describes how to suspend the flush pool selection mechanism.

Suspending and resuming flush operations
The driver can be advised to suspend all new flush operations and switch to halt mode.

driver command suspend

To resume flushing :

driver command resume

In suspend mode, all flushing is halted which sooner or later results in overflowing write pools.

Driver interactions with the flush web portal or the
GUI
Flush Manager operations can be visualized by configuring the flush web pages, described in one of the
subsequent sections or by using the flush module of the ’org.pcells’ GUI. In addition to monitoring, both
mechanisms allow to set the pool I/O mode (rdOnly, readWrite) and to flush individual storage groups or
pools. The problem may be that those manual interactions interfere with driver operations. The Alternat-
ingFlushSchedulerV1 tries to cope with manual interactions as follows :

• The pool I/O mode may be manually set to read only  while the pool is not flushing data and therefor
naturally would be in read write mode. If this pool is then subsequently chosen for flushing, and the
flushing process has finished, the pool is NOT set back to readWrite mode, as it usually would be, but it
stays in readOnly mode, because the driver found this mode when starting the flush process and assumes
that it had been in that mode for good reason. So, setting the pool I/O mode to readOnly while the pool
is not flushing freezes this mode until manually changed again. Setting the I/O mode to readOnly while
the pool is flushing, has no effect.

• If a pool is in readOnly mode because the driver has been initiating a flush process, and the pool is
manually set back to readWrite mode, is stays in readWrite mode during this flush process. After the flush
sequence has finished, the pool is set back to normal as if no manual intervention had taken place. It does
not stay with readWrite mode forever as it stays in readOnly mode forever in the example above.
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When using the web interface or the GUI for flushing pools or individual storage groups, one is responsible
for setting the pool I/O mode oneself.

Setting up and using the flush control web
pages.
In order to keep track on the flush activities the flush control web pages need to be activated. Add a new
set alias directive somewhere between the define context httpdSetup endDefine and the endDefine
command in the /opt/d-cache/config/httpd.batch file.

define context httpdSetup endDefine
...
set alias flushManager class diskCacheV111.hsmControl.flush.HttpHsmFlushMgrEngineV1
 mgr=FlushManagerName
...
endDefine

Additional flush managers may just be added to this command, separated by commas. After restarting
the ’httpd’ service, the flush control pages are available at http://headnode:2288/flushManag-
er/mgr/*.

The flush control web page is split into 5 parts. The top part is a switchboard, pointing to the different
flush control managers installed. (listed in the mgr= option of the set alias flushManager in the con-
fig/httpd.config). The top menu is followed by a reload link. Its important to use this link instead
of the ’browsers’ reload button. The actual page consists of tree tables. The top one presents common con-
figuration information. Initially this is the name of the flush cell, the name of the driver and whether the
flush controller has actually taken over control or not. Two action buttons allow to switch between centrally
and locally controlled flushing. The second table lists all pools managed by this controller. Information is
provided on the pool mode (readonly vers. readwrite), the number of flushing storage classes, the total size of
the pool and the amount of precious space per pool. Action buttons allow to toggle individual pools between
ReadOnly and ReadWrite mode. Finally the third table presents all storage classes currently holding
data to be flushed. Per storage class and pool, characteristic properties are listed, like total size, precious
size, active and pending files. Here as well, an action button allows to flush individual storage classes on
individual pools.

Warning

The possibilty to interactively interact with the flush manager needs to be supported by the driver
choosen. Please check the information on the individual driver how far this is supported.

Examples

Configuring Central Flushing for a single Pool
Group with the AlternatingFlushSchedulerV1 driver

Setting up the PoolManager configuration
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Add all pools, which are planned to be centrally flushed to a PoolGroup, lets say flush-
PoolGroup :

psu create pool migration-pool-1
psu create pool migration-pool-2
#
psu create pgroup flushPoolGroup
#
psu addto pgroup flushPoolGroup migration-pool-1
psu addto pgroup flushPoolGroup migration-pool-2
#

Setting up the central flush batch file.

Create a batchfile /opt/d-cache/config/hsmcontrol.batch with the following
content :

#
set printout default 3
set printout CellGlue none
#
onerror shutdown
#
check -strong setupFile
#
copy file:${setupFile} context:setupContext
#
import context -c setupContext
#
check -strong serviceLocatorHost serviceLocatorPort
#
create dmg.cells.services.RoutingManager  RoutingMgr
#
create dmg.cells.services.LocationManager lm \
     "${serviceLocatorHost} ${serviceLocatorPort}"
#
create diskCacheV111.hsmControl.flush.HsmFlushControlManager FlushManager  \
        "flushPoolGroup \
         -export   -replyObject \
         -scheduler=diskCacheV111.hsmControl.flush.driver.AlternatingFlushSchedulerV1
  \
          -driver-config-file=${config}/flushPoolGroup.conf \
        "
#

Change to /opt/d-cache/jobs and run ./initPackage.sh. Ignore possible
warnings and error messages. The Script will create the necessary links, mainly the jobs/
hsmcontrol startup file. To start the central service run

cd /opt/d-cache/jobs
./hsmcontrol start

This setup will produce quite some output in /var/log/hsmcontrol.log. Reduce
the output level if this is not required.

set printout default errors

Setting up the driver properties file
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Create a file in /opt/d-cache/config named flushPoolGroup.conf with the
content listed below. You may change the content any time. The driver will reload it after
awhile.

#
#  trigger parameter
#
max.files=4
max.minutes=10
max.megabytes=200
#
#  time interval between rule evaluation
#
timer=60
#
# which fraction of the pool set should be rdOnly (maximum)
#
max.rdonly.fraction=0.999
#
#  output steering
#
print.events=true
print.rules=true
print.pool.progress=true
print.poolset.progress=true
mode=auto
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Chapter 12. gPlazma authorization in
dCache
Ted Hesselroth

gPlazma is a cell in dCache that authorizes users. Cells make requests to gPlazma by submitting user
credential information to it, receiving the authorization decision and site-specific user information such as
uid, gid, and rootpath in return.

The acronym stands for Grid-aware PLuggable AuthoriZation Management, and supports the use of plugins
which implement various selectable authorization methods. The four currently-available methods are:

• kpwd : This is the “legacy” method. The dcache.kpwd file is used to map a user’s DN to a local
username, and the same file is used in a second mapping of the username to the uid, gid, and rootpath. As
in all methods, if the mappings succeed, file system access is done using the obtained uid and gid, and a
check is done that the local path of the transfer starts with the designated rootpath.

• grid-mapfile : This method employs a grid mapfile. From the mapfile, the user’s DN is mapped to a
username. A second file, storage-authzdb, is used for the mapping of the username to the uid, gid, and
rootpath.

• gplazmalite-vorole-mapping : In this method the mapping to the username is done from the concatenation
of the user’s DN with the user’s Role (or, more precisely, with the user’s Fully Qualified Attribute Name).
The mapping of username to uid, gid, and rootpath is through the storage-authzdb file.

• saml-vo-mapping : The DN and Role are mapped to a username via a callout to a GUMS [http://
grid.racf.bnl.gov/GUMS/] server. The GUMS service may run an extension which returns the uid, gid,
and rootpath as well. Otherwise, the mapping of username to uid, gid, and rootpath is through the stor-
age-authzdb file.

The following describes how to use gPlazma in dCache.

Installation
gPlazma is included in dCache version 1.7 or higher. As of that version, the gPlazma cell can be called
from GridFTP and GSIdCap doors and the SRM server.

For the dCache 1.7 version, there must be host certificates on the node running the gPlazma cell. For version
1.8, host certificates are needed if the option to delegate (see the section called “Delegation to gPlazma”)
to gPlazma is used.

Depending on which authorization methods are to be used, some configuration files must be modified. The
configuration files described here must exist on the node on which you wish to run the gPlazma cell and
must contain the correct site-specific information for the dCache on which it is deployed.

Configuring the gPlazma Policy File
The gPlazma policy file, located in ${ourHomeDir}/etc/dcachesrm-gplazma.policy, con-
trols which authorization plugins will be tried and the order in which they will be tried. The first of these is
specified lines containing "ON" or "OFF" for each plugin, for example

http://grid.racf.bnl.gov/GUMS/
http://grid.racf.bnl.gov/GUMS/
http://grid.racf.bnl.gov/GUMS/
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# Switches
xacml-vo-mapping="OFF"
saml-vo-mapping="ON"
kpwd="ON"
grid-mapfile="OFF"
gplazmalite-vorole-mapping="OFF"

The order is specified by assigning a different number to each plugin, such as

# Priorities
xacml-vo-mapping-priority="5"
saml-vo-mapping-priority="1"
kpwd-priority="3"
grid-mapfile-priority="4"
gplazmalite-vorole-mapping-priority="2"

In the above example, the saml-vo-mapping plugin would be tried first. If authorization was denied for that
method, or if the authentication method itself failed, then the kpwd plugin would be tried. The "Priorities"
numbering shows that if gplazmalite-vorole-mapping were to also be turned on, it would be tried after the
saml-vo-mapping plugin and before the kpwd method.

Having more than one plugin turned on allows a plugin to be used as fallback for another plugin that may
fail. It also allows for the authorization of special users who may be denied by the other methods.

The policy file also contains a section for each of the plugins, for configuration specific to that plugin. These
sections are described in the documentation for each plugin, as follows.

Configuring the kpwd Plugin
The section in the gPlazma policy file for the kpwd plugin specifies the location of the dcache.kpwd
file, for example

# dcache.kpwd
kpwdPath="/opt/d-cache/etc/dcache.kpwd"

To maintain only one such file, make sure that this is the same location as defined in dCacheSetup.

Please see dCache documentation for dcache.kpwd [http://www.dcache.org/down-
loads/Release.notes1.6.5-2] for how to create this file.

Configuring the grid-mapfile Plugin
Two file locations are defined in the policy file for this plugin:

# grid-mapfile
gridMapFilePath="/etc/grid-security/grid-mapfile"
storageAuthzPath="/etc/grid-security/storage-authzdb"

Preparing the grid mapfile
The grid mapfile is the same as that used in other applications. It can be created in various ways, either by
connecting directly to VOMS or GUMS servers, or by hand.

http://www.dcache.org/downloads/Release.notes1.6.5-2
http://www.dcache.org/downloads/Release.notes1.6.5-2
http://www.dcache.org/downloads/Release.notes1.6.5-2
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Each line contains two fields: a DN (Certificate Subject) in quotes, and the username it is to be mapped to.

"/DC=org/DC=doegrids/OU=People/CN=Gina Carlson 584065" uscms01

When using the grid-mapfile plugin, the storage-authzdb file must also be configured. See the section
called “storage-authzdb” for details.

storage-authzdb
In gPlazma, except for the dcache.kpwd plugin, authorization mapping is a two-step process. First, a user-
name is obtained from a mapping of the user’s DN or DN and role, then a mapping of username to uid, gid,
rootpath is performed. The  storage-authzdb file is used for the second mapping.

Preparing storage-authzdb
The location of storage-authzdb is /etc/grid-security/storage-authzdb. The file must contain
a line specifying the version of the storage-authdb format.

version 2.1

The other lines in the file each contain eight fields: the string "authorize", followed by the username, read-
write permission, uid, gid, and three paths.

authorize uscms01 read-write 60076 5063 / /pnfs/fnal.gov/resilient/uscms01 /

In the storage-authzdb file, there must be a line for each username to be authorized. The existence of three
paths is for legacy puposes. The second path is of most importance; it is the path under which the user is
allowed to access files. It is permissible to simply use a “/” for the second path.

authorize uscms01 read-write 60076 5063 / / /

in which case the user will be authorized for any path (the filesystem permissions in pnfs must also allow
the transfer).

The first path is nearly always left as “/”, but it may be used as a home directory in interactive session,
as a subdirectory of the second path. Upon login, the second path is used as the user’s root, and a “cd” is
performed to the first path. The first path is always defined as being relative to the second path.

Starting with dCache 1.9, multiple gids can be assigned by using comma-separated values for the GID file,
as in

authorize uscms01 read-write 60076 5063,5071,6843 / / /

The lines of the storage-authzdb file are similar to the “login” lines of the dcache.kpwd file. If you alreay
have a dcache.kwpd file, create storage-authzdb by taking the lines from your dcache.kpwd file that
start with the word "login", for example,
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login uscms01 read-write 60076 5063 / /pnfs/fnal.gov/resilient/uscms01 /

and replacing the word “login” with “authorize”.

Support for the Priority Field in storage-authzdb
In the future, dCache services may support the use of priorites, to be assigned in storage-authzdb. To assign
priorities in storage-authzdb, replace the stated version number with "2.2"

version 2.2

In the remainder of the file, the fourth field of each line is the priority, which is an integer. Otherwise the
fields have the same definitions as in version 2.1.

authorize uscms01     read-write    2       60076 5063   / /pnfs/fnal.gov/resilient/uscms01 /
authorize cmssoft     read-write    0       60501 5502   / /pnfs/fnal.gov/reduction/cmssoft /

Using version 2.1, the default priority is “0”, therefore use this value if it is desired to have the same behavior
as in 2.2. Interpretation of the priority value is dependent on the implementation of any dCache service which
may use it, however, the convention is that higher numerical values of the field result in higher priority. See
the documentation of the specific service in question for details.

There are currently no dCache services which make use of the priority field.

Configuring the gplazmalite-vorole-map-
ping Plugin
The gPlazma policy file contains two lines for this plugin.

# Built-in gPLAZMAlite grid VO role mapping
gridVoRolemapPath="/etc/grid-security/grid-vorolemap"
gridVoRoleStorageAuthzPath="/etc/grid-security/storage-authzdb"

The second is the storage-authz-db used in other plugins. See the above documentation Configuring stor-
age-authzdb for how to create the file.

Preparing grid-vorolemap
The file is similar in format to the grid-mapfile, however there is an additional field following the DN
(Certificate Subject), containing the FQAN (Fully Qualified Attribute Name).

"/DC=org/DC=doegrids/OU=People/CN=Gina Carlson 584065" "/cms/uscms" uscms01
"/DC=org/DC=doegrids/OU=People/CN=Gina Carlson 584065" "/cms/uscms/Role=cmsprod" cmsprod

Therefore each line has three fields: the user’s DN, the user’s FQAN, and the username that the DN and
FQAN combination are to be mapped to.
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The FQAN is sometimes semantically referred to as the “role”. The same user can be mapped to different
usernames depending on what their role is. The role is determined by how the user creates their proxy, for
example, using voms-proxy-init. The FQAN contains the user’s Group, Role (optional), and Capability
(optional). The latter two may be set to the string “NULL”, in which case they will be ignored by the plugin.

If a user is authorized in multiple roles, for example

"/DC=org/DC=doegrids/OU=People/CN=Gina Carlson 584065" "/cms/uscms" uscms01
"/DC=org/DC=doegrids/OU=People/CN=Gina Carlson 584065" "/cms/uscms/Role=cmsuser" cms2847
"/DC=org/DC=doegrids/OU=People/CN=Gina Carlson 584065" "/cms/uscms/Role=cmsphedex" phedex
"/DC=org/DC=doegrids/OU=People/CN=Gina Carlson 584065" "/cms/uscms/Role=cmsprod" cmsprod

they would be mapped to the username corresponding to the role found in the proxy that the user creates for
use by the client software. Starting in dCache 1.8, if the user actually creates several roles in their proxy,
authorization (and subsequent check of path and filesystem permissions) will be attempted for each role in
the order that they are found in the proxy. In a griftp URL, the user may also explicity request a username

gsiftp://cmsprod@griddoor1.oursite.edu:2811/testfile1

in which case other roles will be disregarded.

Authorizing a VO
Instead of individual DNs, it is allowable to use * or "*" as the first field, such as

"*" "/cms/uscms/Role=cmsprod" cmsprod

In that case, any DN with the corresponding role will match. It should be noted that a match is first attempted
with the explicit DN. Therefore if both DN and "*" matches can be made, the DN match will take prece-
dence. This is true for the revocation matches as well (see below).

Thus a user with subject

"/DC=org/DC=doegrids/OU=People/CN=Ted Hesselroth 897321"

and role

"/cms/uscms/Role=cmsprod"

will be mapped to username cmsprod via the above storage-authzdb line with "*" for the DN, except if
there is also a line such as

"/DC=org/DC=doegrids/OU=People/CN=Ted Hesselroth 898521" "/cms/uscms/Role=cmsprod" uscms01

in which case the username will be uscms01.

Revocation Entries
To create a revocation entry, add a line with - as the username, such as
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"/DC=org/DC=doegrids/OU=People/CN=Timur Perelmutov 623542" "/uscms/production" -

or modify the username of the entry if it already exists. The behaviour is undefined if there are two entries
which differ only by username.

Since DN is matched first, if a user would be authorized by his VO membership through a "*" entry, but
is matched according to his DN to a revocation entry, authorization would be denied. Likewise if a whole
VO were denied in a revocation entry, but some user in that VO could be mapped to a username through
his DN, then authorization would be granted.

More Examples
Suppose that there are users in production roles that are expected to write into the storage system data which
will be read by other users. In that case, to protect the data the non-production users would be given read-
only access. Here in /etc/grid-security/grid-vorolemap the production role maps to username
cmsprod, and the role which reads the data maps to cmsuser.

"*" "/cms/uscms/Role=cmsprod" cmsprod
"*" "/cms/uscms/Role=cmsuser" cmsuser

The read-write privilege is controlled by the third field in the lines of /etc/grid-security/stor-
age-authzdb

authorize cmsprod  read-write  9811 5063 / /pnfs/fnal.gov/data /
authorize cmsuser  read-only  10001 6800 / /pnfs/fnal.gov/data /

Another use case is when users are to have their own directories within the storage system. This can be
arranged within the gPlazma configuration files by mapping each user’s DN to a unique username and
then mapping each username to a unique root path. As an example, lines from /etc/grid-securi-
ty/grid-vorolemap would therefore be written

"/DC=org/DC=doegrids/OU=People/CN=Selby Booth" "/cms" cms821
"/DC=org/DC=doegrids/OU=People/CN=Kenja Kassi" "/cms" cms822
"/DC=org/DC=doegrids/OU=People/CN=Ameil Fauss" "/cms" cms823

and the corresponding lines from /etc/grid-security/storage-authzdb would be

authorize cms821 read-write 10821 7000 / /pnfs/fnal.gov/data/cms821 /
authorize cms822 read-write 10822 7000 / /pnfs/fnal.gov/data/cms822 /
authorize cms823 read-write 10823 7000 / /pnfs/fnal.gov/data/cms823 /

Starting with dCache 1.8, regular expressions are supported in the /etc/grid-security/stor-
age-authzdb file. Substitutions by regular expression group are also permitted. Place a regular expres-
sion in the username field of the storage-authzdb file. Any groups in the regular expression (defined
by enclosure in parentheses) can be referred to in later fields of the line, and the corresponding susbstitution
will be made when the file is read. For example, the above lines for granting users individual directories
can be replaced with

authorize cms(\d\d\d) read-write 10$1 7000 / /pnfs/fnal.gov/data/cms$1 /
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in which case cms821 matches cms(\d\d\d) and the group (\d\d\d) is substituted in 10$1 to yield
10821 and in /pnfs/fnal.gov/data/cms$1 to yield /pnfs/fnal.gov/data/cms821, and so
on.

Configuring the saml-vo-mapping Plugin
There are two lines in the policy file for this plugin.

# SAML-based grid VO role mapping
mappingServiceUrl="https://gums.oursite.edu:8443/gums/services/GUMSAuthorizationServicePort"
# Time in seconds to cache the mapping in memory
saml-vo-mapping-cache-lifetime="60"

The first line containins the URL for the GUMS web service. Replace the URL with that of the site-specific
GUMS [http://grid.racf.bnl.gov/GUMS/]. When using the "GUMSAuthorizationServicePort", the service
will only provide the username mapping and it will still be necesary to have the storage-authzdb file used
in other plugins. See the above documentation Configuring storage-authzdb for how to create the file. If a
GUMS server providing a "StorageAuthorizationServicePort" with correct uid, gid, and rootpath information
for your site is available, the storage-authzdb file is not necesary.

The second line contains the value of the caching lifetime. In order to decrease the volume of requests to
the SAML authorization (GUMS) service, authorizations for the saml-vo-mapping method are by default
cached for a period of time. To change the caching duration, modify the saml-vo-mapping-cache-lifetime
value in /opt/d-cache/etc/dcachesrm-gplazma.policy

saml-vo-mapping-cache-lifetime="120"

To turn off cach caching, set the value to 0.The default value is 60 seconds except for in dCache version
1.9.2, in which the default value is 0; caching is turned off by default in that version.

Configuring the xacml-vo-mapping Plugin
Beginning with dCache version 1.9.2, gPlazma includes a new authorization plugin, to support the XACML
authorization schema. Using XACML with SOAP messaging allows gPlazma to acquire authorization
mappings from any service which supports the obligation profile for grid interoperability [http://cd-
docdb.fnal.gov/cgi-bin/ShowDocument?docid=2952]. Servers presently supporting XACML mapping are
the latest releases of GUMS and SCAS. Using the new plugin is optional, and previous configuration
files are still compatible with gPlazma. If the installation is an upgrade it will change /opt/d-cache/con-
fig/gPlazma.batch. It is normally not necessary to change this file, but if you have customized the previous
copy, transfer your changes to the new batch file.

The configuration is very similar to that for the saml-vo-mapping plugin. There are two lines for the con-
figuration.

# XACML-based grid VO role mapping
XACMLmappingServiceUrl="https://fledgling09.fnal.gov:8443/gums/services/GUMSXACMLAuthorizationServicePort"
# Time in seconds to cache the mapping in memory
xacml-vo-mapping-cache-lifetime="180"

for a GUMS [http://grid.racf.bnl.gov/GUMS/] server, or, for an SCAS server,

http://grid.racf.bnl.gov/GUMS/
http://grid.racf.bnl.gov/GUMS/
http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2952
http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2952
http://cd-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2952
http://grid.racf.bnl.gov/GUMS/
http://grid.racf.bnl.gov/GUMS/
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# XACML-based grid VO role mapping
XACMLmappingServiceUrl="https://scas.europeansite.eu:8443"
# Time in seconds to cache the mapping in memory
xacml-vo-mapping-cache-lifetime="180"

As for the saml-vo-mapping, the first line containins the URL for the web service.Replace the URL with
that of the site-specific GUMS or SCAS server. When using the "GUMSXACMLAuthorizationService-
Port" (notice the difference in service name from that for the saml-vo-mapping) with a GUMS server, the
service will only provide the username mapping and it will still be necesary to have the storage-authzdb file
used in other plugins. See the above documentation  Configuring storage-authzdb for how to create the file.
An SCAS server will return a UID, a primary GID, and secondary GIDS, but not a rootpath. A storage-au-
thzdb file will be necesary to assign the rootpath. Since SCAS does not return a username, the convention
in gPlazma is to use "uid:gid" for the username, where uid is the string representation of the uid returned
by SCAS, and gid is the string representation of the primary GID returned by SCAS. Thus a line such as

authorize 13160:9767 read-write 13160 9767 / /pnfs/fnal.gov/data /

in /etc/grid-security/storage-authzdb will serve to assign the user mapped by SCAS to
uid=13160 and primary gid=9767 the rootpath /pnfs/fnal.gov/data. It is best for consistency’s sake
to fill in the UID and GID fields with the same values as in the "uid:gid" field. Additional secondary gids
can be assigned by using comma-separated values in the GID field. Any gids there not already returned as
secondary gids by SCAS will be added to the secondary gids list.

The second line contains the value of the caching lifetime. In order to decrease the volume of requests to the
XACML authorization (GUMS or SCAS) service, authorizations for the saml-vo-mapping method are by
default cached for a period of time. To change the caching duration, modify the saml-vo-mapping-cache-
lifetime value in /opt/d-cache/etc/dcachesrm-gplazma.policy

saml-vo-mapping-cache-lifetime="120"

To turn off cach caching, set the value to 0. For xacml-vo-mapping, the default value is 0; caching is turned
off by default.

An example policy file
Here is an example of how a policy file might be set up.

saml-vo-mapping="ON"
kpwd="ON"
grid-mapfile="OFF"
gplazmalite-vorole-mapping="OFF"
saml-vo-mapping-priority="1"
kpwd-priority="3"
grid-mapfile-priority="4"
gplazmalite-vorole-mapping-priority="2"
kpwdPath="/opt/d-cache/etc/dcache.kpwd"
gridMapFilePath="/etc/grid-security/grid-mapfile"
storageAuthzPath="/etc/grid-security/storage-authzdb"
mappingServiceUrl="https://fledgling09.fnal.gov:8443/gums/services/GUMSAuthorizationServicePort"
saml-vo-mapping-cache-lifetime="60"
gridVoRolemapPath="/etc/grid-security/grid-vorolemap"
gridVoRoleStorageAuthzPath="/etc/grid-security/storage-authzdb"
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In this case, gPlazma will attempt to authorize first through a GUMS server, and fall back to using
dcache.kpwd. The mappingServiceUrl would have to be changed to a GUMS server appropriate for the
site.

The Setup Files
Changes to Setup files require a restart of the cell.

The gPlazmaSetup File
This file will normally be a link to ${ourHomeDir}/config/dCacheSetup. The section of the file
which controls the operation of the cell is as follows:

gplazmaPolicy=${ourHomeDir}/etc/dcachesrm-gplazma.policy
#
# gPlazmaNumberOfSimutaneousRequests  30
# gPlazmaRequestTimeout               30
#
# useGPlazmaAuthorizationModule=false
# useGPlazmaAuthorizationCell=true

The first line defines the path to the gPlazma policy file. It is set to the default location of the policy file.
If the path to the gPlazma policy file changes, enter the full path in the above line.

The variable gPlazmaNumberOfSimutaneousRequests determines the number of threads which will be start-
ed on the gPlazma cell to handle requests. The default value should be sufficient, but may be raised or
lowered depending on the capacity of the hardware and other processes running on it.

The variable gPlazmaRequestTimeout is the amount of time in seconds that a request thread has to finish an
authorization decision. If this time is exceeded, authorization is denied.

The next two variables are not used by gPlazma, but by GridFTP door and SRM. Their description
follows.

The gridftpdoorSetup and srmSetup Files
Thes two files will normally be links to ${ourHomeDir}/config/dCacheSetup. The lines of interest
for gPlazma are

gplazmaPolicy=${ourHomeDir}/etc/dcachesrm-gplazma.policy

and

# useGPlazmaAuthorizationModule=false
# useGPlazmaAuthorizationCell=true

The latter two lines control whether the GridFTP door or SRM will authorize locally, or use the gPlazma
for authorization. The default is to use the gPlazma cell for authorization. If both values are set to false,
the GridFTP door or SRM will use the dcache.kpwd lookup method. A dcache.kpwd file must be
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present on the GridFTP door or SRM node in that case. It is possible to use gPlazma methods on the
GridFTP door or SRM without calling the gPlazma cell. See the following section.

Using Direct Calls of gPlazma Methods
Cells may also call gPlazma methods as an alternative, or as a fallback, to using the gPlazma cell.

Operation without a gPlazma Cell
If the gPlazma cell is not started, other cells can still authorize by calling gPlazma methods directly from
a pluggable module. The gPlazma control files and host certificates are needed on the node from which
authorization will take place. To invoke the gPlazma modules, modify the following line in gridftp-
doorSetup or srmSetup to

useGPlazmaAuthorizationModule=true

and make sure that the gplazmaPolicy line defines a valid gPlazma policy file on the node for which
authorization is to occur:

gplazmaPolicy=${ourHomeDir}/etc/dcachesrm-gplazma.policy

No adjustable timeout is available, but any blocking would likely be due to a socket read in the saml-vo-
mapping plugin, which is circumvented by a built-in 30-second timeout.

Using a gPlazma Cell with a Direct-Call Fallback
Both a call to the gPlazma cell and the direct call of the gPlazma module may be specified. In that case,
authentication will first be tried via the gPlazma cell, and if that does not succeed, authentication by direct
invocation of gPlazma methods will be tried. Modify the following lines to:

useGPlazmaAuthorizationModule=true
useGPlazmaAuthorizationCell=true

Make sure that the line for gplazmaPolicy

gplazmaPolicy=${ourHomeDir}/etc/dcachesrm-gplazma.policy

set to a local policy file on the node. The gPlazma policy file on the GridFTP door or SRM does not
have to specify the same plugins as the gPlazma cell.

gPlazma Options

Validating User Attributes in dCache 1.8
A user’s roles (Fully Qualified Attribute Names) are read from the certificate chain found within the proxy.
These attributes are signed by the user’s VOMS server when the proxy is created. Starting with version 1.8,
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gPlazma supports checking the signature of the attributes against VOMS server certificates installed on
the gPlazma node. To have gPlazma validate the proxy attributes, place the voms server certificates in /
etc/grid-security/vomsdir and in /opt/d-cache/etc/dcachesrm-gplazma.policy
set

vomsValidation="true"

The default is false. The same would need to be done on the SRM or any door node for which gPlazma
modules are called directly as a fallback.

Validating User Attributes in dCache 1.9
In version 1.9, VOMS attribute validation in gPlazma uses a method in which installation of the voms
server certificate is not required. Instead the signature on an attribute is checked against the ca certificate that
signed the voms server certificate. To have gPlazma validate the proxy attributes in dCache 1.9, write con-
figuration directories and "*.lsc" files in /etc/grid-security/vomsdir for each authorized voms
server according to these instructions [https://twiki.cern.ch/twiki/bin/view/LCG/VomsFAQforServiceMan-
agers] and in /opt/d-cache/etc/dcachesrm-gplazma.policy set

vomsValidation="true"

As with previous versions, the default is false. Whether validation is on or not, there must be a non-empty /
etc/grid-security/vomsdir on the node which is running gPlazma. It is enough to do

[root] # mkdir /etc/grid-security/vomsdir
touch /etc/grid-security/vomsdir/empty-cert.pem

to create the non-empty directory.

Delegation to gPlazma
In dCache version 1.7, SRM or the GridFTP door delegated the user’s credentials to gPlazma, and the
user’s attributes were extracted from the secure context. For performance purposes, starting in version 1.8 the
delegation step is not performed. To turn on delegation, in /opt/d-cache/config/dCacheSetup
on the node running SRM or the GridFTP door, set the line

delegateToGPlazma=true

The default value is false. To support delegation, host certificates must exist on the host which runs
gPlazma.

https://twiki.cern.ch/twiki/bin/view/LCG/VomsFAQforServiceManagers
https://twiki.cern.ch/twiki/bin/view/LCG/VomsFAQforServiceManagers
https://twiki.cern.ch/twiki/bin/view/LCG/VomsFAQforServiceManagers
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Chapter 13. dCache as xRootd-Server
Martin Radicke

This chapter explains how to configure dCache in order to access it via the xrootd protocol, allowing
xrootd-Clients like ROOT’s TXNetfile and xrdcp to do file operations against a dCache instance in a
transparent manner. The current implementation in dCache 1.7.0 is based on the most recent production
version of the xrootd protocol (2.4.5).

Setting up
The xrootd functionality is contained in all dCache releases starting from 1.7.0. Versions prior to this are
not supported!

To allow file transfers in and out of dCache using xrootd, a new xrootd door must be started. This door
acts then as the entry point to all xrootd requests. Compared to the native xrootd server-implementation
(produced by SLAC), the xrootd door refers to the redirector node.

To enable the xrootd door, just change the config file ${dCacheHome}/etc/node_config so
that it contains the line

..  XROOTD=yes
      ..

After a restart of the dCache core-services, done by executing

[root] # ${dCacheHome}/bin/dcache-core restart

the xrootd door should be running. A few minutes later it should appear at the web monitoring interface
under "Cell Services" (see the section called “The Web Interface for Monitoring dCache”).

Warning

Starting from version 1.7.0 (patchlevel 20), the xrootd door is set to readonly by default. In
prior versions, the door is started in unsecure mode, giving clients unrestricted read and write access.
Please refer to the section called “xrootd security” on how to setup security.

Parameters
The default port the xrootd door is listening on is 1094. This can be changed in ${dCacheHome}/
config/dCacheSetup by setting the variable "xrootdPort" to the desired value (again restart required).

The number of parallel xrootd file transfers per pool node is limited by the portrange defined in
${dCacheHome}/config/dCacheSetup, since each transfer occupies one (not firewalled) port for
its own. The portrange can be set via the property "org.dcache.net.tcp.portrange" in the line

..
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java_options="-server -Xmx512m -XX:MaxDirectMemorySize=512m -Dorg.globus.tcp.port.range=50000,52000 
-Dsun.net.inetaddr.ttl=1800 -Djava.net.preferIPv4Stack=true -Dorg.dcache.dcap.port=0 
-Dorg.dcache.net.tcp.portrange=33115:33145 "
..

In the above example, the maximum would be 30 simultaneous xrootd transfers per pool. Any change to
the door port or the portrange requires a dDache-core- or accordingly dCache-pool- restart.

Quick tests
The subsequent paragraphs describe a quick guide on how to test xrootd using the xrdcp and ROOT
clients.

Copying files with xrdcp

A simple way to get files in and out of dCache via xrootd is the command xrdcp. It is included in every
xrootd and ROOT distribution.

To transfer a single file in and out of dCache, just issue

[user] $ xrdcp /bin/sh root://door_hostname//pnfs/site.de/data/xrd_test
      [user] $ xrdcp root://door_hostname//pnfs/site.de/data/xrd_test /dev/null

Accessing files from within ROOT

This simple ROOT example shows how to write a randomly filled histogram to a file in dCache:

root [0] TH1F h("testhisto", "test", 100, -4, 4);
root [1] h->FillRandom("gaus", 10000);
root [2] TFile *f = new TXNetFile("root://door_hostname//pnfs/site.de/data/test.root","new");
061024 12:03:52 001 Xrd: Create: (C) 2004 SLAC INFN XrdClient 0.3
root [3] h->Write();
root [4] f->Write();
root [5] f->Close();
root [6] 061101 15:57:42 14991 Xrd: XrdClientSock::RecvRaw: Error reading from socket: Success
061101 15:57:42 14991 Xrd: XrdClientMessage::ReadRaw: Error reading header (8 bytes)

Closing remote xrootd files that live in dCache produces this warning, but has absolutely no effect on
subsequent ROOT commands. It happens because dCache closes all TCP connections after finishing a file
transfer, while xrootd expects to keep them open for later resue.

To read it back into ROOT from dCache:

root [7] TFile *reopen = TXNetFile ("root://door_hostname//pnfs/site.de/data/test.root","read");
root [8] reopen->ls();
TXNetFile**             //pnfs/site.de/data/test.root
 TXNetFile*             //pnfs/site.de/data/test.root
  KEY: TH1F     testhisto;1     test



dCache as xRootd-Server

88

xrootd security

Read-Write access
Per default dCache xrootd is restricted to read-only, because plain xrootd is completely unauthenticated.
A typical error message on the clientside if the server is read-only looks like:

 [user] $ xrdcp -d 1 /bin/sh root://ford.desy.de//pnfs/desy.de/data/xrd_test2
Setting debug level 1
061024 18:43:05 001 Xrd: main: (C) 2004 SLAC INFN xrdcp 0.2 beta
061024 18:43:05 001 Xrd: Create: (C) 2004 SLAC INFN XrdClient kXR_ver002+kXR_asyncap
061024 18:43:05 001 Xrd: ShowUrls: The converted URLs count is 1
061024 18:43:05 001 Xrd: ShowUrls: URL n.1: root://ford.desy.de:1094//pnfs/desy.de/data/asdfas.
061024 18:43:05 001 Xrd: Open: Access to server granted.
061024 18:43:05 001 Xrd: Open: Opening the remote file /pnfs/desy.de/data/asdfas
061024 18:43:05 001 Xrd: XrdClient::TryOpen: doitparallel=1
061024 18:43:05 001 Xrd: Open: File open in progress.
061024 18:43:06 5819 Xrd: SendGenCommand: Server declared: Permission denied. Access is read only.
(error code: 3003)
061024 18:43:06 001 Xrd: Close: File not opened.
Error accessing path/file for root://ford//pnfs/desy.de/data/asdfas

To enable read-write access, edit the following line in ${dCacheHome}/config/dCacheSetup

..
xrootdIsReadOnly=false
..

and do a restart of the dCache core services.

Please note that due to the unauthenticated nature of this access mode, files can be written and read to/from
any subdirectory in the pnfs namespace (including the automatic creation of parent directories). Because
there is no user information at the time of request, new files/subdirectories generated through xrootd will
inherit UID/GID from its parent directory.

Permitting write access on selected pnfs directo-
ries
To overcome the security issue of uncontrolled xrootd write access mentioned in the previous section, it is
possible to restrict write access on a per-directory basis (including subdirectories). This feature is available
from dCache 1.7.0-36 on.

To activate this feature, a colon-seperated list containing the full pnfs paths of authorized directories must
be provided in ${dCacheHome}/config/dCacheSetup:

..
xrootdAllowedPaths=/pnfs/site.de/path1:/pnfs/site.de/path2
..

A restart of the xrootd door is required to make the changes take effect. As soon as ${xrootdAllowed-
Paths} is set, all write requests to directories not matching the allowed path list will be refused.
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Token-based authorization

The xrootd dCache implementation includes a generic mechanism to plug in different authorization
handler. The only plugin available so far implements token-based authorization as suggested in http://
people.web.psi.ch/feichtinger/doc/authz.pdf.

The first thing to do is to setup the keystore. The keystore file basically specifies all RSA-keypairs used
within the authorization process and has exactly the same syntax as in the native xrootd tokenauthorization
implementation. In this file, each line beginning with the keyword KEY corresponds to a certain Virtual
Organisation (VO) and specifies the remote public (owned by the file catalogue) and the local private key
belonging to that VO. A line containing the statement "KEY VO:*" defines a default keypair that is used
as a fallback solution if no VO is specified in token-enhanced xrootd requests. Lines not starting with the
KEY keyword are ignored. A template can be found in ${dCacheHome}/etc/keystore.template.

The keys itself have to be converted into a certain format in order to be loaded into the authorization plugin.
dCache expects both keys to be binary DER-encoded (Distinguished Encoding Rules for ASN.1). Further-
more the private key must be PKCS #8-compliant and the public key must follow the X.509-standard.

The following example demonstrates how to create and convert a keypair using OpenSSL:

Generate new RSA private key
[root] # openssl genrsa -rand 12938467 -out key.pem 1024

Create certificate request
[root] # openssl req -new -inform PEM -key key.pem -outform PEM -out certreq.pem

Create certificate by self-signing certificate request
[root] # openssl x509 -days 3650 -signkey key.pem -in certreq.pem -req -out cert.pem

Extract public key from certificate
[root] # openssl x509 -pubkey -in cert.pem -out pkey.pem
[root] # openssl pkcs8 -in key.pem -topk8 -nocrypt -outform DER -out new_private_key
[root] # openssl enc -base64 -d -in pkey.pem -out new_public_key

Only the last two lines are performing the actual conversion, therefore you can skip the previous lines in
case you already have a keypair. Make sure that you keystore file correctly points to the converted keys.

To enable the plugin, it is necessary to uncomment and customize the following two lines in the file
${dCacheHome}/config/dCacheSetup, so that it looks like

..
 xrootdAuthzPlugin=org.dcache.xrootd.security.plugins.tokenauthz.TokenAuthorizationFactory
 xrootdAuthzKeystore=Path_to_your_Keystore
 ..

After doing a restart of dCache-core, any requests without an appropriate token should result in an error
saying "authorization check failed: No authorization token found in open
request, access denied.(error code: 3010)".

If both tokenbased authorization and read-only access are activated, the read-only restriction will dominate
(local settings have precedence over remote file catalogue permissions).

http://people.web.psi.ch/feichtinger/doc/authz.pdf
http://people.web.psi.ch/feichtinger/doc/authz.pdf
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Precedence of security mechanisms
The previously explained methods to restrict access via xrootd can also be used in conjunction. The prece-
dence applied in that case is as following:

The permission check executed by the authorization plugin (if one is installed) is given the lowest priority,
because it can controlled by a remote party. E.g. in the case of tokenbased authorization, access control is
determined by the file catalogue (global namespace).

To allow local site’s administrators to override remote security settings, write access can be further restricted
to few directories (based on the local namespace, the pnfs). Setting xrootd access to read-only has the
highest priority, overriding all other settings.
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Chapter 14. dCache Storage Resource
Manager

Gerd Behrmann
Dmitry Litvintsev
Timur Perelmutov
Vladimir Podstavkov

Introduction
Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic
space allocation and file management on shared storage components on the Grid. SRMs support protocol
negotiation and a reliable replication mechanism. The SRM specification standardizes the interface, thus
allowing for a uniform access to heterogeneous storage elements.

General SRM Concepts
SRM interface consists of the five categories of functions: Space Management, Data Transfer, Request Sta-
tus, Directory and Permission Functions. SRM interface utilizes Grid Security Infrastructure (GSI) for au-
thentications. SRM service is a Web Service implementation of a published WSDL document. Please visit
SRM Working Group Page [http://sdm.lbl.gov/srm-wg/] to see the SRM Version 1.1 and SRM Version 2.2
protocol specification documents.

SURLs

SRM defines a protocol name SRM, and introduces a way to address the files stored in the SRM managed stor-
age by Site URL of the format srm://<host>:<port>/[<web service path>?SFN=]<path>.
Examples of the Site URLs a.k.a. SRM URLs are:

srm://fapl110.fnal.gov:8443/srm/managerv2?SFN=//pnfs/fnal.gov/data/test/file1,
srm://fapl110.fnal.gov:8443/srm/managerv1?SFN=/pnfs/fnal.gov/data/test/file2
srm://srm.cern.ch:8443/castor/cern.ch/cms/store/cmsfile23

All SRM functions that operate on files use Site URLs (SURLs) for file references.

Data Transfer functions

There are three functions for performing data transfers in SRM, namely srmPrepareToGet, srmPrepareToP-
ut and srmCopy. These are SRM Version 2.2 names, in SRM Version 1.1 they were called get, put and
copy, but their roles were essentially the same. These functions take list of sources(srmPrepareToGet),
destinations(srmPrepareToPut) or both (srmCopy). The role of the srmPrepareToGet function is to prepare
the system for the receipt of the data into the given file names, to make sure that the system has enough
space to store the files, that the user has sufficient privileges to create the files in the paths designated by the
SURLs. The purpose of the srmPrepareToPut function is to prepare the data stored in files, designated by the

http://sdm.lbl.gov/srm-wg/
http://sdm.lbl.gov/srm-wg/


dCache Storage Resource Manager

92

given SURLs , that are already a part of the system for the network access; SRM needs again to check that the
user has sufficient privileges to access the files in the paths designated by the SURLs. One of the features of
thesrmPrepareToGet and srmPrepareToPut functions is that they both support transfer protocol negotiation.
This means that in case of both of these functions client supplies a list of supported transfer protocols and
SRM server computes the Transfer URL in the first protocol from the list that it supports. Depending on the
implementation the real action in the Storage System performed in response to this invocation may range
from simple SURL to TURL translation to a Stage from Tape to Disk Cache and dynamic selection of the
transfer host and transfer protocol depending on the protocol availability and current load on each of the
transfer server load. It is a responsibility of the client to perform the transfer and to notify the SRM that it
is done with the files. srmCopy function performs a copy between a local and a remote storage system, it
is given a list of source – destination URL pairs. At least one of the URLs in each pair must be an SURL
of file in the SRM system contacted with the srmCopy request. Second URL can be a local or remote SURL
or URL in some other transfer protocol. In case of srmCopy the SRM system performs data transfer itself,
without data ever flowing though the client’s computer.

The Data Transfer functions are asynchronous, initial SRM call leads to the start of the execution of the
client’s request, and the functions return the request statuses, that contain unique request tokens, that can be
used in subsequent calls for periodic polling of the status of the request. Once the SRM completes the requests,
and clients are done with the data transfers, clients notify the system that they are done with the files and are
ready to release the associated resources, the client notifies the system by execution of the srmReleaseFiles
in case of srmPrepareToGet or srmPutDone in case of srmPrepareToPut. In case of srmCopy, system knows
when the transfer is competed and resources can be released, so it requires no special function at the end.

Clients are free to cancel the requests at any time by execution of the srmAbortFiles or srmAbortRequest.

Space Management functions

SRM Version 2.2 introduces a concept of space reservation. Space reservation is a promise by the storage
system to make certain amount of storage space of certain type available for usage for a specified period of
time. Space reservation is made using srmReserveSpace function. In case of successful reservation, a unique
name, called space token is assigned to the reservation. Space token can be used during the transfer operations
to tell the system to put the files being manipulated or transferred into an associated space reservation .
A storage system ensures that the reserved amount of the disk space is indeed available, thus providing a
guarantee that a client does not run out of space until all space promised by the reservation has been used.
When files are deleted, the space is returned to the space reservation.

A space reservation has a property called retention policy. Possible values of retention policy are Replica,
Output and Custodial. The retention policy describes the quality of the storage service that will be provided
for the data (files) stored in this space reservation. Replica corresponds to the lowest quality of the service,
usually associated with storing a single copy of each file on the disk. Custodial is the highest quality service,
usually interpreted as storage of the data on Tape. WLCG has decided not to use Output retention policy in
its data grid. Output is an intermediate retention policy is stronger than Replica and weaker than Custodial,
and in dCache Output retention policy will possibly be used for files managed by Resilient Manager, which
will make several internal copies of each file, distributed on distinct instances of hardware. Once a file is
written into a given space reservation, it inherits the reservation’s retention policy.

Another property of the space reservation is called access latency. The two values allowed are Nearline and
Online. Nearline means that the data stored in this reservation are allowed to be stored in such a way that
retrieving them might require storage system to perform additional preparatory steps (staging data from tape
to a disk cache for example). Online means that data is readily available and it will not take long to start
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reading the date. In case of dCache Online means that there will always be a copy of the file on disk, while
Nearline does not provide such guarantee. As with retention policy, once a file is written into a given space
reservation, it inherits the reservation’s access latency.

DCache however only manages write space, i.e. only space on disk can be reserved and only for write
operations. Once files are migrated to tape, and if no copy is required on disk, space used by these files
is returned back into space reservation. When files are read back from tape and cached on disk, they are
not counted as part of any space. SRM Space reservation can be assigned a non-unique description, then the
description cab be used in the future to discover all space reservation with a given description.

Properties of the SRM Space Reservations can be discovered using SrmGetSpaceMetadata function. Space
Reservations might be released with srmReleaseSpace. For a complete description of the available functions
please see  SRM Version 2.2 Specification [http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html].

Utilization of the Space Reservations for Data Storage

SRM Version 2.2 srmPrepareToPut and srmCopy pull mode transfers allow the user to specify a space reser-
vation token or a retention policy and an access latency. In the protocol, any of these values are optional, and
it is up to the implementation to decide what to do, if these properties are not specified. The specification
does however require that if a space reservation is given, then any access latency or retention policy specified
must match the same properties of the space reservation.

Directory functions

Starting from SRM Version 2.2, interface provides a complete set of the directory management functions.
These are srmLs, srmRm, srmMkDir, srmRmDir and srmMv.

Permission functions

SRM Version 2.2 support the following three space permission functions, srmGetPermission, srmCheckPer-
mission and srmSetPermission. dCache contains a rudimentary implementation of these functions that most-
ly allow setting and checking of the Unix file permission.

SRM Service
dCache SRM is implemented as Web Service Interface running under Apache Tomcat application server and
Axis Web Services engine. This service starts a dCache SRM domain with a main SRM cell and a number of
other cells SRM service relies on. These are SrmSpaceManager, PinManager, RemoteGsiftpCopyManager,
etc. Of these services only SRM and SrmSpaceManager require special configuration.

dCache specific concepts

Link Groups

dCache 1.8 PoolManager supports new type of objects called LinkGroups. Each link group corresponds
to a number of dCache pools in the following way: LinkGroup is a collection of the Links, each of which
is a collection of the PoolGroups associated (Linked, hence a name “Link”) with a set of the Pool Selection
Units or PSUs. Each link group knows about its available size, which is a sum of all available sizes in all

http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html


dCache Storage Resource Manager

94

the pools included in this link group. In addition link group has 5 boolean properties called replicaAllowed,
outputAllowed, custodialAllowed, onlineAllowed and nearlineAllowed, the values of these properties (true
or false) can be configured in PoolManager.conf.

Space Reservations

In dCache 1.8 each SRM Space Reservation is made against the total available disk space of a particular link
group. The total space in dCache that can be reserved is the sum of the available sizes of all Link Groups.
If dCache is configured correctly each byte of disk space, that can be reserved, belongs to one and only one
Link Group. Therefore it is important to make sure that no pool belongs to more than one pool group, no
Pool Group belongs to more than one Link and no Link belongs to more than one LinkGroup.

Files written into a space made within a particular link group will end up on one of the pools referred to
by this link group. The difference between the Link Group’s available space and the sum of all the current
space reservation sizes is the available space in the link group.

Explicit and Implicit Space Reservations for Data Storage in
dCache

In dCache, if a space reservation is specified, the file will be stored in it (assuming the user has permission
to do so in the name space).

If the reservation token is not specified, and implicit space reservation is enabled, then a space reservation
will be performed implicitly for each SRM v1.1 and SRM 2.2 srmPrepareToPut or srmCopy in pull mode. If
an Access Latency and a Retention Policy are specified, the user defined retention policy and default access
latency. If the user has not specified Access Latency or Retention Policy (or if SRM v1.1 is used) , the system
will attempt to extract special tags (not surprisingly called “AccessLatency” and “RetentionPolicy”) from
PNFS namespace from the directory to which file is being written. If the tags are present, then their values
will determine the default Access Latency or Retention Policy that will be used for implicit space reserva-
tions. If the tags are not present, then system wide defaults will be used. If no implicit space reservation
can be made, the transfer will fail. (Note: some clients also have default values, which are used when not
explicitly specified by the user. I this case server side defaults will have no effect. )

If the implicit space reservation is not enabled in dCache 1.8 the pools in the link groups will be excluded
from consideration and only the remaining pools will be considered to be the candidates for storing the
incoming data, and classical pool selection mechanism will be used. If the space reservation is not used and
no LinkGroups are specified, the system behavior will be exactly the same as in dCache 1.7.

Space Manager access control

When SRM Space Reservation request is executed, its parameters, such as reservation size, lifetime, access
latency and retention policy as well as user’s Virtual Organization (VO) membership information is for-
warded to the SRM SpaceManager.

Space Manager uses a special file for listing all the Virtual Organizations (VOs) and all the VO Roles that
are permitted to make reservations in the given link group. List of the allowed VOs and VO Roles, together
with the total available space and replicaAllowed, outputAllowed, custodialAllowed, onlineAllowed and
nearlineAllowed properties of the group is than matched against the information from the user request in
order to determine if a given space reservation can be made in particular link group. Once a space reservation
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is created, no access control is performed, any user can attempt to store the files in this space reservation,
provided he or she knows the exact space token.

Choosing The right hardware and OS for
the SRM node

Hardware
We recommend to install dCache SRM server on a separate node with sufficient memory and a fast disk
optimized for database application. For example Fermilab US-CMS T1 site uses the following hardware for
SRM node. Dual Intel Xeon Duo, 4 GB RAM, 3ware raid disk array.

Operating System
Latest Scientific Linux or RHEL would do.

The kernel.shmmax=1073741824 and kernel.shmall=1073741824 kernel parameters should be set for a 4GB
RAM Machine. This can be accomplished by running:

[root] # echo 'kernel.shmmax=1073741824' >>  /etc/sysctl.conf
[root] # echo 'kernel.shmall=1073741824' >>  /etc/sysctl.conf
[root] # /bin/sysctl -p

The exact content of US-CMS T1 SRM sysctl.conf is:

kernel.core_uses_pid = 1
kernel.sysrq = 1
kernel.panic = 60
fs.file-max = 131072
net.ipv4.ip_forward = 0
vm.vfs_cache_pressure = 10000
# Keep this amount of memory free for emergency, IRQ and atomic allocations.
vm.min_free_kbytes = 65535
# Network tune parameters
net.ipv4.tcp_timestamps = 0
net.ipv4.tcp_sack = 0
net.ipv4.tcp_window_scaling = 1
kernel.shmmax=1073741824
kernel.shmall=1073741824

Configuring Postgres Database
Install the latest PostgreSQL database from PostgreSQL web site [http://www.postgresql.org/download/].
While some like RPMs, others find that they have 100% guarantee of compatibility of the software only if
they build it locally from sources. In later case source rpms or archive of sources are available.

We highly recommend to make sure that PostgreSQL database files are stored on a separate disk that is not
used for anything else (not even PostgreSQL logging). BNL Atlas Tier one observed a great improvement
in srm-database communication performance after they deployed postgres on a separate dedicated machine.

To provide seamless local access to the database please make the following modifications:

http://www.postgresql.org/download/
http://www.postgresql.org/download/
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The file /var/lib/pgsql/data/pg_hba.conf should contain the following lines

local   all         all                        trust
host    all         all         127.0.0.1/32   trust
host    all         all         ::1/128        trust

If SRM or srm monitoring is going to be installed on a separate node, you need to add entry for this node
as well:

host    all         all       monitoring node    trust
host    all         all       srm node    trust

The postgresql.conf should contain the following:

#to enable network connection on the default port
max_connections = 100
port = 5432
...
shared_buffers = 114688
...
work_mem = 10240
...
#to enable autovacuuming
stats_row_level = on
autovacuum = on
autovacuum_vacuum_threshold = 500  # min # of tuple updates before
                                   # vacuum
autovacuum_analyze_threshold = 250      # min # of tuple updates before
                                        # analyze
autovacuum_vacuum_scale_factor = 0.2    # fraction of rel size before
                                        # vacuum
autovacuum_analyze_scale_factor = 0.1   # fraction of rel size before
#
# setting vacuum_cost_delay might be useful to avoid
# autovacuum penalize general performance
# it is not set in US-CMS T1 at Fermilab
#
# In IN2P3 add_missing_from = on
# In Fermilab it is commented out

# - Free Space Map -
max_fsm_pages = 500000

# - Planner Cost Constants -
effective_cache_size = 16384            # typically 8KB each

To enable dCache SRM components access to the database server with the user srmdcache:

[root] # createuser -U postgres --no-superuser --no-createrole --createdb --pwprompt srmdcache

SRM will use the database dcache for storing its state information:

[root] # createdb -U srmdcache dcache

Configuring SRM Domain
Once database and and JVM are installed and database is running, you may install dCache SRM.
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Install dCache server.rpm

[root] # rpm -Uvh dcache.server.rpm

node_config

Copy /pt/d-cache/etc/node_config.template into /opt/d-cache/etc/node_config

Edit /opt/d-cache/etc/node_config

NODE_TYPE=custom
...
SRM=yes
...
# all other parameters should be turned off on "srm only" node

srm_setup.env
Edit /opt/d-cache/etc/srm_setup.env

• Make sure that JAVA_HOME is set to correct value, for example

JAVA_HOME=/usr/java/jdk1.5.0_07

• Tomcat port does not interfere with with services that are already using network

TOMCAT_PORT=8080

• If you are going to run the monitoring on the same node:

TOMCAT_HTTP_ENABLED=true
JAVA_OPTS="-Xmx512m -Djava.awt.headless=true"

install dCacheSetup
Copy /opt/d-cache/etc/dCacheSetup.template into /opt/d-cache/con-
fig/dCacheSetup and edit it so that, serviceLocatorHost and serviceLocatorPort point to central dcache
node:

serviceLocatorHost=host of central node
serviceLocatorPort=11111

following SRM parameters should be configured as following:

srmVacuum=false
srmDbName=dcache
srmDbUser=srmdcache
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Make sure that both srmCopyReqThreadPoolSize and remoteGsiftpMaxTransfers are set to
the same values and the common value should be the roughly equal to the maximum number of the SRM -
to -SRM copies your system can sustain. So if you think about 3 gridftp transfer per pool and you have 30
pools than the number should be 3x30=90.

srmCopyReqThreadPoolSize=90
remoteGsiftpMaxTransfers=90

Note US-CMS T1 has:

srmCopyReqThreadPoolSize=2000
remoteGsiftpMaxTransfers=2000

Tomcat/axis deployment
Run

[root] # /opt/d-cache/install/install.sh

Starting and stopping SRM domain
Run

[root] # /opt/d-cache/bin/dcache-core start

to start SRM domain.

Run

[root] # /opt/d-cache/bin/dcache-core stop

to stop SRM domain.

SRM Logs
SRM might produce a lot of logs, especially if it run in debug mode. Need to run SRM in debug mode is greatly
reduced if SRM monitoring is installed. It is recommended to make sure that logs are redirected into a file on
large disk. dCache SRM 1.7 logs into /opt/d-cache/libexec/apache-tomcat-5.5.20/logs/
catalina.out.

SRM configuration for experts
There are a few parameters in dCacheSetup that you might find useful for nontrivial SRM deployment.

srmSpaceManagerEnabled
srmSpaceManagerEnabled tells if the space management is activated in SRM.
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Possible values are yes and no. Default is yes.

Usage example:

srmSpaceManagerEnabled=yes

srmImplicitSpaceManagerEnabled
srmImplicitSpaceManagerEnabled tells if the space should be reserved for SRM Version 1 trans-
fers and for SRM Version 2 transfers that have no space token specified. Will have effect only if srmSpace-
ManagerEnabled.

Possible values are yes and no. This is enabled by default, disabled if srmSpaceManagerEnabled
is set to no.

Usage example:

srmImplicitSpaceManagerEnabled=yes

overwriteEnabled
overwriteEnabled tells to SRM and GridFTP servers if the overwrite is allowed. If enabled on SRM
node, should be enabled on all GridFTP nodes.

Possible values are yes and no. Default is no.

Usage example:

overwriteEnabled=yes

srmOverwriteByDefault
srmOverwriteByDefault Set this to true if you want overwrite to be enabled for SRM v1.1 interface
as well as for SRM v2.2 interface when client does not specify desired overwrite mode. This option will be
considered only if overwriteEnabled is set to yes.

Possible values are true and false. Default is false.

Usage example:

srmOverwriteByDefault=false 

srmDatabaseHost
srmDatabaseHost tells to SRM which database host to connect to. Do not change unless you know what
you are doing.

Default value is localhost.
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Usage example:

srmDatabaseHost=database-host.example.org

spaceManagerDatabaseHost
spaceManagerDatabaseHost tells to SRM Space Manager which database host to connect to. Do not
change unless you know what you are doing.

Default value is localhost.

Usage example:

spaceManagerDatabaseHost=database-host.example.org

pinManagerDatabaseHost
pinManagerDatabaseHost tells to SRM Pin Manager which database host to connect to. Do not change
unless you know what you are doing.

Default value is localhost.

Usage example:

pinManagerDatabaseHost=database-host.example.org

srmDbName
srmDbName  tells to SRM which database to connect to. Do not change unless you know what you are doing.

Default value is dcache.

Usage example:

srmDbName=dcache

srmDbUser
srmDbUser tells to SRM which database user name to use when connecting to database. Do not change
unless you know what you are doing.

Default value is srmdcache.

Usage example:

srmDbUser=srmdcache
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srmDbPassword
srmDbPassword tells to SRM which database password to use when connecting to database. Do not change
unless you know what you are doing.

Usage example:

srmDbPassword=NotVerySecret

srmPasswordFile
srmPasswordFile tells to SRM which database password file to use when connecting to database. Do
not change unless you know what you are doing. It is recommended that MD5 authentication method
is used. To learn about file format please see http://www.postgresql.org/docs/8.1/static/libpq-pgpass.html.
To learn more about authentication methods please visit http://www.postgresql.org/docs/8.1/static/encryp-
tion-options.html, Please read "Encrypting Passwords Across A Network" section.

This option is not set by default.

Usage example:

srmPasswordFile=/root/.pgpass

srmJdbsMonitoringLogEnabled
srmJdbsMonitoringLogEnabled tells the SRM to store the history of the SRM request executions
in the database. This option is useful if you are using SRMWatch web monitoring tool. Activation of this
option might lead to the increase of the database activity, so if the PostgreSQL load generated by SRM is
excessive, disable it.

Possible values are true and false. Default is false.

Usage example:

srmJdbsMonitoringLogEnabled=false

srmDbLogEnabled
srmDbLogEnabled tells to SRM to store the information about the remote (copy, srmCopy) transfer details
in the database. This option is useful if you are using SRMWatch web monitoring tool. Activation of this
option might lead to the increase of the database activity, so if the PostgreSQL load generated by SRM is
excessive, diable it.

Possible values are true and false. Default is false.

Usage example:

srmDbLogEnabled=false

http://www.postgresql.org/docs/8.1/static/libpq-pgpass.html
http://www.postgresql.org/docs/8.1/static/encryption-options.html
http://www.postgresql.org/docs/8.1/static/encryption-options.html
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srmVersion
srmVersion not used by SRM, it was mentioned that this value us used by some publishing scritps.

Default is version1.

pnfsSrmPath
pnfsSrmPath tells to SRM what is the root of all SRM paths is in pnfs. SRM will prepend path to all
the local SURL paths passed to it by SRM client. So if the pnfsSrmPath is set to /pnfs/fnal.gov/
THISISTHEPNFSSRMPATH and someone requests the read of srm://srm.example.org:8443/
file1, SRM will translate the SURL path /file1 into /pnfs/fnal.gov/THISISTHEPNFSSRM-
PATH/file1. Setting this variable to something different from / is equivalent of performing Unix chroot
for all SRM operations.

Default value is /.

Usage example:

pnfsSrmPath="/pnfs/fnal.gov/data/experiment"

parallelStreams
parallelStreams specifies the number of the parallel streams that SRM will use when performing third
party transfers between this system and remote GSI-FTP servers, in response to SRM v1.1 copy or SRM V2.2
srmCopy function. This will have no effect on srmPrepareToPut and srmPrepareToGet command results
and parameters of GridFTP transfers driven by the SRM clients.

Default value is 10.

Usage example:

parallelStreams=20

srmBufferSize
srmBufferSize specifies the number of bytes to use for the in memory buffers for performing third party
transfers between this system and remote GSI-FTP servers, in response to SRM v1.1 copy or SRM V2.2
srmCopy function. This will have no effect on srmPrepareToPut and srmPrepareToGet command results
and parameters of GridFTP transfers driven by the SRM clients.

Default value is 1048576.

Usage example:

srmBufferSize=1048576
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srmTcpBufferSize
srmTcpBufferSize specifies the number of bytes to use for the tcp buffers for performing third party
transfers between this system and remote GSI-FTP servers, in response to SRM v1.1 copy or SRM V2.2
srmCopy function. This will have no effect on srmPrepareToPut and srmPrepareToGet command results
and parameters of GridFTP transfers driven by the SRM clients.

Default value is 1048576.

Usage example:

srmTcpBufferSize=1048576

srmAuthzCacheLifetime
srmAuthzCacheLifetime specifies the duration that authorizations will be cached. Caching decreases
the volume of messages to the gPlazma cell or other authorization mechanism. To turn off caching, set
the value to 0.

Default value is 120.

Usage example:

srmAuthzCacheLifetime=60

srmGetLifeTime, srmPutLifeTime and srmCopyLife-
Time
srmGetLifeTime, srmPutLifeTime and srmCopyLifeTime specify the lifetimes of the srmPre-
pareToGet (srmBringOnline) srmPrepareToPut and srmCopy requests lifetimes in millisecond. If the system
is unable to fulfill the requests before the request lifetimes expire, the requests are automatically garbage
collected.

Default value is 14400000 (4 hours)

Usage example:

srmGetLifeTime=14400000
srmPutLifeTime=14400000
srmCopyLifeTime=14400000

srmGetReqMaxReadyRequests, srmPutReq-
MaxReadyRequests, srmGetReqReadyQueueSize
and srmPutReqReadyQueueSize
srmGetReqMaxReadyRequests and srmPutReqMaxReadyRequests specify the maximum num-
ber of the files for which the transfer URLs will be be computed and given to the users in responce to SRM
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get (srmPrepareToGet) and put (srmPrepareToPut) requests. The rest of the files that are ready to be trans-
fered are put on the Ready queues, the maximum length of these queues are controlled by srmGetRe-
qReadyQueueSize and srmPutReqReadyQueueSize parameters. These parameters should be set
according to the capacity of the system, and are usually greater than the maximum number of the GridFTP
transfers that this dCache instance GridFTP doors can sustain.

Usage example:

srmGetReqReadyQueueSize=10000
srmGetReqMaxReadyRequests=2000
srmPutReqReadyQueueSize=10000
srmPutReqMaxReadyRequests=1000

srmCopyReqThreadPoolSize and remoteGsiftpMax-
Transfers
srmCopyReqThreadPoolSize and remoteGsiftpMaxTransfers. srmCopyReqThreadPoolSize
is used to specify how many parallel srmCopy file copies to execute simultaneously. Once the this SRM
contacted remote SRM system, and obtained a Transfer URL (usually GSI-FTP URL), it contact a Copy
Manager module (usually RemoteGsiftpTransferManager), and asks it to perform a GridFTP transfer be-
tween remote GridFTP server and a dCache pool. The maximum number of the simultaneous transfers
that RemoteGsiftpTransferManager will support is remoteGsiftpMaxTransfers, therefore it is important that
remoteGsiftpMaxTransfers is greater than or equal to srmCopyReqThreadPoolSize.

Usage example:

srmCopyReqThreadPoolSize=250
remoteGsiftpMaxTransfers=260

srmCustomGetHostByAddr
srmCustomGetHostByAddr srmCustomGetHostByAddr enables using the BNL developed procedure
for host by IP resolution if standard InetAddress method failed.

Usage example:

srmCustomGetHostByAddr=true

RecursiveDirectoryCreation
RecursiveDirectoryCreation allows or disallows automatic creation of directories via SRM,
allow=true, disallow=false.

Automatic directory creation is allowed by default.

Usage example:

RecursiveDirectoryCreation=true
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SRM Space Manager configuration

SRM Space Manager and LinkGroups
Space Manager is making reservations agains space in LinkGroups, LinkGroup is an object created by the
PoolManager, that consists of several Links. The total space available in the given LinkGroup is a sum
of available spaces in all links. The available space in each link is a sum of the available spaces in all
pools assinged to a given link. Therefore for the space reservation to work correctly it is essential that
each pool belongs to one and only one link, and each link belongs to only one LinkGroup. LinkGroups are
assigned several parameters that determine what kind of space the LinkGroup correspond to and who can
make reservation against this space.

Definition of the LinkGroups in the
PoolManager.conf
To configure PoolManager to create the new LinkGroup (a new reservable entity in dCache), please use
following example (given in the PoolManager). Here we assume that write-link link already exists:

(PoolManager) admin > psu create linkGroup write-link-group
(PoolManager) admin > psu addto linkGroup  write-link-group write-link

To tell Space Manager if the LinkGroup will be able to store files with given AccessLatency and Retention-
Policy, LinkGroups have 5 attributes: custodialAllowed, outputAllowed, replicaAllowed, onlineAllowed
and nearlineAllowed. These attributes can be specified with the following commands:

(PoolManager) admin > psu set linkGroup custodialAllowed <group name> <true|false>
(PoolManager) admin > psu set linkGroup outputAllowed <group name> <true|false>
(PoolManager) admin > psu set linkGroup replicaAllowed <group name> <true|false>
(PoolManager) admin > psu set linkGroup onlineAllowed <group name> <true|false>
(PoolManager) admin > psu set linkGroup nearlineAllowed <group name> <true|false>

Please note that that it is up to administrators that the link groups attributes are specified correctly. For
example dcache will not complain if the linkGroup that does not support tape backend will be declared as
one that supports custodial.

Activating SRM Space Manager
In order to enable the new space reservation: add (uncomment) the following definition in dCacheSetup

srmSpaceManagerEnabled=yes

SRM Space Manager Parameters in dCacheSetup

SpaceManagerDefaultRetentionPolicy

If space reservation request does not specify retention policy we will assign SpaceManagerDefault-
RetentionPolicy retention policy by default.
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Possible values are REPLICA, OUTPUT and CUSTODIAL.

Usage example:

SpaceManagerDefaultRetentionPolicy=CUSTODIAL

SpaceManagerDefaultAccessLatency

If space reservation request does not specify access latency we will assign SpaceManagerDefaultAc-
cessLatency this access latency by default.

Possible values are ONLINE and NEARLINE.

Usage example:

SpaceManagerDefaultAccessLatency=NEARLINE

SpaceManagerReserveSpaceForNonSRMTransfers

If SpaceManagerReserveSpaceForNonSRMTransfers is set to true, and if the transfer request
come from the door, and there was not prior space reservation made for this file, Space Manager will try
to reserve space before satisfying the request.

Possible values are true and false.

Usage example:

SpaceManagerReserveSpaceForNonSRMTransfers=false

SpaceManagerLinkGroupAuthorizationFileName

SpaceManagerLinkGroupAuthorizationFileName specifies a file that contains the list of
FQANs that are allowed to make space reservations in a given link group. The file syntax is described in
the next section.

This parameter is not set by default.

Usage example:

SpaceManagerLinkGroupAuthorizationFileName=/opt/d-cache/etc/LinkGroupAuthorization.conf

Implicit Space Reservations
As it was described in the section called “Introduction”, dCache can perform implicit space reservations
for SRM Version 1 data transfers and for SRM Version 2.2 data transfers that are not given the space token
explicitly. The parameter that enables this behavior is srmImplicitSpaceManagerEnabled, which
is described in the section called “SRM configuration for experts”. In case of SRM version 1.1 data transfers,
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when the Access Latency and Retention Policy cannot be specified, and in case of SRM V2.2 clients, when
Access Latency and Retention Policy are not specified, the default values will be used. First SRM will attempt
to use the values of AccessLatency and RetentionPolicy tags from the directory to which a file is
being written. If the tags are present, then the Access Latency and Retention Policy will be set on basis of
the system wide defaults, which are controlled by SpaceManagerDefaultRetentionPolicy and
SpaceManagerDefaultAccessLatency variables in dCacheSetup; these variable are described in
details in the previous section "SRM Space Manager Parameters in dCacheSetup".

If you have a direct access to the namespace, you can check if the AccessLatency and RetentionPolicy tags
are present by using the following commands:

[root] # cd pnfsDir
[root] # cat ".(tags)()"
.(tag)(OSMTemplate)
.(tag)(file_family)
.(tag)(storage_group)
.(tag)(AccessLatency)
.(tag)(RetentionPolicy)

If the output contains the lines saying (tag)(AccessLatency) and .(tag)(RetentionPolicy)
than the tags are already present and you can get the actual values of these tags by executing the following
commands, which are shown together with example outputs:

[root] # cat ".(tag)(AccessLatency)" ONLINE
[root] # cat ".(tag)(RetentionPolicy)" CUSTODIAL

To create/change the values of the tags, please execute :

[root] # echo "New Access Latency" > ".(tag)(AccessLatency)"
[root] # echo  "New Retention Policy" > ".(tag)(RetentionPolicy)"

The valid AccessLatency values are ONLINE and NEARLINE, valid RetentionLatency values are
REPLICA, OUTPUT and CUSTODIAL.

Below are the reals examples of these commands:

[root] # echo "ONLINE" > ".(tag)(AccessLatency)"
[root] # echo "REPLICA" > ".(tag)(RetentionPolicy)"

SRM Space Manager Virtual Organization
based access control configuration

VO based Authorization Prerequisites
In order to be able to take advantage of the Virtual Organization (VO) infrastructure and VO based autho-
rization and VO Based Access Control to the Space in dCache, certain things need to be in place:

• User needs to be registered with the VO.
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• User needs to use voms-proxy-init to create a vo proxy.

• dCache needs to use gPlazma and not gPlazma with dcache.kpwd plugin, but other modules that
know how to extract VO attributes from the proxy. (see Chapter 12, gPlazma authorization in dCache,
have a look at gplazmalite-vorole-mapping plugin.

Only if these 3 conditions are satisfied the VO based authorization of the Space Manager can work.

If a client uses a regular grid proxy, created with grid-proxy-init, and not a Virtual Organization (VO) proxy,
which is created with the voms-proxy-init, when he is communicating with SRM server in dCache, then the
VO attributes can not be extracted its credential. voms-proxy-init adds a Fully Qualified Attribute Name
(FQAN) section(s) to the grid proxy, which contain informaton about user’s VO membership, in particular
it contain VO Group name and VO Role that the client intends to play at this time. In this case the name of
the user is extracted on basis of the direct Distinguished Name (DN) to use name mapping. For the purposes
of the space reservation the name of the user is used as its VO Group name, and the VO Role is left empty.

VO based Access Control configuration
dCache Space Reservation Functionality Access Control is currently performed at the level of the
LinkGroups. The access to making reservations in each LinkGroup is controlled by the SpaceManager-
LinkGroupAuthorizationFile property.

SpaceManagerLinkGroupAuthorizationFile syntax

The file described by SpaceManagerLinkGroupAuthorizationFile has following syntax:

LinkGroup Name followed by the list of the Fully Qualified Attribute Names (FQANs), each FQAN on
separate line, followed by an empty line, which is used as a record separator, or by the end of file. FQAN is
usually a string of the form <VO>/Role=<VORole>. Both <VO> and <VORole> could be set to *, in this
case all VOs or VO Roles will be allowed to make reservations in this LinkGroup. Any line that starts with
# is a comment and may appear anywhere.

File location is specified by defining

SpaceManagerLinkGroupAuthorizationFileName=FILENAME

in the dCacheSetup

Example of the SpaceManagerLinkGroupAuthorizationFile

# this is comment and is ignored

LinkGroup LFSOnly-LinkGroup
/atlas/Role=/atlas/role1

LinkGroup CMS-LinkGroup
/cms/Role=*
#/dteam/Role=/tester

LinkGroup default-LinkGroup
#allow anyone :-)
*/Role=*
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#/dteam/Role=/tester

Successful VO and Experiment specific examples of dCache SRM Space Manager configurations are or will
be published at  dCache WIKI documentation pages  [http://trac.dcache.org/trac.cgi/wiki/manuals/index].

SRMWatch, SRM Monitoring Tool
For large sites in order to avoid interference from Tomcat activities related to web interface, we recommend
installation of SRM monitoring on a separate node.

Separate Node Installation
• Install JDK1.5

• Download, install and start latest tomcat 5.5 from  Tomcat Web Site  [http://tomcat.apache.org/]

• Download srmwatch RPM from http://www.dcache.org.

• Install RPM. Installation can be performed using this command:

[root] # rpm -Uvh srmwatch-1.0-0.i386.rpm

• Edit configuration file /opt/d-cache/srmwatch-1.0/WEB-INF/web.xml in the line saying:

<param-value>jdbc:postgresql://localhost/dcache</param-value>

Make sure that the localhost is in jdbc url substitutes with SRM database host name. For example:

<param-value>jdbc:postgresql://fledgling06.fnal.gov/dcache</param-value>

• Execute

[root] # export CATALINA_HOME=YOUR_TOMCAT_LOCATION

• Execute

[root] # /opt/d-cache/srmwatch-1.0/deploy_srmwatch

• SRM Monitoring page should be visible at http://srm-monitoring-node:8080/srmwatch/

Same Node Installation
• Download srmwatch rpm from http://www.dcache.org>.

• Install rpm after srm server is installed and running, with /opt/d-cache/etc/srm_setup.env
containing before the installation

http://trac.dcache.org/trac.cgi/wiki/manuals/index
http://trac.dcache.org/trac.cgi/wiki/manuals/index
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.dcache.org
http://www.dcache.org>
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TOMCAT_HTTP_ENABLED=true

RPM installation can be performed using this command:

[root] # rpm -Uvh srmwatch-1.0-0.i386.rpm

• SRM Monitoring page should be visible at http://srmnode:8080/srmwatch/
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Chapter 15. dCache Web Monitoring
Vladimir Podstavkov

This part describes how to configure the web application which prepares and shows various plots using the
billing information of dCache.

The monitoring system for dCache is built as a separate application using Java servlet technology and works
in the Apache Tomcat servlet container. It consists from two parts - the first one works with the database
where dCache system puts the detailed information about the data transfers, and the second one is a presen-
tation layer.

Such modular architecture allows to use the tools which do best in each case. The backend part is built
using Java and JDBC database driver API and is configurable using XML configuration files. The frontend
part is built with OpenLaszlo technology, which allows developers to create applications with the rich user
interface capabilities of desktop client software. OpenLaszlo applications are written in XML and JavaScript
- just like DHTML, but portable across browsers.

The monitoring system builds the set of plots for various datasets and various time intervals - day, week,
month, year... The datasets, the time intervals and data presentation are configurable via XML configuration
files. The changes in the configuration can be activated remotely by the system administrator.

The total number of plots varies from system to system and currently is about 50 - 60. This system is used
by public dCache, CDF, and CMS dCache systems at Fermilab.

Installation
If you want to try it for your dCache installation you can find two RPM files you need on this page: http://
www.dcache.org/downloads/dcache_plots/index.shtml.

The first one (http://www.dcache.org/downloads/dcache_plots/web-dcache-*-i386.rpm) is a binary pack-
age, the second one (http://www.dcache.org/downloads/dcache_plots/web-dcache-*-src.rpm) is a source
package.

To install the monitoring package do the following:

1. Install binary rpm. Installation can be performed using this command:

[root] # rpm -Uvh web-dcache-*-i386.rpm

2. Stop Tomcat if it is running

3. Untar web-dcache.tgz archive into Tomcat webapps/ directory. This should be done by

[root] # tar xfz /opt-dcache/web-dcache/web-dcache.tgz

4. Install lps servlet into Tomcat webapps/ directory

http://www.dcache.org/downloads/dcache_plots/index.shtml
http://www.dcache.org/downloads/dcache_plots/index.shtml
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5. a. Untar lps.tgz archive. This should be done by

[root] # tar xfz /opt-dcache/web-dcache/lps.tgz

b. Untar plots.tar archive. This should be done by

[root] # tar xf /opt-dcache/web-dcache/plots.tar

6. Copy the file /opt/d-cache/share/java/postgresql-8.1-405.jdbc3.jar into Tomcat
common/lib/ directory.

7. In the file ...webapps/web-dcache/META-INF/context.xml put your real database name,
database username and the password. Set its protection to 0600

[root] # chmod 0600 ...webapps/web-dcache/META-INF/context.xml

8. Start Tomcat and wait for a few minutes

9. Go to URL: http://your_server_name:tomcat_port_number/lps/plots/src/plots.lzx

Configuration
There are three XML configuration files used by the application.

1. File .../web-dcache/WEB-INF/classes/tableConfig.xml contains the rules for the tables
creation/update. It changes only if the dCache administrator wants to add more tables into the database
to work with. Here is the fragment of such file, which describes two SQL statements to create the table
named en_rd_daily and to update it.

Example 15.1. Fragment of tableConfig.xml configuration file

 ....................
  <table id="en_rd_daily">
    <create>
      select date(datestamp), count(*), sum(fullsize) as fullSize
      into en_rd_daily from storageinfo
      where action='restore' and errorcode=0 group by date(datestamp) order by date
    </create>
    <update>
      <query>
        delete from en_rd_daily where date between current_date-6 and current_date
      </query>
      <query>
        insert into en_rd_daily
        select date(datestamp), count(*), sum(fullsize) as fullSize
        from storageinfo
        where datestamp between current_date-6 and now() and action='restore' and errorcode=0 
        group by date(datestamp) order by date
      </query>
    </update>
  </table>
 ....................
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2. File .../web-dcache/plotConfig.xml contains the set of commands for gnuplot program which
is used to build the images. It defines the table(s) where to get data from, what data to use, and the plot
format. Here is the fragment of such file, which describes plot named billing.cst.year, which uses the
data from the table cost_daily from the billing database for the current year, and build the plot with the
line and points on it.

Example 15.2. Fragment of plotConfig.xml configuration file

....................
  <plot id="billing.cst.year">
    <title>Transaction Cost</title>
    <datasource table="cost_daily">
       date between current_date-interval '1 year' and current_date ORDER BY date
    </datasource>
    <gnusetup>
      <c>set xdata time</c>
      <c>set timefmt '%Y-%m-%d'</c>
      <c>set format x '%y-%m-%d'</c>
      <c>set xlabel 'Date (Year-month-day)'</c>
      <c>set ylabel 'Cost'</c>
      <c>###set logscale y</c>
      <dataset title="Cost" src="cost_daily">
        using {date}:{mean}  with linespoints lw 3 lt 2
       </dataset>
    </gnusetup>
  </plot>
 ....................

3. File .../lps/plots/resources/pltnames.xml contains the URLs for the generated files with
the images and previews, which are shown on the web page. Here is the fragment of such file, which
describes plot set named Bytes read, which contains the plots for a year, a month, a week, a week with
one hour interval, a day, and the corresponding thumbnail previews.

Example 15.3. Fragment of pltnames.xml configuration file

....................
  <plot>
    Bytes read
    <pic>
      <Year>http:../../../web-dcache/viewer?name=billing.brd.year.png</Year>
      <Month>http:../../../web-dcache/viewer?name=billing.brd.month.png</Month>
      <Week>http:../../../web-dcache/viewer?name=billing.brd.week.png</Week>
      <Week-daily>http:../../../web-dcache/viewer?name=billing.brd.week-daily.png</Week-daily>
      <Day>http:../../../web-dcache/viewer?name=billing.brd.day.png</Day>
    </pic>
    <pre>
      <Year>file:../../../web-dcache/viewer?name=billing.brd.year.pre</Year>
      <Month>file:../../../web-dcache/viewer?name=billing.brd.month.pre</Month>
      <Week>file:../../../web-dcache/viewer?name=billing.brd.week.pre</Week>
      <Week-daily>file:../../../web-dcache/viewer?name=billing.brd.week-daily.pre</Week-daily>
      <Day>file:../../../web-dcache/viewer?name=billing.brd.day.pre</Day>
    </pre>
  </plot>
....................
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Chapter 16.  ACLs in dCache
Irina Kozlova

Paul Millar

Starting with the 1.9.3 series, dCache includes support for Access Control Lists (ACLs). This support is con-
forming to the NFS version 4 Protocol specification [http://www.nfsv4-editor.org/draft-25/draft-ietf-nfsv4-
minorversion1-25.html].

This chapter provides some background information and details on configuring dCache to use ACLs and
how to administer the resulting system. Some additional information can be found on the wiki page: http://
trac.dcache.org/projects/dcache/wiki/Integrate.

Known limitations

At the time of writing, support for ACLs in dCache is not complete. The SRM component lacks
support for ACLs. The other dCache doors support ACLs on all operations.

Introduction
dCache allows control over namespace operations (e.g., creating new files and directories, deleting items,
renaming items) and data operations (reading data, writing data) using the standard Unix permission model.
In this model, files and directories have both owner and group-owner attributes and a set of permissions
that apply to the owner, permissions for users that are members of the group-owner group and permissions
for other users.

Although Unix permission model is flexible enough for many deployment scenarios there are configurations
that either cannot configured easily or are impossible. To satisfy these more complex permission handling
dCache has support for ACL-based permission handling.

An Access Control List (ACL) is a set of rules for determining whether an end-user is allowed to undertake
some specific operation. Each ACL is tied to a specific namespace entry: a file or directory. When an end-
user wishes to undertake some operation then the ACL for that namespace entry is checked to see if that
user is authorised. If the operation is to create a new file or directory then the ACL of the parent directory
is checked.

File- and directory- ACLs

Each ACL is associated with a specific file or directory in dCache. Although the general form is
the same whether the ACL is associated with a file or directory, some aspects of an ACL may
change. Because of this, we introduce the terms file-ACL and directory-ACL when taking about
ACLs associated with a file or a directory respectively. If the term ACL is used then it refers to both
file-ACLs and directory-ACLs.

Each ACL contains a list of one or more Access Control Entries (ACEs). The ACEs describe how dCache
determines whether an end-user is authorised. Each ACE contains information about which group of end
users it applies to and describes whether this group is authorised for some subset of possible operations.

http://www.nfsv4-editor.org/draft-25/draft-ietf-nfsv4-minorversion1-25.html
http://www.nfsv4-editor.org/draft-25/draft-ietf-nfsv4-minorversion1-25.html
http://www.nfsv4-editor.org/draft-25/draft-ietf-nfsv4-minorversion1-25.html
http://trac.dcache.org/projects/dcache/wiki/Integrate
http://trac.dcache.org/projects/dcache/wiki/Integrate
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The order of the ACEs within an ACL is significant. When checking whether an end-user is authorised each
ACE is checked in turn to see if it applies to the end-user and the requested operation. If it does then that
ACE determines whether that end-user is authorised. If not then the next ACE is checked. Thus an ACL can
have several ACEs and the first matched ACE “wins”.

One of the problems with traditional Unix-based permission model is its inflexible handling of newly created
files and directories. With transitional filesystems, the permissions that are set are under the control of the
user-process creating the file. The sysadmin has no direct control over the permissions that newly files or
directories will have. The ACL permission model solves this problem by allowing explicit configuration
using inheritance.

ACL inheritance is when a new file or directory is created with an ACL containing a set of ACEs from
the parent directory’s ACL. The inherited ACEs are specially marked so that only those that are intended
will be inherited.

Inheritance only happens when a new file or directory is created. After creation, the ACL of the new file or
directory is completely decoupled from the parent directory’s ACL: the ACL of the parent directory may be
altered without affecting the ACL of the new file or directory and visa versa.

Inheritance is optional. Within a directory’s ACL some ACEs may be inherited whilst others are not. New
files or directories will receive only those ACEs that are configured; the remaining ACEs will not be copied.

ACLs and permission handlers
dCache provides support for ACLs by introducing the concept of a permission handler. A permission handler
may be queried to determine if an end user is authorised for some file-based operation (namespace or data
transfer). A permission handler will supply one of three decisions: allow, deny and defer.

dCache operates with a chain (or ordered list) of permission handlers. When determining if an end user is
authorised for some operation the first permission handler in the chain is checked. If that permission handler
decides that the operation should be allowed or denied for that end user then dCache will authorise or deny
that user respectively. If the first permission handler defers then the next permission handler in the chain
is queried.

If this second permission handler returns allow or denied the dCache will authorise or deny that user respec-
tively. If the second permission handler also defers then dCache will continue down the chain and query the
next permission handler. If the chain is exhausted then an “always deny” policy is used (TODO: is this true?).

The UnixPermissionHandler is an example permission handler. It provides the standard Unix per-
mission model and decides whether an end user is authorised based on file and directory ownership and
group-ownership and the set of permissions. This permission handler will always come to a decision whether
an end user is authorised or not, so will never return a defer decision. Therefore any permission handler
placed in the chain after a UnixPermissionHandler is superfluous.

The ACLPermissionHandler is a permission handler that implements the NFS v4 ACL model. Users
and groups of users may be authorised for different operations. This is independent of a file and directory
ownership. With these ACLs how new files and directories inherit permissions is described explicitly. These
aspects will be described in detail later on in this chapter.
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By default dCache uses the UnixPermissionHandler. This provides backwards compatability with
older versions of dCache. To enable support for ACLs, the ACL configuration section in dCacheSetup
file must be configured as described in the section called “permissionHandler”

Database configuration
dCache ACL support requires database tables to store ACL and ACE information. Depending on the dCache
instance, this may require adjusting the database schema. This section describes the operations necessary
for Chimera- and pnfs-based dCache instances.

Chimera

If a site has migrated from pnfs to Chimera then the chimera database already exists but the database
schema must be extended to support ACLs. This is achieved by running two SQL files:

[root] # psql chimera < /opt/d-cache/libexec/chimera/sql/addACLtoChimeraDB.sql
[root] # psql chimera < /opt/d-cache/libexec/chimera/sql/pgsql-procedures.sql

pnfs

If you are not going to migrate to Chimera and you want to use ACLs with pnfs then you must create a
database to store ACL data within. The following commands will create the database aclpnfs so it may be
used to store dCache ACL data.

[root] # createdb aclpnfs
[root] # psql aclpnfs < /opt/d-cache/libexec/chimera/sql/create-dCacheACL.sql

dCache configuration
The dCacheSetup file contains a number of settings that may be adjusted to configure dCache’s permis-
sion settings. These settings are are described in this section.

permissionHandler

The permissionHandler setting describes the Permission Handler chain that dCache
will use. It contains a list of permission handlers that will form the chain. Valid
permission handlers are diskCacheV111.services.acl.UnixPermissionHandler and
diskCacheV111.services.acl.ACLPermissionHandler. Not specifying a permission-
Handler value is equivalent to specifying the UnixPermissionHandler.

No spaces

Remember when writing permissionHandler options that the value must be a single line leav-
ing no space before and after the separating comma.
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Example 16.1. Only use Unix authorisation model

The following setting results in dCache using Only the Unix authorisation model. The decision about whether
an end user is authorised is based on file and directory ownership and group-ownership and on the file or
directory permissions:

permissionHandler=diskCacheV111.services.acl.UnixPermissionHandler

Example 16.2. Only ACLs authorisation model

Only the NFS v4 ACL authorisation model is used:

permissionHandler=diskCacheV111.services.acl.ACLPermissionHandler

Example 16.3. ACLs first, Unix as a fall-back

The ACL permissions are checked first. If ACLs do not state whether an operation is allowed or denied then
Unix permissions are checked:

permissionHandler=diskCacheV111.services.acl.ACLPermissionHandler,
diskCacheV111.services.acl.UnixPermissionHandler

Database connection
In the ACL Configuration section of the dCacheSetup file uncomment the variable aclConnUrl
and replace the database name chimera in the URI with the name of the ACL database just created. If the
database is hosted by a remote PostGreSQL instance then the host part of the URI (localhost in the
default) must also be replaced.

If the database is aclpnfs and hosted by the PostgreSQL instance on machine db-server.example.org,
the correct configuration line is

aclConnUrl=jdbc:postgresql://db-server.example.org/aclpnfs?prepareThreshold=3

Apply changes to all doors

The change must be applied to the dCacheSetup file on all doors. If the PostgreSQL instance
hosting the database is on the same machine then localhost may be used.

Tip
Many sites can refer to a node using just the short name; for example, db-server instead of db-
server.example.org in the above example.

ACL Administration
Altering dCache ACL behaviour is achieved by connecting to the acladmin well-known cell using the
administrator interface. For further details about how to use the administrator interface, see the section called
“The Admin Interface”.
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The info and help commands are available within acladmin and fulfil their usual functions.

How to set ACLs

The setfacl command is used to set a new ACL. This command accepts arguments with the following form:

setfacl ID ACE [ACE...]

The ID argument is either a pnfs-ID or the absolute path of some file or directory in dCache. The setfacl
command requires one or more ACE arguments seperated by spaces.

The setfacl command creates a new ACL for the file or directory represented by ID. This new ACL replaces
any existing ACEs for ID.

An ACL has one or more ACEs. Each ACE defines permissions to access this resource for some Subject.
The ACEs are space-separated and the ordering is significant. The format and description of these ACE
values are described below.

Description of the ACE structure.

The ACE arguments to the setfacl command have a specific format. This format is described below in Ex-
tended Backus-Naur Form (EBNF).
[1] ACE::= Subject ':' Access |

Subject ':' Access ':' Inheritance
 

[2] Subject::= 'USER:' UserID |
'GROUP:' GroupID |
'OWNER@' |
'GROUP@' |
'EVERYONE@' |
'ANONYMOUS@' |
'AUTHENTICATED@'

 

[3] Access::= '+' Mask |
'-' Mask

 

[4] Mask::=Mask MaskItem |
MaskItem

 

[5] MaskItem::= 'r' | 'l' | 'w' | 'f' | 's' | 'a' | 'n' | 'N' | 'x' | 'd' | 'D' | 't' | 'T' | 'c' | 'C' | 'o' 
[6] Inheritance::= Inheritance Flag |

Flag
 

[7] Flag::= 'f' | 'd' | 'o'  
[8] UserID::= INTEGER  
[9] GroupID::= INTEGER  

The various options are described below.

The Subject

The Subject defines to which user or group of users the ACE will apply. It acts as a filter so that only those
users that match the Subject will have their access rights affected.
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As indicated by the EBNF above, the Subject of an ACE can take one of several forms. These are described
below:

USER:id The USER: prefix indicates that the ACE applies only to the specific end-user: the
dCache user with ID id. For example, USER:0:+w is an ACE that allows user 0
to write over a file’s existing data.

GROUP:id The GROUP: prefix indicates that the ACE applies only to those end-users who
are a member of the specific group: the dCache group with ID id. For example,
GROUP:20:+a is an ACE that allows any user who is a member of group 20 to
append data to the end of a file.

OWNER@ The OWNER@ subject indicates that the ACE applies only to whichever end-user
owns the file or directory. For example, OWNER@:+d is an ACE that allows the file’s
or directory’s owner to delete it.

GROUP@ The GROUP@ subject indicates that the ACE applies only to all users that are mem-
bers of the group-owner of the file or directory. For example, GROUP@:+l is an
ACE that allows any user that is in a directory’s group-owner to list the directory’s
contents.

EVERYONE@ The EVERYONE@ subject indicates that the ACE applies to all users. For example,
EVERYONE@:+r is an ACE that makes a file world-readable.

ANONYMOUS@ The ANONYMOUS@ Subject indicates that the ACE applies to all users who have not
authenticated themselves. For example, ANONYMOUS@:-l is an ACE that prevents
unauthenticated users from listing the contents of a directory.

AUTHENTICATED@ The AUTHENTICATED@ Subject indicates that an ACE applies to all authenticated
users. For example, AUTHENTICATED@:+r is an ACE that allows any authenti-
cated user to read a file’s contents.

Authenticated or anonymous

An end user of dCache is either authenticated or is unauthenticated, but never both. Because of this,
an end user operation will either match ACEs with ANONYMOUS@ Subjects or AUTHENTICATED@
Subjects but the request will never match both at the same time.

Access mask

Access (defined in the ACE EBNF above) describes what kind of operations are being described by the ACE
and whether the ACE is granting permission or denying it.

An individual ACE can either grant permissions or deny them, but never both. However, an ACL may
be composed of any mixture of authorising- and denying- ACEs. The first character of Access describes
whether the ACE is authorising or denying.

If Access begins with a plus symbol (+) then the ACE authorises the Subject some operations. The ACE
EVERYONE@:+r authorises all users to read a file since the Access begins with a +.

If the Access begins with a minus symbol (-) then the ACE denies the Subject some operations. The ACE
EVERYONE@:-r prevents any user from reading a file since the Access begins with a -.
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The first character of Access must be + or -, no other possibility is allowed. The initial + or - of Access is
followed by one or more operation letters. These letters form the ACE’s access mask (Mask in ACE EBNF
above).

The access mask describes which operations may be allowed or denied by the ACE. Each type of operation
has a corresponding letter; for example, obtaining a directory listing has a corresponding letter l. If a user
attempts an operation of a type corresponding to a letter present in the access mask then the ACE may affect
whether the operation is authorised. If the corresponding letter is absent from the access mask then the ACE
will be ignored for this operation.

The following table describes the access mask letters and the corresponding operations:

File- and directory- specific operations

Some operations and, correspondingly, some access mask letters only make sense for ACLs attached
to certain types of items. Some operations only apply to directories, some operations are only for
files and some operations apply to both files and directories.

When configuring an ACL, if an ACE has an operation letter in the access mask that is not applicable
to whatever the ACL is associated with then the letter is converted to an equivalent. For example,
if l (list directory) is in the access mask of an ACE that is part of a file-ACL then it is converted
to r. These mappings are described in the following table.

r reading data from a file. Specifying r in an ACE’s access mask controls whether end-users are allowed
to read a file’s contents. If the ACE is part of a directory-ACL then the letter is converted to l.

l listing the contents of a directory. Specifying l in an ACE’s access mask controls whether end-users are
allowed to list a directory’s contents. If the ACE is part of a file-ACL then the letter is converted to r.

w overwriting a file’s existing contents. Specifying w in an ACE’s access mask controls whether end-users
are allowed to write data anywhere within the file’s current offset range. This includes the ability to
write to any arbitrary offset and, as a result, to grow the file. If the ACE is part of a directory-ACL then
the letter is converted to f.

f creating a new file within a directory. Specifying f in an ACE’s access mask controls whether end-users
are allowed to create a new file. If the ACE is part of an file-ACL then then the letter is converted to w.

s creating a subdirectory within a directory. Specifying s in an ACE’s access mask controls whether
end-users are allowed to create new subdirectories. If the ACE is part of a file-ACL then the letter is
converted to a.

a appending data to the end of a file. Specifying a in an ACE’s access mask controls whether end-users
are allowed to add data to the end of a file. If the ACE is part of a directory-ACL then the letter is
converted to s.

n reading attributes. Specifying n in an ACE’s access mask controls whether end-users are allowed to
read attributes. This letter may be specified in ACEs that are part of a file-ACL and those that are part
of a directory-ACL.

N write attributes. Specifying N in an ACE’s access mask controls whether end-users are allowed to write
attributes. This letter may be specified in ACEs that are part of a file-ACL and those that are part of
a directory-ACL.
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x executing a file or entering a directory. x may be specified in an ACE that is part of a file-ACL or a
directory-ACL; however, the operation that is authorised will be different.

Specifying x in an ACEs access mask that is part of a file-ACL will control whether end users matching
the ACE Subject are allowed to execute that file.

Specifying x in an ACEs access mask that is part of a directory-ACL will control whether end users
matching ACE Subject are allowed to search a directory for a named file or subdirectory. This operation
is needed for end users to change their current working directory.

d deleting a namespace entry. Specifying d in an ACE’s access mask controls whether end-users are al-
lowed to delete the file or directory the ACL is attached. The end user must be also authorised for the
parent directory (see D).

D deleting a child of a directory. Specifying D in the access mask of an ACE that is part of a directory-ACL
controls whether end-users are allowed to delete items within that directory. The end user must be also
authorised for the existing item (see d).

t reading basic attributes. Specifying t in the access mask of an ACE controls whether end users are
allowed to read basic (i.e., non-ACL) attributes of that item.

T altering basic attributes. Specifying T in an ACE’s access mask controls whether end users are allowed
to alter timestamps of the item the ACE’s ACL is attached.

c reading ACL information. Specifying c in an ACE’s access mask controls whether end users are allowed
to read the ACL information of the item to which the ACE’s ACL is attached.

C writing ACL information. Specifying C in an ACE’s access mask controls whether end users are allowed
to update ACL information of the item to which the ACE’s ACL is attached.

o altering owner and owner-group information. Specifying o controls whether end users are allowed to
change ownership information of the item to which the ACE’s ACL is attached.

ACL inheritance

To enable ACL inheritance, the optional inheritance flags must be defined. The flag is a list of letters. There
are three possible letters that may be included and the order doesn’t matter.

Chimera only

Note that inheritance is only available with Chimera. When using ACLs with pnfs, there is no
inheritance of ACEs on the newly created objects (files or directories).

To provide a similar functionality for a pnfs-based dCache instance, the system administrator will
have to set ACLs on the newly created objects external to dCache, either manually or by writing
a script.

ACE Inheritance Flags

f This inheritance flag only affects those ACEs that form part of an directory-ACL. If the ACE is part of
a file-ACL then specifying f has no effect.



ACLs in dCache

122

If a file is created in a directory with an ACE with f in inheritance flags then the ACE is copied to the
newly created file’s ACL. This ACE copy will not have the f inheritance flag.

Specifying f in an ACE’s inheritance flags does not affect whether this ACE is inherited by a newly
created subdirectory. See d for more details.

d This inheritance flag only affect those ACEs that form part of an directory-ACL. If the ACE is part of
a file-ACL then specifying d has no effect.

Specifying d in an ACE’s inheritance flags does not affect whether this ACE is inherited by a newly
created file. See f for more details.

If a subdirectory is created in a directory with an ACE with d in the ACE’s inheritance flag then the
ACE is copied to the newly created subdirectory’s ACL. This ACE copy will have the d inheritance flag
specified. If the f inheritance flag is specified then this, too, will be copied.

o The o flag may only be used when the ACE also has the f, d or both f and d inheritance flags.

Specifying o in the inheritance flag will suppress the ACE. No user operations will be authorised or
denied as a result of such an ACE.

When a file or directory inherits from an ACE with o in the inheritance flags then the o is not present
in the newly created file or directory’s ACE. Since the newly created file or directory will not have the
o in it’s inheritance flags the ACE will take effect.

An o in the inheritance flag allows child files or directories to inherit authorisation behaviour that is
different from the parent directory.

Examples

This section gives some specific examples of how to set ACLs to achieve some specific behaviour.

Example 16.4. ACL allowing specific user to delete files in a directory

This example demonstrates how to configure a directory-ACL so user 3750 can delete any file within the
directory /pnfs/example.org/data/exampleDir.

(acladmin) admin > setfacl /pnfs/example.org/data/exampleDir EVERYONE@:+l USER:3750:D
    (...line continues...)   USER:3750:+d:of
(acladmin) admin > setfacl /pnfs/example.org/data/exampleDir/existingFile1
    (...line continues...)   USER:3750:+d:f
(acladmin) admin > setfacl /pnfs/example.org/data/exampleDir/existingFile2
    (...line continues...)   USER:3750:+d:f

The first command creates an ACL for the directory. This ACL has three ACEs. The first ACE allows anyone
to list the contents of the directory. The second ACE allows user 3750 to delete content within the directory
in general. The third ACE is inherited by all newly created files and specifies that user 3750 is authorised
to delete the file independent of that file’s ownership.

The second and third commands creates an ACL for files that already exists within the directory. Since
ACL inheritance only applies to newly created files or directories, any existing files must have an ACL
explicitly set.
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Example 16.5. ACL to deny a group

The following example demonstrates authorising all end users to list a directory. Members of group 1000
can also create subdirectories. However, any member of group 2000 can do neither.

(acladmin) admin > setfacl /pnfs/example.org/data/exampleDir GROUP:2000:-sl
    (...line continues...)    EVERYONE@:+l GROUP:1000:+s

The first ACE denies any member of group 2000 the ability to create subdirectories or list the directory
contents. As this ACE is first, it takes precedence over other ACEs.

The second ACE allows everyone to list the directory’s content. If an end user who is a member of group
2000 attempts to list a directory then their request will match the first ACE so will be denied. End users
attempting to list a directory that are not a member of group 2000 will not match the first ACE but will
match the second ACE and will be authorised.

The final ACE authorises members of group 1000 to create subdirectories. If an end user who is a member
of group 1000 and group 2000 attempts to create a subdirectory then their request will match the first ACE
and be denied.

Example 16.6. ACL to allow a user to delete all files and subdirectories

This example is an extension to Example 16.4, “ACL allowing specific user to delete files in a directory”. The
previous example allowed deletion of the contents of a directory but not the contents of any subdirectories.
This example allows user 3750 to delete all files and subdirectories within the directory.

(acladmin) admin > setfacl /pnfs/example.org/data/exampleDir USER:3750:+D:d
    (...line continues...)    USER:3750:+d:odf

The first ACE is USER:3750:+D:d. This authorises user 3750 to delete any contents of directory /pn-
fs/example.org/data/exampleDir that has an ACL authorising them with d operation.

The first ACE also contains the inheritance flag d so newly created subdirectories will inherit this ACE.
Since the inherited ACE will also contain the d inheritance flag, this ACE will be copied to all subdirectories
when they are created.

The second ACE is USER:3750:+d:odf. The ACE authorises user 3750 to delete whichever item the
ACL containing this ACE is associated with. However, since the ACE contains the o in the inheritance flags,
user 3750 is not authorised to delete the directory /pnfs/example.org/data/exampleDir

Since the second ACE has both the d and f inheritance flags, it will be inherited by all files and subdirectories
of /pnfs/example.org/data/exampleDir, but without the o flag. This authorises user 3750 to
delete these items.

Subdirectories (and files) will inherit the second ACE with both d and f inheritance flags. This implies that
all files and sub-subdirecties within a subdirectory of /pnfs/example.org/data/exampleDir will
also inherit this ACE, so will also be deletable by user 3750.

Viewing configured ACLs
The getfacl is used to obtain the current ACL for some item in dCache namespace. It takes the following
arguments.
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getfacl [pnfsId] | [globalPath]

The getfacl command fetches the ACL information of a namespace item (a file or directory). The item may
be specified by its pnfs-ID or its absolute path.

Example 16.7. Obtain ACL information by absolute path

(acladmin) admin > getfacl /pnfs/example.org/data/exampleDir
ACL: rsId = 00004EEFE7E59A3441198E7EB744B0D8BA54, rsType = DIR
order = 0, type = A, accessMsk = lfsD, who = USER, whoID = 12457
order = 1, type = A, flags = f, accessMsk = lfd, who = USER, whoID = 87552
In extra format:
USER:12457:+lfsD
USER:87552:+lfd:f

The information is provided twice. The first part gives detailed information about the ACL. The second part,
after the In extra format: heading, provides a list of ACEs that may be used when updating the ACL
using the setfacl command.
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Chapter 17. GLUE info provider
This chapter describes how to configure the GLUE information provider supplied with dCache so it provides
the correct information. This is necessary so that WLCG infrastructure (such as FTS) and clients using
WLCG tools can correctly use the dCache instance.

The process is designed to be the minimum overhead so it can easily be performed manually; however, you
may choose to use an automatic configuration tool, such as YAIM.

Warning

Please be aware that changing information provider may result in a brief interruption to published
information. This may have an adverse affect on client software that make use of this information.

Ensuring dCache information is available
Make sure that both the httpd and info services are running; both are required for publishing information.
By default, the info service is started as an admin-node responsibility; but it is possible to configure dCache
so it runs on a different node. You should run only one info service per dCache instance.

The info service is not the infoProvider service

The info-provider needs accurate, up-to-date information about a dCache instance so it can publish
correct values. A component of dCache, rather confusingly also called infoProvider, used to
provide this up-to-date information. By default, the infoProvider would run in its own domain
(infoProviderDomain) and could be started and stopped like any other domain.

The job of collecting accurate, up-to-date information is now handled by the info service. This
is completely independent of the infoProvider service, so the latter is no longer needed and
may be switched off.

For more details please see the section called “Decommissioning the old info provider”.

If necessary, you may start the info service manually:

[root] # /opt/d-cache/bin/dcache start infoDomain
Starting infoDomain done

You can check which services are running on the local node using the status command:

[root] # /opt/d-cache/bin/dcache status
Domain                    Status       PID
dCacheDomain              running    30582
dirDomain                 running    30625
adminDoorDomain           running    30667
httpdDomain               running    30711
utilityDomain             running    30760
gPlazma-dcache-hostDomain running    30844
namespaceDomain           running    30921
dcache-hostDomain         running    30971
infoDomain                running    15530
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Output may look different

One feature of dCache is that domains may be run on different nodes. Because of this, the list of
domains running on the node running the info service may be different.

You can also verify both services (httpd and info) are running with the following wget command. This
command assumes that you run it on the node that has the httpd service (by default, the admin node). If
may run the command on any node by replacing localhost with the hostname of the node running the
httpd service.

The following example shows the output when the info service is running correctly

[root] # wget -O/dev/null http://localhost:2288/info
--17:57:38--  http://localhost:2288/info
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:2288... connected.
HTTP request sent, awaiting response... 200 Document follows
Length: 372962 (364K) [application/xml]
Saving to: `/dev/null'

100%[===========================================================================
===>] 372,962     --.-K/s   in 0.001s

17:57:38 (346 MB/s) - `/dev/null' saved [372962/372962]

If the httpd service isn’t running then the command will generate the following output:

[root] # wget -O/dev/null http://localhost:2288/info
  --10:05:35--  http://localhost:2288/info
             => `/dev/null'
  Resolving localhost... 127.0.0.1
  Connecting to localhost|127.0.0.1|:2288... failed: Connection refused.

To fix the problem, start the httpd service with the following command on the appropriate dCache node.

[root] # /opt/d-cache/bin/dcache start httpdDomain
Starting httpdDomain done

If running the wget command gives the following output:

[root] # wget -O/dev/null http://localhost:2288/info
  --10:03:13--  http://localhost:2288/info
             => `/dev/null'
  Resolving localhost... 127.0.0.1
  Connecting to localhost|127.0.0.1|:2288... connected.
  HTTP request sent, awaiting response... 503 Unable to contact the info cell.  Pl
ease ensure the info cell is running.
  10:03:13 ERROR 503: Unable to contact the info cell.  Please ensure the info cel
l is running..

then the info service is not running. Instructions for starting the info service are given above.

Configuring the info provider
In the directory /opt/d-cache/etc you will find a template file glue-1.3.xml.template. Copy
this file as glue-1.3.xml in the same directory.
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Edit glue-1.3.xml with your favourite text editor.

The file is split into two parts. The first part contains the configuration that a site will typically need to
configure. Most sites may leave the second part alone. The two parts are separated by the comment:

  <!--+
      |    YOU SHOULD NOT NEED TO EDIT ANYTHING BELOW THIS POINT.
      +-->

Take care when editing the file! After changing the contents, the file must remain valid, well-formed XML.
In particular, be very careful not to add a less-than symbol (<) that isn’t part of an XML element, or an
ampersand symbol (&) that isn’t part of an entity markup. If you wish to either symbol you must use the
marked-up version: &lt; and &amp; respectively. For example:

<constant id="SE-NAME">Simple &amp; small dCache instance for small VOs
(typically &lt; 20 users)</constant>

As a further hint, you should only edit text between two elements or add more elements (for lists and map-
pings). You should never alter the text inside double-quote marks. For example, with the following element
definition:

<constant id="SITE-UNIQUE-ID">EXAMPLESITE-ID</constant>

you should review the contents between the elements (EXAMPLESITE-ID) and edit the contents accord-
ingly. You should never edit the SITE-UNIQUE-ID as it is in double-quote marks. A valid, edited value is:

<constant id="SITE-UNIQUE-ID">DESY-HH</constant>

Testing the info provider
Once you have configured glue-1.3.xml to reflect your site’s configuration, you may test that the info
provider produces meaningful results.

Run the info-provider script should produce GLUE information in LDIF format; for example:

[root] # /opt/d-cache/libexec/infoProvider/info-based-infoProvider.sh
  #
  #  LDIF generated by Xylophone v0.1
  #
  #  XSLT processing using libxslt 1.0 (http://xmlsoft.org/XSLT/)
  #

  dn: GlueSEUniqueID=dcache-host.example.org,mds-vo-name=resource,o=grid
  objectClass: GlueSETop
  objectClass: GlueSE
  objectClass: GlueKey
  objectClass: GlueSchemaVersion
  GlueSEStatus: Production
  GlueSEUniqueID: dcache-host.example.org
  GlueSEArchitecture: multidisk
  GlueSEImplementationName: dcache
Many similar lines follow
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The actual values you see will be site-specific and depend on the contents of the glue-1.3.xml file and
your dCache configuration.

To verify that there are no problems, redirect standard-out to /dev/null to show only the error messages:

[root] # /opt/d-cache/libexec/infoProvider/info-based-infoProvider.sh >/dev/null

If you see two error messages, which may be repeated several times, of the form:

[root] # /opt/d-cache/libexec/infoProvider/info-based-infoProvider.sh >/dev/null
  error : Operation in progress
  warning: failed to load external entity "http://localhost:2288/info"

then it is likely that either the httpd or info service have not been started. Use the above wget test to
check that both services are running. You can also see which services are available by running the command:
dcache status.

Decommissioning the old info provider
Sites that were previously using the old (Java-based) info provider should ensure that they no longer using it.
This is because, if so configured, GIP will obtain information from both the (new) info-based info provider
and the Java-based info provider and attempt to merge the results. This will likely lead to a confusing de-
scription of dCache, which may prevent clients from working correctly.

The Java-based info provider has two configuration files and a symbolic link within GIP. They are:

• The file /opt/lcg/var/gip/ldif/lcg-info-static-SE.ldif,

• The file: /opt/lcg/var/gip/ldif/lcg-info-static-dSE.ldif,

• The symbolic link /opt/glite/etc/gip/plugin, which points to /opt/d-cache/jobs/in-
foDynamicSE-plugin-dcache.

The two files (lcg-info-static-SE.ldif and lcg-info-static-dSE.ldif) may ap-
pear within a different directory if the static_dir variable is configured. You will find the
static_dir variable in one of two configuration files: either /opt/glite/etc/gip/glite-in-
fo-generic.conf or /opt/lcg/etc/lcg-info-generic.conf.

Delete the above three entries: lcg-info-static-SE.ldif, lcg-info-static-dSE.ldif and
the plugin symbolic link.

The directory defined in the static_dir variable (/opt/lcg/var/gip/ldif by default) may con-
tain other static LDIF entries that are relics of previous info-providers. These may have filenames like stat-
ic-file-SE.ldif.

Delete any such files that contain information about dCache. All LDIF information now comes directly from
the info-provider and there should be no static LDIF files.

The infoProvider component of dCache, usually running in its own domain (infoProviderDo-
main), collects information for the infoDynamicSE-plugin-dcache program. Since this program is now ob-
solete the infoProviderDomain should be switched off. This may be achieved with the dcache script:



GLUE info provider

129

[root] # /opt/d-cache/bin/dcache stop infoProviderDomain
Stopping infoProviderDomain (pid=15528) 0 done

You can confirm that the infoProviderDomain domain is no longer running by querying the current
status of the components:

[root] # /opt/d-cache/bin/dcache status | grep ^infoProvider
  infoProviderDomain      stopped         /var/log/infoProviderDomain.log

To prevent dCache from starting the infoProviderDomain domain when the machine next reboots,
you should edit /opt/d-cache/etc/node_config and ensure that the infoProvider option is
configured to no. You can verify that infoProviderDomain is no longer listed as a service with the
following command:

[root] # /opt/d-cache/bin/dcache services | grep ^infoProvider

You should see no output from running the command.

Publishing information from the in-
fo-provider
By default BDII obtains fresh information by querying GIP. To allow BDII to obtain the GLUE information,
you must tell GIP where to find this information. This is achieved by either copying the above script into
the directory /opt/glite/etc/gip/provider/

[root] # cp /opt/d-cache/libexec/infoProvider/info-based-infoProvider.sh \
/opt/glite/etc/gip/provider/

or by symbolically linking the script in there:

[root] # ln -s /opt/d-cache/libexec/infoProvider/info-based-infoProvider.sh
/opt/glite/etc/gip/provider/

If GIP (available in the glite-info-generic RPM package) and BDII are installed, and the BDII
daemons are running, then you will see the information appear in BDII after a short delay; by default, this
is 60 seconds.

You can verify the information is present with the query:

[root] # ldapsearch -LLL -x -H ldap://dcache-host:2170 \
-b o=grid
dn: o=grid
objectClass: organization
o: grid

dn: Mds-Vo-name=local,o=grid
objectClass: Mds
Mds-Vo-name: local

dn: Mds-Vo-name=resource,o=grid
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objectClass: Mds
Mds-Vo-name: resource

dn: GlueSEUniqueID=dcache-host.example.org,Mds-Vo-name=resource,o=grid
GlueSEStatus: Production
objectClass: GlueSETop
objectClass: GlueSE
objectClass: GlueKey
objectClass: GlueSchemaVersion
GlueSETotalNearlineSize: 2000
GlueSEArchitecture: tape
GlueSEName: SRM-DEVEL
GlueSchemaVersionMinor: 3
GlueSEUsedNearlineSize: 0
GlueChunkKey: GlueSEUniqueID=dcache-host.example.org
GlueForeignKey: GlueSiteUniqueID=EXAMPLE-SITE
GlueSchemaVersionMajor: 1
GlueSEImplementationName: dCache
GlueSEUniqueID: dcache-host.example.org
GlueSETotalOnlineSize: 4832
GlueSESizeTotal: 4832
GlueSESizeFree: 4832
GlueSEUsedOnlineSize: 0
GlueSEImplementationVersion: 1.9.5-16 (ns=Chimera)

dn: GlueSALocalID=tape-atlas,GlueSEUniqueID=dcache-host.example.org,Mds-Vo-name=reso
 urce,o=grid
GlueSATotalNearlineSize: 1000
objectClass: GlueSATop
objectClass: GlueSA
objectClass: GlueSAAccessControlBase
objectClass: GlueSAState
objectClass: GlueSchemaVersion
objectClass: GlueKey
GlueSAExpirationMode: neverExpire
GlueChunkKey: GlueSEUniqueID=dcache-host.example.org
GlueSAReservedOnlineSize: 0
GlueSACapability: InstalledOnlineCapacity=0
GlueSACapability: InstalledNearlineCapacity=1000
GlueSchemaVersionMinor: 3
GlueSAUsedNearlineSize: 0
GlueSAName: Tapes for ATLAS
GlueSAUsedOnlineSize: 0
GlueSAFreeOnlineSize: 0
GlueSAFreeNearlineSize: 1000
GlueSAReservedNearlineSize: 1000
GlueSchemaVersionMajor: 1
GlueSAAccessControlBaseRule: VO:atlas
GlueSALocalID: tape-atlas

There are likely many further objects defined.  These
objects have been omitted for brevity.

Don’t use localhost

It’s tempting to use localhost as the hostname in the ldapsearch command above. Unfortunate-
ly, for some versions of BDII this will not work. Recent versions of BDII bind to the ethernet device
(e.g., eth0). Typically, localhost is associated with the loopback device (lo), so the LDAP server
part of BDII will not hear the connection request and the query will fail.

You should be able to compare this output with the output from running the info-provider script manually.
If the info-provider output includes LDAP objects that are absent in the BDII output then there is a problem
somewhere. The BDII log file will likely explain why this object was not accepted; for example, due to a
badly formatted attribute.
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Unfortunately, the order of the LDAP objects and the order of the attributes within the object (other than
the distinguished name, DN, which must be first) are not required to be in any particular order. Because of
this one cannot use the diff command to look for changes.

Updating information
The information contained within the info service may take a short time to achieve a complete overview of
dCache’s state. For certain gathered information it may take a few minutes before the information stabilis-
es. This delay is intentional and prevents the gathering of information from adversely affecting dCache’s
performance.

The information presented by the LDAP server is updated, by BDII, periodically by requesting fresh infor-
mation from the info-provider. The info-provider obtains this information by requesting dCache’s current
status from info service. By default, BDII will query the info-provider every 60 seconds. This will intro-
duce an additional delay between a change in dCache’s state and that information propagating.

A few pieces of information are hard-coded within the glue-1.3.xml file; that is, you will need to edit
this file before the published value(s) will change. These values are ones that typically a site-admin must
choose independently of dCache’s current operations.

Troubleshooting BDII problems
The BDII log files may show entries like:

   ==> slapadd: could not parse entry (line=26)
   Error nearby dn:
   GlueVOInfoLocalID=atl[...],o=grid ==>
   str2entry: invalid value for attributeType GlueSATotalOnlineSize #0
   (syntax 1.3.6.1.4.1.1466.115.121.1.27)

This kind of problem comes when BDII is attempting to inject new information into the OpenLDAP
server. This server is rejecting some of that information because it is badly formatted. In this example,
1.3.6.1.4.1.1466.115.121.1.27 is LDAP-speak for “an integer number”. The offending attribute
has a value of #0, which isn’t an integer number as it starts with the hash symbol (#).

The nearby dn description of the report should be ignored. It is unclear how OpenLDAP decides which
object is “nearby”, but it’s usually inaccurate. Instead, the important piece of information is the line number
(line=26 in above). BDII injects fresh information into the OpenLDAP server from a file and the line
number mentioned in the error message is from this file.

The following two sections describe how to locate the injection file for BDII v4 and v5. In those sections,
when mentioning file locations, the default location has been included in parentheses. Since many sites
deploy BDII with minimal changes the default locations are likely correct.

Locating BDII v4 injection LDIF files
The default location is /opt/bdii/var/cache/1/GIP.ldif

The file /opt/bdii/etc/bdii.conf contains various configuration options for BDII; for example, if
this file has the line BDII_DIR=/opt/bdii then BDII_DIR will take the value /opt/bdii.
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The file BDII_DIR/etc/bdii-update.conf (/opt/bdii/etc/bdii-update.conf) con-
tains a list describing methods for obtaining LDIF information. When updating the contents of a server, BDII
will obtain LDIF information from each source and attempt to inject the data into the OpenLDAP server.
The bdii-update.conf file will likely contain a single line:

GIP file:///opt/glite/libexec/glite-info-wrapper

Each line in bdii-update.conf has two parts. The second part is a URI describing how to obtain the
data. If the URI starts file:// (as in the above example) then the file is executed and the LDIF is taken
from the standard-output of the process. The first part (GIP in above example) is used to specify the file-
name for the combined output (GIP.ldif) within the BDII_VAR_DIR/cache directory (/opt/bdii/
var/cache) hierarchy.

The output from the various sources (as defined in the bdii-update.conf file) are stored as files within
the BDII_VAR_DIR/cache/0 directory (/opt/bdii/var/cache/0). After fresh data is injected,
the cache directories are advanced one place, so the directory cache/0 becomes cache/1, directory
cache/1 becomes cache/2, and so on. The result is that, after injecting, the LDIF output will be in
directory BDII_VAR_DIR/cache/1 (/opt/bdii/var/cache/1) and will be contained within the
file GIP.ldif.

Locating BDII v5 injection LDIF files
The default location is /var/bdii/old.ldif

As with BDII v4, the file /opt/bdii/etc/bdii.conf contains configuration, such as in which direc-
tories information will be stored.

The update process in BDII v5 is different from v4, so the generated files are different. With v5, BDII
maintains knowledge of the current state of the LDAP server in the file BDII_VAR_DIR/old.ldif (/
var/bdii/old.ldif). It uses this information to generate a description of how to modify the local BDII
server (by adding, removing and modifying attributes and objects as necessary).

Once the injection LDIF file is located, the line number may be used to discover which object is causing
the problem, so enabling further investigation.
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Chapter 18.  Stage Protection
Irina Kozlova

Initially dCache has been designed to be a disk cache in front of a Tape Storage System, moving files onto
the tape-backend and restoring them when needed. Those operations are handled transparently to the user.
The downside of this approach is that a simple read of a file, not being on disk, automatically triggers a tape
operation. As tape operations are expensive and may interfere with storing raw data, coming from the Tier
0, this feature had to be reviewed. As a result, it has been agreed with the experiments that only a production
user should be allowed to trigger such a tape operation. dCache is now implementing a first version of such
a protective mechanism.

A dCache system administrator may specify a list of DNs/FQANs which are allowed to trigger tape read
accesses for files not being available on disk. Users, requesting tape-only files, and not being on that white
list, will receive a permission error and no tape operation is launched. In 1.9.5-20 release, stage protection
can be enhanced to allow authorization specific to a dCache storage group. The additional configuration
parameter is optional allowing the stage protection to be backwards compatible when stage authorization
is not specific to a storage group.

Configuration of Stage Protection
In the 1.9.4 series, stage protection had to be configured in every door and in the PinManager. Starting
with the 1.9.5 series, stage protection can optionally be configured in the PoolManager rather than on
the doors and PinManager. Thus the white list needs to be present on a single node only. To enable this,
define the following parameter in config/dCacheSetup:

stagePolicyEnforcementPoint=PoolManager

The file name of the white list must be configured by setting the stageConfigurationFilePath
parameter in config/dCacheSetup:

stageConfigurationFilePath=${ourHomeDir}/config/StageConfiguration.conf

The parameter only needs to be defined on the nodes which enforce the stage protection; i.e., either on the
doors and PinManager, or in PoolManager.

Definition of the White List
The Stage Configuration File will contain a white list. Each line of the white list may contain one or two
regular expressions enclosed in double quotes. The first regular expression matches the DN, and the second
matches the FQAN :

"DN" ["FQAN"]

Lines starting with a hash symbol # are discarded as comments.

The regular expression syntax follows the syntax defined for the  Java Pattern class  [http://java.sun.com/
javase/6/docs/api/java/util/regex/Pattern.html].

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
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Here are some examples of the White List Records for the 1.9.5 series:

".*" "/atlas/Role=production"
"/C=DE/O=DESY/CN=Kermit the frog"
"/C=DE/O=DESY/CN=Beaker" "/desy"
"/O=GermanGrid/.*" "/desy/Role=.*"

This example authorizes a number of different groups of users:

• Any user with the FQAN /atlas/Role=production.

• The user with the DN /C=DE/O=DESY/CN=Kermit the frog, irrespective of which VOMS groups
he belongs to.

• The user with the DN /C=DE/O=DESY/CN=Beaker but only if he is also identified as a member of
VO desy (FQAN /desy)

• Any user with DN and FQAN that match /O=GermanGrid/.* and /atlas/Role=.* respectively.

With the plain dCap protocol the DN and FQAN are not known for any users. Therefore, there is a special
case for dCap users in 1.9.5. In order to allow all dCap users to stage files the white list should contain
the following record:

"Unknown" "nobody"

If this line is commented or not present in the white list, all dCap users will be disallowed to stage files.

Authorizing Only Certain Storage Groups
In 1.9.5-20 release, an optional storage group parameter can be specified. Each line of the white list may
contain up to three regular expressions enclosed in double quotes. The regular expressions match the DN,
FQAN, and Storage Group written in the following format:

"DN" ["FQAN" ["StorageGroup"] ]

If a storage group is specified all three parameters must be provided. The regular expression ".*" may be
used to authorize any DN or any FQAN. Consider the following example:

".*" "/atlas/Role=production" "h1:raw@osm"
"/C=DE/O=DESY/CN=Scooter" ".*" "sql:chimera@osm"

In the example above:

• Any user with FQAN /atlas/Role=production is allowed to stage files located in the storage
group h1:raw@osm.

• The user /C=DE/O=DESY/CN=Scooter, irrespective of which VOMS groups he belongs to, is allowed
to stage files located in the storage group sql:chimera@osm.

In the following example, all dCap users are allowed to stage files located in the storage group
h1:raw@osm:
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"Unknown" "nobody" "h1:raw@osm"
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Chapter 19. General

Installing dCache on Opteron Machines
The PNFS server, dCache server, and dCache client software have to be taken care of:

The dCache Server
The major part of the dCache server software is written in Java. Therefore the Java Virtual Machine with 64
bit extension needs to be installed. It either is included in the regular Java distribution or additional packages
have to be downloaded.

The dCache Client
The dCap library and the command line tool dccp may be downloaded from  http://www.dcache.org/down-
loads/ [http://www.dcache.org/downloads.shtml] for several architectures. The source of the client software
may also be downloaded from  http://www.dcache.org/downloads/cvs.shtml [http://www.dcache.org/down-
loads/cvs.shtml] and compiled. As of this writing, this has not been tested for the Opteron architecture.
Please, contact <support@dcache.org> when encountering any problems with this.

pnfs Server
The current version of the pnfs server software is written in C and has never been compiled for any 64-
bit architecture. Since a Java implementation is in preparation, there are no plans to do that. Therefore the
pnfs server has to be run in “compat mode”.

http://www.dcache.org/downloads.shtml
http://www.dcache.org/downloads.shtml
http://www.dcache.org/downloads.shtml
http://www.dcache.org/downloads/cvs.shtml
http://www.dcache.org/downloads/cvs.shtml
http://www.dcache.org/downloads/cvs.shtml
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Chapter 20. Pool Operations

Enabling checksums

How to enable checksums
The following section describes how to enable checksum calculation on write transfers with maximum se-
curity. Two checksums will be computed on different points for each transfer: on the fly during file arrival
and once the file was completely written to disk . Both checksums are compared with each other and (if
available) with another checksum sent by the client. If, and only if, all of them match, the transfer is consid-
ered to be successful and the checksum is stored in pnfs.

To enable checksumming (independent from access protocol type), make sure the following option appears
in the pool.batch-file:

define context startPools endDefine
  create diskCacheV111.pools.MultiProtocolPool2 ${0} \
  ..
  -calculate-transfer-crc \
  ..
"

Additionally, the checksum policy must be customized accordingly. This is done by modifying the pool-
setup-file (found at poolPath/pool/setup) such that it contains the following line:

csm set policy -onwrite=on -ontransfer=on -enforcecrc=on

Now a restart of the pool should activate all changes. Please repeat the upper procedure on all write-pools
you want to have checksum-enabled.

Warning

Please note that the following policy options should not be touched:

getcrcfromhsm this option is tailored to DESY’s HSM and won’t work anywhere else

onread reserved for future use, no checksum handling on read transfers for now.

frequently reserved for future use (recalculating checksums for files residing in the pool
on a regular basis).

The default pool behavior
When setting up a pool from scratch, the default policy is to calculate only the checksum on the file written
to disk, but not on the fly upon arrival. In case there is a client checksum available (always true for dCap),
they get compared and must match. Otherwise, the checksum computed on the written disk file will be stored
in pnfs instead.
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To reset the default behavior, set the following line in the pool-setup-file and restart the pool:

csm set policy -onwrite=on -enforcecrc=on

Checksums in detail

Overview

When writing data into the dCache, and possibly later on into an HSM, checksums may be calculated at
different points within this chain.

Client Checksum The client calculates the checksum before or while the data is sent to the
dCache. The checksum value, depending on when it has been calculated,
may sent together with the open request to the door and stored into pnfs
before the data transfer begins or it may be sent with the close operation
after the data has been transferred.

The dCap protocol providing both methods, but the dCap clients use the
latter by default.

The FTP protocol does not provide a mechanism to send a checksum. Nev-
ertheless, some FTP clients can (mis-)use the “site” command to send
the checksum prior to the actual data transfer.

Transfer Checksum While data is coming in, the server data mover may calculate the checksum
on the fly.

Server File Checksum After all the file data has been received by the dCache server and the file
has been fully written to disk, the server may calculate the checksum, based
on the disk file.

The graph below sketches the different schemes for dCap and FTP with and without client checksum cal-
culation:

Table 20.1. Checksum calculation flow

Step FTP (w/o initial CRC) FTP (with initial CRC) dCap

1 Create Entry

2 Store Client CRC in pnfs

3 Server calculates transfer CRC

4 Get Client CRC from pnfs Get Client CRC from mover

5 Compare Client and Server CRC

6 Store transfer CRC in pnfs Store client CRC in pnfs

7 Server calculates disk file CRC
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ChecksumMover Interface
As far as the server data mover is concerned, only the Client Checksum and the Transfer Checksum are
of interrest. While the client checksum is just delivered to the server mover as part of the protocol (e.g.
close operation for dCap), the transfer checksum has to be calcalated by the server mover on the fly. In
order to communicate the different checksums to the embedding pool, the server mover has to implement
the ChecksumMover interface in addition to the MoverProtocol Interface. A mover, not implementing the
MoverProtocol is assumed not to handle checksums at all. The Disk File Checksum is calculated independ-
edly of the mover within the pool itself.

public interface ChecksumMover {

        public void     setDigest( Checksum transferChecksum ) ;
        public Checksum getClientChecksum() ;
        public Checksum getTransferChecksum() ;

}

The pool will or will not call the setDigest method to advise the mover which checksum algorithm to use.
If setDigest is not called, the mover is not assumed to calculate the Transfer Checksum.

java.security.MessageDigest transferDigest = transferChecksum.getMessageDigest() ;

                ***

        while( ... ){

                rc = read( buffer , 0 , buffer.length ) ;

                ***

                transferDigest.update( buffer , 0 , rc ) ;
        }

getClientChecksum and getTransferChecksum are called by the pool after the MoverProtocols runIO method
has been successfully processed. These routines should return null if the corresponding checksum could not
be determined for whatever reason.

public void  setDigest( Checksum transferChecksum ){

        this.transferChecksum = transferChecksum ;

        }
        public Checksum getClientChecksum(){
                return clientChecksumString == null ?
                        null :
                        Checksum( clientChecksumString ) ;
        }
        public Checksum getTransferChecksum(){ return transferChecksum ; }

The DCapProtocol_3_nio Mover
The DCapProtocol_3_nio mover implements the ChecksumMover interface and is able to report the Client
Checksum and the Transfer Checksum to the pool. To enable the DCapProtocol_3_nio Mover to calculate the
Transfer Checksum, either the cell context dCap3-calculate-transfer-crc or the cell batch line option calcu-
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late-transfer-crc must be set to true. The latter may as well be set in the *.poolist file. DCapProtocol_3_nio
disables checksum calculation as soon as the mover receives a client command except ’write’ (e.g. read,
seek or seek_and_write).

The ChecksumModule
The checksum module (as part of the Pool) and its command subset (csm ...) determines the behavious of
the checksum calculation.

• csm set policy -ontransfer=on

Movers, implementing the ChecksumMover interface, are requested to calculate the Transfer Checksum.
Whether or not the mover actually performance the calculation might depend on additional, mover specific
flags, like the dCap3-calculate-transfer-crc flag for the DCapProtocol_3_nio mover.

If the mover reports the Transfer Checksum and there is a Client Checksum available, either from pnfs
or from the mover protocol, the Transfer Checksum and the Client Checksum are compared. A mismatch
will result in a CRC Exception .

If there is no Client Checksum available whatsoever, the Transfer Checksum is stored in pnfs.

• csm set policy -onwrite=on

After the dataset has been completely and successfully written to disk, the pool calculates the checksum
based on the disk file (Server File Checksum). The result is compared to either the Client Checksum or
the Transfer Checksum and a CRC Exception is thrown in case of a mismatch.

If there is neither the Client Checksum nor the Transfer Checksum available, the Server File Checksum
is stored in pnfs.

• csm set policy -enforcecrc=on

In case of -onwrite=off, this options enforces the calculation of the Server File Checksum ONLY if neither
the Client Checksum nor the Transfer Checksum has been sucessfully calculated. The result is stored in
pnfs.

Migration Module
The migration module is a component of dCache pools introduced in version 1.9.1. The purpose of the
component is essentially to copy or move the content of a pool to one or more other pools. The migration
module replaces the copy manager found in previous releases of dCache. We advice against using the old
copy manager, as it known to have problems.

Typical use cases for the migration module include:

• Vacating pools, that is, moving all files to other pools before decomisioning the pool.

• Caching data on other pools, thus distributing the load and increasing availability.

• As an alternative to the hopping manager.
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Overview and Terminology
The migration module runs inside pools and hosts a number of migration jobs. Each job operates on a set
of files on the pool on which it is executed and can copy or move those files to other pools. The migration
module provides filters for defining the set of the files on which a job operates.

The act of copying or moving a file is called a migration task. A task selects a target pool and asks it to
perform a pool to pool transfer from the source pool. The actual transfer is performed by the same compo-
nent performing other pool to pool transfers. The migration module does not perform the transfer; it only
orchestrates it.

The state of the target copy (the target state) as well as the source copy (the source state) can be explicitly
defined. For instance, for vacating a pool the target state is set to be the same as the original source state,
and the source state is changed to removed; for caching files, the target state is set to cached, and the source
state is unmodified.

Sticky flags owned by the pin manager are never touched by a migration job, however the migration module
can ask the pin manager to move the pin to the target pool. Care has been taken that unless the pin is moved
by the pin manager, the source file is not deleted by a migration job, even if asked to do so. To illustrate this,
assume a source file marked precious and with two sticky flags, one owned by foobar and the other by the
pin manager. If a migration job is configured to delete the source file, but not to move the pin, the result will
be that the file is marked cached, and the sticky flag owned by foobar is removed. The pin remains. Once
it expires, the file is eligible for garbage collection.

All operations are idempotent. This means that a migration job can be safely rerun, and as long as everything
else is unchanged, files will not be transferred a again. Because jobs are idempotent they do not need to
maintain persistent state, which in turns means the migration module becomes simpler and more robust.
Should a pool crash during a migration job, the job can be rerun and the remaining files will be transfered.

It is safe to run migration jobs while pools are in use. Once started, migration jobs run to completion and
do only operate on those files that matched the selection filters at the time the migration job started. New
files that arrive on the pool are not touched. Neither are files that change state after a migration job has
been initialized, even though the selection filters would match the new state of the file. The exception to the
rule is when files are deleted from the pool or change state such that they do no longer match the selection
filter. Such files will be excluded from the migration job, unless the file was already processed. Rerunning
a migration job will force it to pick up any new files. Because the job is idempotent, any files copied before
are not copied again.

Permanent migration jobs behave differently. Rather than running to completion, permanent jobs keep run-
ning until explicitly cancelled. They monitor the pool for any new files or state changes, and dynamically
add or remove files from the transfer queue. Permanent jobs are made persistent when the save command
is executed and will be recreated on pool restart. The main use case for permanent jobs is as an alternative
to using a central hopping manager.

Idempotence is achieved by locating existing copies of a file on any of the target pools. If an existing copy
is found, rather than creating a new copy, the state of the existing copy is updated to reflect the target state
specified for the migration job. Care is taken to never make a file more volatile than it already is: Sticky
flags are added, or existing sticky flags are extended, but never removed or shortened; cached files may
be marked precious, but not vice versa. One caveat is when the target pool containing the existing copy is
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offline. In that case the existence of the copy cannot be verified. Rather than creating a new copy, the task
fails and the file is put back into the transfer queue. This behaviour can be modified by marking a migration
job as eager. Eager jobs create new copies if an existing copy cannot be immediately verified. As a rule of
thumb, permanent jobs should never be marked eager. This is to avoid that a large number of unnecessary
copies are created when several pools are restarted simultaneously.

A migration task aborts whenever it runs into a problem. The file will be reinserted at the end of the transfer
queue. Consequently, once a migration job terminates, all files have been successfully transferred. If for
some reason tasks for particular files keep failing, then the migration job will never terminate by itself as
it retries indefinitely.

Command Summary
All commands begin with the string migration, e.g. migration copy. The commands migration copy, mi-
gration cache and migration move create new migration jobs. These commands take the same options and
only differ in default values. Except for the number of concurrent tasks, transfer parameters of existing jobs
cannot be changed. This is by design to ensure idempotency of jobs. The concurrency can be altered through
the migration concurrency command.

Jobs are assinged a job ID and are executed in the background. The status of a job may be queried through
the migration info command. A list of all jobs can be obtained through migration ls. Jobs stay in the list
even after they have terminated. Terminated jobs can be cleared from the list through the migration clear
command.

Jobs can be suspended, resumed and cancelled through the migration suspend, migration resume and
migration cancel commands. Existing tasks are allowed to finish before a job is suspended or cancelled.

Examples

Vacating a pool

To vacate sourcePool, we first mark the pool read-only to avoid that more files are added to the pool,
and then move all files to targetPool. It is not strictly necessary to mark the pool read-only, however
if not done there is no guarantee that the pool is empty when the migration job terminates. The job can be
rerun to move remaining files.

(sourcePool) admin > pool disable -rdonly
(sourcePool) admin > migration move targetPool
[1] RUNNING      migration move targetPool
(sourcePool) admin > migration info 1
Command    : migration move targetPool
State      : RUNNING
Queued     : 0
Attempts   : 1
Targets    : targetPool
Completed  : 0 files; 0 bytes; 0%
Total      : 830424 bytes
Concurrency: 1
Running tasks:
[0] 0001000000000000000BFAE0: TASK.Copying -> [targetPool@local]
(sourcePool) admin > migration info 1
Command    : migration move targetPool
State      : FINISHED
Queued     : 0
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Attempts   : 1
Targets    : targetPool
Completed  : 1 files; 830424 bytes
Total      : 830424 bytes
Concurrency: 1
Running tasks:
(sourcePool) admin > rep ls
(sourcePool) admin >

Caching recently accessed files

Say we want to cache all files belonging to the storage group atlas:default and accessed within the last
month on a set of low-cost cache pools defined by pool group cache_pools. We can achieve this through
the following command.

(sourcePool) admin > migration cache -target=pgroup -accessed=0..2592000 -storage=atlas:default
 cache_pools
[1] INITIALIZING migration cache -target=pgroup -accessed=0..2592000 -storage=atlas:default
 cache_pools
(sourcePool) admin > migration info 1
Command    : migration cache -target=pgroup -accessed=0..2592000 -storage=atlas:default cache_pools
State      : RUNNING
Queued     : 2577
Attempts   : 2
Targets    : pool group cache_pools, 5 pools
Completed  : 1 files; 830424 bytes; 0%
Total      : 2143621320 bytes
Concurrency: 1
Running tasks:
[72] 00010000000000000000BE10: TASK.Copying -> [pool_2@local]

The files on the source pool will not be altered. Any file copied to one of the target pools will be marked
cached.

Renaming a Pool
A pool may be renamed with the following procedure, regardless of the type of files stored on it.

Disable file transfers from and to the pool with

(poolname) admin > pool disable -strict

Then make sure, no transfers are being processed anymore. All the following commands should give no
output:

(poolname) admin > queue ls queue
(poolname) admin > mover ls
(poolname) admin > p2p ls
(poolname) admin > pp ls
(poolname) admin > st jobs ls
(poolname) admin > rh jobs ls

Now the files on the pools have to be unregistered on the pnfs server with

(poolname) admin > pnfs unregister
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Even if the pool contains precious files, this is no problem, since we will register them again in a moment.
The files might not be available for a short moment, though. Log out of the pool, and stop the service:

[root] # jobs/pool1 -pool=poolDomainName stop

Rename the pool in the poolDomain.poollist-file. Restart the service:

[root] # jobs/pool -pool=poolDomainName -logfile=dCacheLocation/log/poolDomainNameDomain.log start

Register the files on the pool with

(poolname) admin > pnfs register

Pinning Files to a Pool
You may pin a file locally within the private pool repository:

(poolname) admin > rep set sticky pnfsid on|off

the ’sticky’ mode will stay with the file as long as the file is in the pool. If the file is removed from the pool
and recreated afterwards this information gets lost.

You may use the same mechanism globally: in the command line interface (local mode) there is the command

(poolname) admin > set sticky pnfsid

This command does:

1. Flags the file as sticky in the name space database (pnfs). So from now the filename is globally set sticky.

2. Will go to all pools where it finds the file and will flag it sticky in the pools.

3. All new copies of the file will become sticky.

1               Filenames will always be relative to the dCache installation               directory, which defaults to               /opt/d-cache/.             
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Chapter 21. Migration of classic SE
( nfs, disk ) to dCache
This chapter contains a guide to migrate a classic SE to dCache.

The convertion of a classic SE to dCache is not complicated, but has to be done very carefully to prevent
data losses.

We assume, that dCache is installed and configured.( the section called “Installing a Single Node dCache
Instance”). To be on the safe side, we recommend to install a new pool on a different host, since there is
no easy way to switch back to classic SE.

• create a new pool.

• for each file in the classic SE an entry in pnfs has to be created. then the file has to be moved to data
directory in the pool control directory and the owner, group and size must be set in pnfs. To avoid
mistakes we recomend to use a script developed and tested by the dCache developers. Run the script for
each file which goes into dCache:

[root] #find . -type f -exec file2dcache.sh {} /pnfs/desy.de/data/fromSE /pool/pool1 \; 

• start the pool. Since the pool has to recreate the inventory, the start up time will be longer than usually..

• connect to the dCache via admin interface and register the newly created files:

cd pool1
      pnfs register
      ..
      logoff
      

The newly migrated files shall be available already.

#!/bin/sh

if [ $# -ne 3 ]
then
   echo "Usage: $0 <file> <pnfs path> <pool base>"
   exit 1;
fi

SRC=$1
FILE=`basename $1`
DIR=`dirname $1`
PNFS_PRFIX=$2
POOL_BASE=$3

PNFS_FILE="${PNFS_PRFIX}/${DIR}/${FILE}"

if [ ! -f "${SRC}" ]
then
   echo "File ${SRC} do not exist."
   exit 1
fi
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if [  -f "${PNFS_FILE}" ]
then
   echo "File ${PNFS_FILE}  already exist."
   exit 2
fi

if [ ! -d "${POOL_BASE}/control" ]
then
   echo "Creating directory [control]"
   mkdir ${POOL_BASE}/control
fi

if [ ! -d "${POOL_BASE}/data" ]
then
   echo "Creating directory [data]"
   mkdir ${POOL_BASE}/data
fi

if [ ! -f "setup" ]
then
   echo "Creating dummy [setup] file"
   touch  ${POOL_BASE}/setup
fi

echo "Creating file in pnfs"
if [ ! -d ${PNFS_PRFIX}/${DIR} ]
then
   mkdir -p ${PNFS_PRFIX}/${DIR} > /dev/null 2>&1
   if [ $? -ne 0 ]
   then
      echo "Failed to create directory ${PNFS_PRFIX}/${DIR}"
      exit 3;
   fi
fi

touch ${PNFS_FILE}
FILE_SIZE=`stat -c "%s" ${SRC}`
touch "${PNFS_PRFIX}/${DIR}/.(fset)(${FILE})(size)(${FILE_SIZE})"
chmod --reference=${SRC} ${PNFS_FILE}
chown --reference=${SRC} ${PNFS_FILE}

echo "Creating control file for pnfsID $PNFS_ID"
PNFS_ID=`cat "${PNFS_PRFIX}/${DIR}/.(id)(${FILE})"`
echo "precious" >  ${POOL_BASE}/control/${PNFS_ID}
echo "Copy ${SRC} to  ${POOL_BASE}/data/${PNFS_ID}"
cp  ${SRC}  ${POOL_BASE}/data/${PNFS_ID}

exit 0
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Chapter 22. PostgreSQL and dCache
Vladimir Podstavkov

Mathias de Riese

Martin Radicke

PostgreSQL is used for various things in a dCache system: The SRM, the pin manager, the space manager,
the replica manager, the pnfs companion, the billing, and the pnfs server might make use of one or
more databases in a single or several separate PostgreSQL servers.

The SRM, the pin manager, the space manager, the replica manager, and the pnfs companion will use the
PostgreSQL database as configured at cell start-up in the corresponding batch files. The billing will only
write the accounting information into a database if it is configured with the option -useSQL. The pnfs
server will use a PostgreSQL server if the pnfs-posgresql version is used. It will use several databases
in the PostgreSQL server.

Installing a PostgreSQL Server
The preferred way to set up a PostgreSQL server should be the installation of the version provided by your
OS distribution. It is strongly recommended to use version 8 or higher.

Install the PostgreSQL server, client and JDBC support with the tools of the operating system. You can down-
load a suitable package from http://www.postgresql.org/ftp/. A version that is suitable for current versions
of Scientific Linux 3 can be found at http://www.postgresql.org/ftp/binary/v8.1.0/linux/rpms/redhat/rhel-
es-3.0/.

Initialize the database directory (usually /var/lib/pgsql/data/), start the database server, and make
sure that it is started at system start-up. This may be done with

[root] # /etc/init.d/postgresql start
[root] # chkconfig postgresql on

If the start-up script does not perform the initialization automatically, it might have to be done with

[root] # initdb -D /var/lib/pgsql/data/

and the server is started manually with

[root] # postmaster -i -D /var/lib/pgsql/data/ >logfile 2>&1 &

The server has to be configured to admit TCP/IP connections from localhost. This is the default for
version 8 of PostgreSQL.

For dCache version 1.6.6 release 1, please make sure the file /var/lib/pgsql/da-
ta/postgresql.conf contains

...

http://www.postgresql.org/ftp/
http://www.postgresql.org/ftp/binary/v8.1.0/linux/rpms/redhat/rhel-es-3.0/
http://www.postgresql.org/ftp/binary/v8.1.0/linux/rpms/redhat/rhel-es-3.0/
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add_missing_from = on
...

This will not be necessary in future releases.

The file /var/lib/pgsql/data/pg_hba.conf should contain

...
local   all         all                        trust
host    all         all         127.0.0.1/32   trust
host    all         all         ::1/128        trust

Restart the server, e.g. with

[root] # /etc/init.d/postgresql restart

The configuration of the access rights in /var/lib/pgsql/data/pg_hba.conf is rather liberal: Any
user on the local machine may connect to the PostgreSQL server as any database user without specifying a
password. This way, you can be sure that problems will not be due to wrong access rights or passwords. See
the section called “Configuring Access to PostgreSQL” of the dCache book for more advice on configuring
PostgreSQL.

If a current version of PostgreSQL is not available for the distribution, it can be compiled as follows: You
can download the source code from the official web site: http://www.postgresql.org/download and build it
following the instruction: http://www.postgresql.org/docs/8.0/static/installation.html Here is a short version
from that page:

[root] # ./configure --prefix=/usr/local/pgsql
[root] # gmake
[root] # su
[root] # gmake install
[root] # adduser postgres
[root] # mkdir /usr/local/pgsql/data
[root] # chown postgres /usr/local/pgsql/data
[root] # su - postgres
[root] # /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
[root] # /usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data > logfile 2>&1 &
[root] # /usr/local/pgsql/bin/createdb test
[root] # /usr/local/pgsql/bin/psql test

If there is another PostgreSQL installed on your machine, make sure root’s path is set so that executables,
esp. psql, postmaster, and pg_ctl, are called from the V8.x.x PostgreSQL that you intend to use for dCache.
(You will be doing most of this as root). Another thing is to make sure that the various libpg.so libraries
are not invoked from the other PostgreSQL distribution. locate libpg.so will show which ones are
on your system. Set LD_LIBRARY for root to insure that the pnfs PostgreSQL libs are seen first!

Configuring Access to PostgreSQL
In the installation guide instructions are given for configuring one PostgreSQL server on the admin node
for all the above described purposes with generous access rights. This is done to make the installation
as easy as possible. The access rights are configured in the file database_directory_name/da-
ta/pg_hba.conf. According to the installation guide the end of the file should look like

http://www.postgresql.org/download
http://www.postgresql.org/docs/8.0/static/installation.html
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...
# TYPE  DATABASE    USER        IP-ADDRESS        IP-MASK           METHOD
local   all         all                                             trust
host    all         all         127.0.0.1/32                        trust
host    all         all         ::1/128                             trust
host    all         all         HostIP/32          trust

This gives access to all databases in the PostgreSQL server to all users on the admin host.

The databases can be secured by restricting access with this file. E.g.

...
# TYPE  DATABASE    USER        IP-ADDRESS        METHOD
local   all         postgres                      ident sameuser
local   all         pnfsserver                    password
local   all         all                           md5
host    all         all         127.0.0.1/32      md5
host    all         all         ::1/128           md5
host    all         all         HostIP/32          md5

The server is made aware of this with

[root] # pg_ctl reload

It can still be configured with the user postgres:

[root] # su - postgres

And the password for e.g. the user pnfsserver can be set with

[user] $ psql template1 -c "ALTER USER pnfsserver WITH PASSWORD 'yourPassword'"

The pnfs server is made aware of this password by changing the variable dbConnectString in the file
/usr/etc/pnfsSetup:

...
export dbConnectString="user=pnfsserver password=yourPassword"

User access should be prohibited to this file with

[root] # chmod go-rwx /usr/etc/pnfsSetup

Performance of the PostgreSQL Server
On small systems it should never be a problem to use one single PostgreSQL server for all the functions
listed above. In the standard installation, the ReplicaManager, the pnfs companion are not activated
by default. The billing will only write to a file by default.

Whenever the PostgreSQL server is going to be used for another functionality, the impact on performance
should be checked carefully. To improve the performance, the functionality should be installed on a separate
host. Generally, a PostgreSQL server for a specific funcionality should be on the same host as the dCache cell
accessing that PostgreSQL server, and the PostgreSQL server containing the databases for the pnfs server
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should run on the same host as the pnfs server and the PnfsManager cell of the dCache system accessing
it. Accordingly, the pnfs companion and the pnfs server itself will use the same PostgreSQL server.

It is especially useful to use a separate PostgreSQL server for the billing cell.

Note

The following is work-in-progress.

Create PostgreSQL user with the name you will be using to run pnfs server. Make sure it has CREATEDB
privilege.

[user] $ psql -U postgres template1 -c "CREATE USER johndoe with CREATEDB"
[user] $ dropuser pnfsserver
[user] $ createuser --no-adduser --createdb --pwprompt pnfsserver

Table 22.1. Protocol Overview

Component Database Host Database
Name

Database Us-
er

Database
Password

SRM srmDatabaseHostor if not set: srmDb-
Host or if not set: localhost

dcache srmdcache srmdcache

pin manag pinManagerDatabaseHost or if not
set: srmDbHost or if not set: localhost

dcache srmdcache srmdcache

SpaceMan-
ager

spaceManagerDatabaseHost or if not
set: srmDbHost or if not set: localhost

dcache srmdcache srmdcache

companion companionDatabaseHost or if not set:
localhost

companion srmdcache srmdcache

Replica-
Manager

replicaManagerDatabaseHost or if
not set: localhost

replicas srmdcache srmdcache

pnfs server localhost admin, data1,
exp0, ...

pnfsserver --free--

billing billingDatabaseHost or if not set:
localhost

billing srmdcache srmdcache
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Chapter 23. Complex Network
Configuration
This chapter contains solutions for several non-trivial network configurations. The first section discusses
the interoperation of dCache with firewalls and does not require any background knowledge about dCache
other than what is given in the installation guide (Chapter 2, Installing dCache) and the first steps tutorial
(Chapter 3, Getting in Touch with dCache). The following sections will deal with more complex network
topologies, e.g. private subnets. Even though not every case is covered, these cases might help solve other
problems, as well. Intermediate knowledge about dCache is required. Since most tasks require changes in the
start-up configuration, the background information on how to configure the cell start-up, given in Chapter 5,
The Cell Package will be useful.

Firewall Configuration
The components of a dCache instance may be distributed over several hosts (nodes). Some of these com-
ponents are accessed from outside and consequently the firewall needs to be aware of that. This section
assumes that all nodes are behind a firewall and have full access to each other. More complex setups are
described in the following sections. Depending on the access method, certain ports have to be opened to
only some of the nodes. We will describe the behaviour of a standard installation using the default values.
Since dCache is very flexible, most port numbers may be changed in the configuration. The location (node)
of any dCache component might also be changed from this standard.

The dCap Protocol

The dCap protocol should be used for local, trusted access only, because it is not authenticated. The tradi-
tional method is to mount pnfs locally on the client and use paths to the files on this local mount to address
files. For this, the client has to be able to mount the NFS export of the pnfs server. It is also possible to use
the dCap protocol with a URL instead of a local path within a pnfs mount. The URL has the form

dcap://dCapDoorHostFQN:dCapDoorPort/fullPnfsPath

If the dCapDoorPort is not specified, 22125 is used to establish a TCP connection to dCapDoorHost-
FQN (see next paragraph). In this case no NFS mount is needed anymore. However, the access is unauthen-
ticated and therefore access is only granted if the “other” part of the UNIX rights are set accordingly. In
other words: The user is mapped to nobody for unauthenticated dCap access.

In both cases (pnfs mount and URL access) the dCap client (dCap library or dccp command) will con-
nect to the dCap door (doorDomain) on the admin node with TCP port 22125 (can be changed in con-
fig/dCacheSetup with dCapPort). After the pool manager selected a pool to be used for the transfer
(the section called “The Pool Selection Mechanism” describes how to configure that selection mechanism.)
this pool will establish the data connection to the client on a TCP port which has been selected by the client.
The port range to use may be specified on the client side (e.g. by the -p option of the dccp command.)
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The GSIdCap Protocol

The GSIdCap protocol is the dCap protocol with a GSI authentication wrapper (tunnel). The mechanism
is the same as described for the URL-stype dCap protocol in the previous section. The only difference
is the default port number: For the GSIdCap door the default port number is 22128. It is specified in
config/dCacheSetup with the parameter dCapGsiPort.

Another difference between the dCap door and GSIdCap doors is that the dCap door is started on the
admin node and there can only be one in the standard configuration, while there may be several GSIdCap
doors on separate nodes. Correspondingly, ports have to be opened in a firewall. Note that it should not be
necessary to run as many GSIdCap doors as GridFTP doors (see below), because no data is transfered
through the GSIdCap door.

The GridFTP Protocol

A GridFTP client connects to one of the GridFTP doors on TCP port 2811. The data connections are
established independent of the direction of the data transfer. In “active” FTP mode the server connects to
the client while in “passive” FTP mode the client connects to the server.

In “active” FTP mode the pool selected by the pool manager (see the section called “The Pool Selection
Mechanism”) will open one or more data connections to the client on a TCP port in the range between
20000 and 25000. In “passive” FTP mode, the client will establish the data connections to the GridFTP
door in the same port range. The pool will connect to the door and the door will route the data traffic. It is
not possible to establish a direct connection between pool and client in “passive” mode, because the FTP
protocol redirection mechanism has to be triggered before the client sends the name of the requested file.

The SRM Protocol

An SRM is a webservice which uses the https as transport protocol and negotiates data transfers between the
client and the server as well as between the server and another server. For the actual data transfer one of the
other protocols is negotiated. Usually this is GridFTP - especially for wide-area transfers. There are two
things to note about SRM-initiated GridFTP transfers:

For reading data, only “active” FTP mode will be used, i.e. the pool containing the data will connect to the
client or to the server which should receive the data. For writing, only “passive” FTP mode will be used,
i.e. the client or the pool containing the data will connect to the client or to the server which should receive
the data.

Apart from SRM put and get operations which always copy data between one SRM and the client there is
also a true SRM copy from one SRM to another SRM. There are two modes for SRM copy: “pull” and “push”
mode. If the destination SRM is dCache based and SRM pull mode (default) is used, the destination pool will
play the role of the GridFTP client, will contact the GridFTP door of the source instance and receive
the data directly from the source pool (if the source system is a dCache system). If push mode is used and
the source is a dCache based SRM, the source pool will be the GridFTP client and will send the data to
the GridFTP door of the destination. All this might have to be considered when designing the system and
configuring the firewall.
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Pool Selection
Restricting wide-area transfers to a subset of your dCache pools may be done with the pool selection unit in
the pool manager. the section called “The Pool Selection Mechanism” contains a describtion on how to do
that. This can be useful to ease firewall configurations, optimize throughput, and improve security.

Protocol Overview
The following table gives an overview about the default ports used by the client protocols supported by
dCache. Note that all of them may be changed in config/dCacheSetup.

Table 23.1. Protocol Overview

Protocol Port(s) Direction Nodes

dCap 22125 incoming doorDomain (admin node)

 any outgoing pools

GSIdCap 22128 incoming gsidcapDomain (where GSIDCAP=yes in
node_config)

 any outgoing pools

GridFTP 2811 incoming gridftpDomain (where GRIDFTP=yes in
node_config)

 20000-25000 outgoing (active FTP) pools

 20000-25000 incoming (passive FTP) gridftpDomain

SRM 8443 incoming srmDomain

GridFTP Connections via two or more Net-
work Interfaces

Description
The host on which the GridFTP door is running has several network interfaces and is supposed to accept
client connections via all those interfaces. The interfaces might even belong to separate networks with no
routing from one network to the other.

As long as the data connection is opened by the GridFTP server (active FTP mode), there is no problem
with having more than one interface. However, when the client opens the data connection (passive FTP
mode), the door (FTP server) has to supply it with the correct interface it should connect to. If this is the
wrong interface, the client might not be able to connect to it, because there is no route or the connection
might be inefficient.

Also, since a GridFTP server has to authenticate with an SSL grid certificate and key, there needs to be
a separate certificate and key pair for each name of the host. Since each network interface might have a



Complex Network Configuration

155

different name, several certificates and keys are needed and the correct one has to be used, when authenti-
cating via each of the interfaces.

Solution
Start a separate GridFTP server cell on the host for each interface on which connections should be accepted.

The cells may be started in one domain or in separate domains. The cells have to have different names, since
they are well known cells. Each cell has to be configured, only to listen on the interface it should serve with
the -listen option. The locations of the grid host certificate and key files for the interface have to be
specified explicitly with the -service-cert and -service-key options.

The following example shows a setup for two network interfaces with the hostnames door-
a.grid.domain (111.111.111.5) and door-b.other.domain (222.222.222.5) which are served by
two GridFTP door cells in one domain:

Example 23.1. Batch file for two GridFTP doors serving separate network interfaces

set printout default 2
set printout CellGlue none
onerror shutdown
check -strong setupFile
copy file:${setupFile} context:setupContext
import context -c setupContext
check -strong serviceLocatorPort serviceLocatorHost
check -strong sshPort ftpPort
create dmg.cells.services.RoutingManager  RoutingMgr
create dmg.cells.services.LocationManager lm \
       "${serviceLocatorHost} ${serviceLocatorPort}"

create dmg.cells.services.login.LoginManager GFTP-door-a \
            "2811 \
      -listen=111.111.111.5 \
             -export \
             diskCacheV111.doors.GsiFtpDoorV1 \
             -prot=raw \
             -service-cert=/etc/grid-security/door-a.grid.domain-cert.pem \
             -service-key=/etc/grid-security/door-a.grid.domain-key.pem \
             ..
             ..
"

create dmg.cells.services.login.LoginManager GFTP-door-b \
            "2811 \
             -listen=222.222.222.5 \
             -export \
             diskCacheV111.doors.GsiFtpDoorV1 \
             -prot=raw \
             -service-cert=/etc/grid-security/door-b.other.domain-cert.pem \
             -service-key=/etc/grid-security/door-b.other.domain-key.pem \
             ..
             ..
"

This batch file is very similar to the batch file for the GridFTP door in the standard setup. (Comments
have been left out.) It only contains an additional create command for the second cell and the emphasized
changes within the two create commands: The cell names, the -listen option with the IP address of the
corresponding interface and the -service-cert and -service-key options with the host certificate
and key files.
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GridFTP with Pools in a Private Subnet
Description
If pool nodes of a dCache instance are connected to a secondary interface of the GridFTP door, e.g. because
they are in a private subnet, the GridFTP door will still tell the pool to connect to its primary interface,
which might be unreachable.

The reason for this is that the control communication between the door and the pool is done via the network
of TCP connections which have been established at start-up. In the standard setup this communication is
routed via the dCache domain. However, for the data transfer, the pool connects to the GridFTP door. The
IP address it connects to is sent by the GridFTP door to the pool via the control connection. Since the
GridFTP door cannot find out which of its interfaces the pool should use, it normally sends the IP address
of the primary interface.

Solution
Tell the GridFTP door explicitly which IP it should send to the pool for the data connection with the -ftp-
adapter-internal-interface option. E.g. if the pools should connect to the secondary interface of
the GridFTP door host which has the IP address 10.0.1.1, the following batch file would be appropriate:

Example 23.2. Batch file for two GridFTP doors serving separate network interfaces

set printout default 2
set printout CellGlue none
onerror shutdown
check -strong setupFile
copy file:${setupFile} context:setupContext
import context -c setupContext
check -strong serviceLocatorPort serviceLocatorHost
check -strong sshPort ftpPort
create dmg.cells.services.RoutingManager  RoutingMgr
create dmg.cells.services.LocationManager lm \
       "${serviceLocatorHost} ${serviceLocatorPort}"

create dmg.cells.services.login.LoginManager GFTP \
            "2811 \
             -export \
             diskCacheV111.doors.GsiFtpDoorV1 \
             -prot=raw \
             -clientDataPortRange=${clientDataPortRange} \
            -root=${ftpBase} \
             -kpwd-file=${kpwdFile} \
             -tlog=/tmp/dcache-ftp-tlog \
             -maxLogin=100 \
             -brokerUpdateTime=5 \
             -protocolFamily=gsiftp \
             -loginBroker=LoginBroker \
             -poolManagerTimeout=5400 \
             -pnfsTimeout=120 \
             -maxRetries=80 \
             -maxStreamsPerClient=10 \
     -ftp-adapter-internal-interface=10.0.1.1 \
"

This batch file is very similar to the batch file for the GridFTP door in the standard setup. (Comments have
been left out.) The emphasized last line has the desired effect.
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Doors in the DMZ

Description
Some doors - e.g. for grid access - are located in the DMZ while the rest of the dCache instance is in
the intranet. The firewall is configured in such a way that the doors cannot reach the location manager
(usually on the admin node together with the pool manager) via port 11111 (or as configured in the variable
serviceLocatorPort in config/lmSetup).

Solution
Please contact <support@dcache.org> if you need a solution for this problem.
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Chapter 24. Accounting
The raw information about all dCache activities can be found in billing/YYYY/MM/billing-
YYYY.MM.DD.1 A typical line looks like

05.31 22:35:16 [pool:pool-name:transfer] [000100000000000000001320,24675] myStore:STRING@osm 24675
 474 true {GFtp-1.0 client-host-fqn 37592} {0:""}

The first bracket contains the pool name, the second the pnfs ID and the size of the file which is transferred.
Then follows the storage class, the actual amount of bytes transferred, and the number of milliseconds the
transfer took. The next entry is true if the transfer was a wrote data to the pool. The first braces contain
the protocol, client FQN, and the client host data transfer listen port. The final bracket contains the return
status and a possible error message.

The dCache web interface (described in the section called “The Web Interface for Monitoring dCache”)
contains under the menue point “Actions Log” summary information extracted from the information in the
billing-directory.

The accounting information can also be redirected into a database. When interested in this feature, please
contact <support@dcache.org>.

1 Filenames will always be relative to the dCache installation directory, which defaults to /opt/d-cache/.
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Chapter 25. Protocols

dCap options mover and client options
Patrick Fuhrmann
Tigran Mkrtchyan

dCap is the native random access I/O protocol for files within dCache. In additition to the usual data transfer
mechanisms, it supports all necessary file metadata and name space manipulation operations.

In order to optimize I/O transferrates and memory consumption dCap allows to configure parameters within
the client and the server. e.g:

• TCP Socket send and receive buffer sizes.

• I/O buffers sizes.

TCP send/recv buffer sizes from the servers point
of view
There are two parameters per I/O direction, determining the actual TCP send/recv buffer size used for each
transfer. Those values can be set within the config/pool.batch file on the pool nodes.

• defaultSend/RecvBufferSize : this value is used if the dCap client doesn’t try to set this value.
The default value for this parameter is 256K Bytes.

• maxSend/RecvBufferSize : this value is the maximum value, the mover is allowed to use. It’s
used if either the defaultSend/RecvBufferSize is larger or the client asks for a larger value. The
default value for this parameter is 1MBytes.

On the server side, the max/defaultSend/RecvBuffer value can either be set in the config/pool.batch
file or in the config/*.poollist files.

Using the batch context :

set context dCap3-maxSendBufferSize value in bytes
set context dCap3-maxRecvBufferSize value in bytes
set context dCap3-defaultSendBufferSize value in bytes
set context dCap3-defaultRecvBufferSize value in bytes

Or it may specified in the create ... command line

  create diskCacheV111.pools.MultiProtocolPool2 ${0} \
  "!MoverMap \
  ${1} \
  -defaultSendBufferSize=value in bytes \
  *** \
  -${2} -${3} -${4} -${5} -${6} -${7} -${8} \
"
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The most appropriate way to specify those values on the server side is certainly to add the corresponding
entry in the config/...poollist. The entry would look like

dcache30_1  /dcache/pool  sticky=allowed maxSendBufferSize=value in bytes tag.hostname=dcache30 ***

Please note the different ways of using the ’=’ and the ’-’ sign in the different alternatives.

TCP send/recv buffer sizes from the dCap clients
point of view
For a full list of dCap library API calls and dccp options, please refer to to http://www.dcache.org/
manuals/libdcap.shtml and http://www.dcache.org/manuals/dccp.shtml respec-
tively. To set the local and remote TCP buffer send and receive buffers either use the API call
dc_setTCPSend/ReceiveBuffer(int size) or the -r SIZE -s SIZE dccp options. In both
cases the value is transferred to the remote mover which tries to set the corresponding values. Please not the
the server protects itself by having a maximum size for those values which it doesn’t exceed. Please check
the section ’TCP send/recv buffer sizes from the servers point of view’ to learn how to change those values.

Specifying dCap open timeouts
Patrick Fuhrmann

In cases where dccp/dcap requests a file which is still on tertiary storage, the user resp. the administrator
might what to limit the time, dccp/dCap waits in the open call until the file has been fetched from backend
storage. This, so called openTimeout, can be specified on the server or on the client. In all cases the -
keepAlive must be specified with an appropriate number of seconds on the cell create command in the
door batch files. The following mechanisms are available to specify open timeouts :

Table 25.1. Open Timeout mechanisms

Precedence Mechanism Key Name Example

Lowest context dCap-openTimeout set context dCap-openTimeout 200

... context openTimeout set context openTimeout 200

... cell create
command line

openTimeout -openTimeout=200

Highest dccp com-
mand line

-o dccp -o200 SOURCE DESTINATION

#
#    dCap    D o o r (create command line example)
#
create dmg.cells.services.login.LoginManager DCap-2 \
            "${specialDCapPort} \
             diskCacheV111.doors.DCapDoor \
             -export \
             *** \
             -keepAlive=60 \
             -openTimeout=300 \
             *** \
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             -loginBroker=LoginBroker"

#
#    dCap    D o o r (context example)
#
set context dCap-openTimeout 200
#
create dmg.cells.services.login.LoginManager DCap-2 \
            "${specialDCapPort} \
             diskCacheV111.doors.DCapDoor \
             -export \
             *** \
             -keepAlive=60 \
             *** \
             -loginBroker=LoginBroker"

[user] $ dccp -o200 /pnfs/desy.de/data/dteam/private/myfile /dev/null

If the openTimeout expires while a read transfer is already active, this transfer will be interrupted, but it will
automatically resume because the client can’t destinguish between a network failure and a timeout. So the
timeout disturbes the read but it will finally succeed. This is different for write. If a write is interrupted by
a timeout in the middle of a transfer, dccp will stuck. (This is not a feature and needs further investigation).

Using the dCap protocol for strict file
checking
Patrick Fuhrmann
Tigran Mkrtchyan

The dCap protocol allows to check whether a dataset is on tape only or has a copy on a dCache disk. The
dCap library API call is  int dc_check(const char *path, const char *location)
and the dccp options are -t -1 -P. For a full list of dCap library API calls and dccp options, please refer
to to http://www.dcache.org/manuals/libdcap.shtml and http://www.dcache.org/
manuals/dccp.shtml respectively. Using a standard dCache installation those calls will return a guess
on the file location only. It is neither checked whether the file is really on that pool or if the pool is up. To
get a strict checking a dCap door has to be started with a special (-check=strict) option.

#
#    dCap    D o o r
#
create dmg.cells.services.login.LoginManager DCap-strict \
            "${specialDCapPort} \
             diskCacheV111.doors.DCapDoor \
             -check=strict \
             -export \
             -prot=telnet -localOk \
             -maxLogin=1500 \
             -brokerUpdateTime=120 \
             -protocolFamily=dcap \
             -loginBroker=LoginBroker"

This door will do a precise checking (-check=strict). To get the dCap lib and dccp to use this door only,
the DCACHE_DOOR environment variable has to be set to doorHost:specialDCapPort in the shell,
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dccp is going to be used. In the following example we assume that the specialDCapPort has been set
to 23126 :

[user] $ export DCACHE_DOOR=dcachedoorhost:23126
[user] $ dccp -P -t -1 /pnfs/domain.tv/data/cms/users/waste.txt

If dccp returns File is not cached and this dCache instance is connected to an HSM, the file is no
longer on one of the dCache pools but is assumed to have a copy within the HSM. If the dccp returns this
message and no HSM is attached, the file is either on a pool which is currently down or the file is lost.

Passive dCap
Tigran Mkrtchyan
Patrick Fuhrmann

The dCap protocol, similiar to FTP, uses a control channel to request a transfer which is subsequently done
through data channels. Per default, the data channel is initiated by the server, connecting to an open port in
the client library. This is commonly known as active transfer. Starting with dCache 1.7.0 the dCap protocol
supports passive transfer mode as well, which consequently means that the client connects to the server pool
to initiate the data channel. This is essential to support dCap clients running behind firewalls and within
private networks.

Preparing the server for dCap passive transfer
The port(s), the server pools should listens on, can be specified by the
org.dcache.net.tcp.portrange variable, as part of the ’java_options’ directive in the con-
fig/dCacheSetup configuration file. A range has to be given if pools are split amoung multiple JVMs.
E.g:

java_options="-server ... -Dorg.dcache.dcap.port=0 -Dorg.dcache.net.tcp.portrange=33115:33145"

Switching the dCap library resp. dccp to PASSIVE

Note

The commonly used expression ’passive’ is seen from the server perspective and actually means
’server passive’. From the client perspective this is of course ’active’. Both means that the client
connects to the server to establish the data connection. This mode is supported by the server starting
with 1.7.0 and dccp with 1-2-40 (included in 1.7.0)

The following dCap API call switches all subsequent dc_open calls to server-passive mode if this mode is
supported by the corresponding door. (dCache Version >= 1.7.0).

void dc_setClientActive()

The environment variable DCACHE_CLIENT_ACTIVE switches the dCap library to server-passive. This
is true for dCap, dCap preload and dccp.
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dccp switches to server-passive when issuing the -A command line option.

Access to SRM and GridFTP server from
behind a firewall
Timur Perelmutov
Mathias de Riese

This describes firewall issues from the clients perspective. the section called “Firewall Configuration” dis-
cusses the server side.

When files are transferred in GridFTP active mode from GridFTP server to the GridFTP client, server
establishes data channel(s) by connecting to the client. In this case client creates a TCP socket, bound to
some particular address on the client host, and sends the client host IP and port to the server. If the client
host is running a firewall, firewall might refuse server’s connection to the client’s listening socket. Common
solution to this problem is establishing a range of ports on the client’s host that are allowed to be connected
from Internet by changing firewall rules.Once the port range is defined the client can be directed to use one
of the ports from the port ranges when creating listening tcp sockets.

Access with srmcp
If you are using srmcp as a client you need to do the following:

• create a directory $HOME/.globus if it does not exist.

• create and/or edit a file $HOME/.globus/cog.properties by appending a new line reading

tcp.port.range=min,max

where min and max are the lower and upper bounds of the port range.

With the latest srmcp release you can use the globus_tcp_port_range option:

[user] $ srmcp -globus_tcp_port_range=minValue:maxValue ...

A range of ports open for TCP connections is specified as a pair of positive integers separated by ":". This
is not set by default.

Access with globus-url-copy
If you are transferring files from gridftp server using globus-url-copy, you need to define an environment
variable GLOBUS_TCP_PORT_RANGE, in the same shell in which globus-url-copy will be executed.

In sh/bash you do that by invoking the following command:

[user] $ export GLOBUS_TCP_PORT_RANGE="min,max"
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in csh/tcsh you invoke:

[user] $ setenv GLOBUS_TCP_PORT_RANGE "min,max"

here min and max are again the lower and upper bounds of the port range

Disableing unauthenticated dCap via SRM
In some cases SRM transfers fail because they are tried via the plain dCap protocol (URL starts with
dcap://). Since plain dCap is unauthenticated, the dCache server will have no information about the user
trying to access the system. While the transfer will succeed if the UNIX file permissions allow access to
anybody (e.g. mode 777), it will fail otherwise.

Usually all doors are registered in SRM as potential access points for dCache. During a protocol negotia-
tion the SRM chooses one of the available doors. You can force srmcp to use the GSIdCap protocol (-
protocol=gsidcap) or you can unregister plain, unauthenticated dCap from known protocols: From
the file config/door.batch remove -loginBroker=LoginBroker and restart dCap door with

[root] # jobs/door stop
[root] # jobs/door -logfile=dCacheLocation/log/door.log start
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Chapter 26. Advanced Tuning
The use cases described in this chapter are only relevant for large-scale dCache instances which require
special tuning according to a longer experience with client behaviour.

Multiple Queues for Movers in each Pool

Description
Client requests to a dCache system may have rather diverse bahaviour. Sometimes it is possible to classify
them into several typical usage patterns. An example are the following two usage patterns:

Example 26.1. To Concurrent Usage Patterns

Data is copied with a high transfer rate to the dCache system from an external source. This is done via the
GridFTP protocol. At the same time batch jobs on a local farm process data. Since they only need a small
part of each file, they use the dCap protocol via the dCap library and seek to the position in the file they
are interested in, read a few bytes, do a few hours of calculations, and finally read some more data.

As long as the number of active requests do not exceed the maximum number of allowed active requests,
the two types of requests are processed concurrently. The GridFTP transfers complete at a high rate while
the processing jobs take hours to finish. This maximum number of allowed requests is set with mover set
max active and should be tuned according to capabilities of the pool host.

However, if requests are queued, the slow processing jobs might clog up the queue and not let the fast
GridFTP request through, even though the pool just sits there waiting for the processing jobs to request
more data. While this could be temporarily remedied by setting the maximum active requests to a higher
value, then in turn GridFTP request would put a very high load on the pool host.

The above example is pretty realistic: As a rule of thumb, GridFTP requests are fastest, dCap requests
with the dccp program are a little slower and dCap requests with the dCap library are very slow. However,
the usage patterns might be different at other sites and also might change over time.

Solution
Use separate queues for the movers, depending on the door initiating them. This easily allows for a separation
of requests of separate protocols. Up to 10 mover queues for client transfers are available since dCache
version 1.6.6. Earlier versions support only one queue. (Transfers from an to a tape backend and pool-to-
pool transfers are handled by separate queues, one for each of these transfers.)

A finer grained queue selection mechanism based on, e.g. the IP address of the client or the file which has
been requested, is not possible with this mechanism. However, the pool selection unit (PSU) may provide
a separation onto separate pools using those criteria.

In the above example, two separate queues for fast GridFTP transfers and slow dCap library access would
solve the problem. The maximum number of active movers for the GridFTP queue should be set to a lower
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value compared to the dCap queue since the fast GridFTP transfers will put a high load on the system
while the dCap requests will be mostly idle.

Configuration
For a multi mover queue setup, the pools have to be told to start several queues and the doors have to be
configured to use one of these. It makes sense to create the same queues on all pools. This is done by the
following change to the config/pool.batch file:

Example 26.2. Modified config/pool.batch file for multiple mover queues

...
define context startPools endDefine
  create diskCacheV111.pools.MultiProtocolPool2 ${0} \
         "!MoverMap \
         ${1} \
         -io-queues=queueName-1[,queueName-2[,...,queueName-10]] \
         -recover-control=yes \
         -version=4 \
         -sticky=allowed \
         -sendHitInfoMessages=yes \
         -${2} -${3} -${4} -${5} -${6} -${7} -${8} \
         "
endDefine
...

The same can be achived by appending -io-queues=queueName-1,...,queueName-n to each
line in the poollist file. However, this only makes sense if the pools should not all have the same queues.

The first in this list of queues (queueName-1) is the default mover queue. Transfers not requesting a
particular mover queue or requesting a mover queue not existing on the selected pool, are handled by this
default queue.

The pool cell commands mover ls and mover set max active have an -queue option to select the mover
queue to operate on. Without this option, mover set max active will act on the default queue while mover
ls will list the requests of all pools for backward compatibility.

Each door may be configured to use a particular mover queue. The pool, selected for this request, doesn’t
depend on the selected mover queue. So a request may go to a pool which doesn’t have the particular mover
queue configured and will consequently end up in the default mover queue of that pool.

The doors are configured to use a particular mover queue as in the following example:

Example 26.3. Batch file for a GridFTP door using a mover queue

...
create dmg.cells.services.login.LoginManager GFTP \
       "portName \
       diskCacheV111.doors.GsiFtpDoorV1 \
       -io-queue=queueName \
       ... \
"

All requests send from this door will ask to be scheduled to the given mover queue. The selection of the
pool is not affected.
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For the dCap protocol, the corresponding door may be configured to allow the client to determine the mover
queue name. In that case the client may use the extra option facility to specify a mover queue. Whether the
the dCap door allows the client to request a particular mover queue or not is configured with the -io-
queue={allowed|denied} option as in the following example:

Example 26.4. Batch file for a dCap door for allowing the client to select the mover
queue

...
create dmg.cells.services.login.LoginManager DCap \
       "${dCapPort} \
       diskCacheV111.doors.DCapDoor \
       -io-queue=queueName \
       -io-queue-overwrite=allowed \
       ... \
"

With the dccp command the queue can now be specified as follows:

[user] $ dccp -X-io-queue=queueName source destination

Since dccp requests may be quite different from other requests with the dCap protocol, this feature may be
used to use separate queues for dccp requests and other dCap library requests. Therefore, the dccp command
may be changed in future releases to request a special dccp-queue by default.

Tunable Parameters

gridftp

Table 26.1. Variable Overview

Variable Default Value Description

gsidcapIoQueue Not set GSIdCap I/O queue name

dcapIoQueue Not set Insecure dCap I/O queue name

gsidcapIoQueueOverwrite denied Is application allowed to overwrite queue name?

dcapIoQueueOverwrite denied Is application allowed to overwrite queue name?

GridFTP

Table 26.2. Variable Overview

Variable Default Value Description

gsiFtpPortNumber 2811 GSI-FTP port listen port

spaceReservation False Use the space reservation service

spaceReservationStrict False Use the space reservation service

performanceMarkerPeriod 180 Performance markers in seconds
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Variable Default Value Description

gplazmaPolicy ${ourHomeDir}/etc/
dcachesrm-gplazma.policy

Location of the gPlazma Policy File

useGPlazmaAuthorizationModule False Use the gPlazma module

useGPlazmaAuthorizationCell True Use the gPlazma cell

gsiftpPoolManagerTimeout 5400 Pool Manager timeout in seconds

gsiftpPoolTimeout 600 Pool timeout in seconds

gsiftpPnfsTimeout 300 Pnfs timeout in seconds

gsiftpMaxRetries 80 Number of PUT/GET retries

gsiftpMaxStreamsPerClient 10 Number of parallel streams per FTP PUT/GET

gsiftpDeleteOnConnectionClosed True Delete file on connection closed

gsiftpMaxLogin 100 Maximum number of concurrently logged in users

gsiftpAdapterInternalInterface Not set In case of two interfaces

clientDataPortRange 20000:25000 The client data port range

kpwdFile ${ourHomeDir}/etc/
dcache.kpwd

Legacy authorization

SRM

Table 26.3. Variable Overview

Variable Default Value Description

srmPort 8443 srmPort

srmDatabaseHost localhost srmDatabaseHost

srmTimeout 3600 srmTimeout

srmVacuum True srmVacuum

srmVacuumPeriod 21600 srmVacuumPeriod

srmProxiesDirectory /tmp srmProxiesDirectory

srmBufferSize 1048576 srmBufferSize

srmTcpBufferSize 1048576 srmTcpBufferSize

srmDebug True srmDebug

srmGetReqThreadQueueSize 1000 srmGetReqThreadQueueSize

srmGetReqThreadPoolSize 100 srmGetReqThreadPoolSize

srmGetReqMaxWaitingRequests 1000 srmGetReqMaxWaitingRequests

srmGetReqReadyQueueSize 1000 srmGetReqReadyQueueSize

srmGetReqMaxReadyRequests 100 srmGetReqMaxReadyRequests

srmGetReqMaxNumberOfRetries 10 srmGetReqMaxNumberOfRetries

srmGetReqRetryTimeout 60000 srmGetReqRetryTimeout

srmGetReqMaxNumOfRunningBySameOwner 10 srmGetReqMaxNumOfRunningBySameOwner

srmPutReqThreadQueueSize 1000 srmPutReqThreadQueueSize

srmPutReqThreadPoolSize 100 srmPutReqThreadPoolSize

srmPutReqMaxWaitingRequests 1000 srmPutReqMaxWaitingRequests

srmPutReqReadyQueueSize 1000 srmPutReqReadyQueueSize

srmPutReqMaxReadyRequests 100 srmPutReqMaxReadyRequests

srmPutReqMaxNumberOfRetries 10 srmPutReqMaxNumberOfRetries

srmPutReqRetryTimeout 60000 srmPutReqRetryTimeout

srmPutReqMaxNumOfRunningBySameOwner 10 srmPutReqMaxNumOfRunningBySameOwner



Advanced Tuning

169

Variable Default Value Description

srmCopyReqThreadQueueSize 1000 srmCopyReqThreadQueueSize

srmCopyReqThreadPoolSize 100 srmCopyReqThreadPoolSize

srmCopyReqMaxWaitingRequests 1000 srmCopyReqMaxWaitingRequests

srmCopyReqMaxNumberOfRetries 30 srmCopyReqMaxNumberOfRetries

srmCopyReqRetryTimeout 60000 srmCopyReqRetryTimeout

srmCopyReqMaxNumOfRunningBySameOwner 10 srmCopyReqMaxNumOfRunningBySameOwner
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Chapter 27. Statistics Module for pre
1.6.7 releases
Patrick Fuhrmann

General remarks

Purpose
The dCache statistics module collects information on the amount of data stored on all pools and the total
data flow including streams from and to tertiary storage systems. The module produces an ASCII file once
per hour, containing a table with information on the amount of used disk space and the data transferred
starting midnight up the this point in time. Data is sorted per pool and storage class. In addition to the hourly
statistics, files are produced reporting on the daily, monthly and yearly dCache activities. If enabled, a ’html’
tree is produced and updated once per hour allowing to navigate through the collected statistics information.

Availability
The dCache statistics module will be part of dCache releases 1.6.7 and higher. The code is part of 1.6.6 but
needs to be enabled. At the end of this chapter some advise is given on how to do that.

Directory and File formats

Directory Structure
The statistics module automatically creates a directory tree, structured according to years, months and days.
Once per hour, a total.raw file is produced underneath the active year, month and day directories,
containing the sum over all pools and storage classes of the corresponding time interval. A days directory
contains detailed statistics per hour and for the whole day.

           /StatBase/YYYY/total.raw
           /StatBase/YYYY/MM/total.raw
           /StatBase/YYYY/MM/DD/total.raw
           /StatBase/YYYY/MM/DD/YYYY-MM-DD-day.raw
           /StatBase/YYYY/MM/DD/YYYY-MM-DD-HH.raw

File Format
Format of YYYY-MM-DD-HH.raw or YYYY-MM-DD-day.raw files.

Table 27.1. File Format

Column Number Column Description

0 Pool Name
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Column Number Column Description

1 Storage Class

2 Bytes stored on this pool for this storage class at beginning of day

3 Number of files stored on this pool for this storage class at beginning of day

4 Bytes stored on this pool for this storage class at this hour or end of day

5 Number of files stored on this pool for
this storage class at this hour or end of day

6 Total Number of transfers (in and out, dCache-client)

7 Total Number of restores (HSM to dCache)

8 Total Number of stores (dCache to HSM)

9 Total Number errors

10 Total Number of bytes transferred into dCache (from clients)

11 Total Number of bytes transferred out of dCache (to clients)

12 Total Number of tranferred from HSM to dCache

13 Total Number of tranferred from dCache to HSM

HTML Directory Structure
In case the HTML functionality is enabled, which is the default, the statistics modules creates an html tree
allowing to navigate between the different statistics views. Those files populate the same directory structure
as the xxx.raw files. The HTML root is at:

/StatBase/index.html

and may be accessed via the dCache HTTP services using

http://headnode:2288/statistics/

(Don’t forget the trailing slash)

How to activate the statistics module in
1.6.6

General remarks
The statistics module collects parts of its information in memory of cells within the httpDomain and the
statisticsDomain. Consequently this information is lost if one or all of those components are restarted.
As a result, the day statistics may be significantly wrong if the restart happens at the end of the day. We
hope to overcome this problem with 1.6.7 and higher.

Moreover, because the module can only add up pool space for those pools which are up during the inquery
phase, disk space of pools which are down during that time is not counted.
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How to activate the statistics module in 1.6.6
Create a file in the dCache config directory with the following content:

set printout default 2
set printout CellGlue none

onerror shutdown

#
check -strong setupFile
#
copy file:${setupFile} context:setupContext

#  import the variables into our $context.
#  don't overwrite already existing variables.
#
import context -c setupContext
#
#   Make sure we got what we need.
#
check -strong serviceLocatorHost serviceLocatorPort
check -strong statistics

create dmg.cells.services.RoutingManager  RoutingMgr

create dmg.cells.services.LocationManager lm \
   "${serviceLocatorHost} ${serviceLocatorPort}"

create diskCacheV111.services.PoolStatisticsV0 PoolStatistics  \
   "${statistics}  \
    -export \
#      -create  \
#      -htmlBase=${statistics}  \
    -domain=${thisFqHostname}"

The name of the file should be statistics.batch. Switch to the dCache jobs directory and run

[root] # ./initPackage.sh

Ignore possible error messages. All necessary links will be created.

Find a local disk area with sufficient space available to store the statistics data. The subdirectory should be
empty and will be subsequently called (/StatBase).

Add the following line to the context httpdSetup section of the config/httpd.batch file.

set alias statistics directory /StatBase

Add the following line to the config/dCacheSetup file:

statistics=/StatBase

Make sure there is no other statistics=.. entry.

Edit the file docs/skins/home-skin-basic.html : At two locations within this file, the statistics
link is commented out. Undo this.
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Important

The statistics link has to be called href="/statistics/". Make sure the trailing / (slash) is
present. This is not correcty done in the docs/skins/home-skin-basic.html file.

Finally restart the httpd and start the statistics module.

[root] # cd /opt/d-cache/jobs
[root] # ./httpd stop
[root] # ./httpd start
[root] # ./statistics start

Statistics is calculated once per hour at HH:55. The daily stuff is calculated at 23:55. Without manual inter-
vention, it takes two midnights before all html statistics pages are available. There is a way to get this done
after just one midnight. After the first midnight following the first startup of the statistics module, log into
the PoolStatistics cell and run the following commands in the given sequence. The specified date has
to be the Year/Month/Day of today.

create html Year Month Day
create html Year Month
create html Year
create html

Example (assuming today is April,11 2006)

create html 2006 04 11
create html 2006 04
create html 2006
create html

The statistics URL is

http://headnode:2288/statistics/

(Don’t forget the trailing slash)
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Chapter 28. dCache Clients

The SRM Client Suite
An SRM URL has the form srm://dmx.lbl.gov:6253//srm/DRM/srmv1?SFN=/tmp/try1 and
the file URL looks like file:////tmp/aaa.

srmcp
srmcp — Copy a file from or to an SRM or between two SRMs.

Synopsis
srmcp [option...] {sourceUrl} {destUrl}

Arguments

sourceUrl The URL of the source file.

destUrl The URL of the destination file.

Options

gss_expected_name To enable the user to specify the gss expected name in the DN (Distin-
guished Name) of the srm server. The default value is host.

If the CN of host where srm server is running is CN=srm/
tam01.fnal.gov, then gss_expected_name should be srm.

[user] $ srmcp --gss_expected_name=srm sourceUrl destinationUrl

globus_tcp_port_range To enable the user to specify a range of ports open for tcp connections as
a pair of positive integers separated by “:”, not set by default.

This takes care of compute nodes that are behind firewall.

globus_tcp_port_range=40000:50000

[user] $ srmcp --
globus_tcp_port_range=minVal:maxVal sourceUrl destinationUrl

streams_num To enable the user to specify the number of streams to be used for data
transfer. If set to 1, then stream mode is used, otherwise extended block
mode is used.

[user] $ srmcp --streams_num=1 sourceUrl destinationUrl
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server_mode To enable the user to set the (gridftp) server mode for data transfer. Can
be active or passive, passive by default.

This option will have effect only if transfer is performed in a stream mode
(see streams_num)

[user] $ srmcp --streams_num=1 --
server_mode=active sourceUrl destinationUrl

Description

srmstage
srmstage — Request staging of a file.

Synopsis
srmstage [srmUrl...]

Arguments

srmUrl The URL of the file which should be staged.

Description

Provides an option to the user to stage files from HSM to dCache and not transfer them to the user right
away. This case will be useful if files are not needed right away at user end, but its good to stage them to
dcache for faster access later.
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Chapter 29. dCache Cell Commands
This is the reference to all (important) cell commands in dCache. You should not use any command not
documented here, unless you really know what you are doing. Commands not in this reference are used for
debugging by the developers.

This chapter serves two purposes: The other parts of this book refer to it, whenever a command is mentioned.
Secondly, an administrator may check here, if he wonders what a command does.

Common Cell Commands

pin
pin — Adds a comment to the pinboard.

Synopsis
pin { comment }

Arguments

comment A string which is added to the pinboard.

Description

info
info — Print info about the cell.

Synopsis
info [-a] [-l]

Arguments

-a Display more information.

-l Display long information.

Description

The info printed by info depends on the cell class.
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dump pinboard
dump pinboard — Dump the full pinboard of the cell to a file.

Synopsis
dump pinboard { filename }

Arguments

filename The file the current content of the pinboard is stored in.

Description

show pinboard
show pinboard — Print a part of the pinboard of the cell to STDOUT.

Synopsis
show pinboard [ lines ]

Arguments

lines The number of lines which are displayed. Default: all.

Description

PnfsManager Commands

pnfsidof
pnfsidof — Print the pnfs id of a file given by its global path.

Synopsis
pnfsidof { globalPath }

Description

Print the pnfs id of a file given by its global path. The global path always starts with the “VirtualGlobalPath”
as given by the “info”-command.
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flags remove
flags remove — Remove a flag from a file.

Synopsis
flags remove { pnfsId } { key ...}

Arguments

pnfsId The pnfs id of the file of which a flag will be removed.

key flags which will be removed.

Description

flags ls
flags ls — List the flags of a file.

Synopsis
flags ls { pnfsId }

pnfsId The pnfs id of the file of which a flag will be listed.

Description

flags set
flags set — Set a flag for a file.

Synopsis
flags set { pnfsId } { key=value ...}

Arguments

pnfsId The pnfs id of the file of which flags will be set.

key The flag which will be set.

value The value to which the flag will be set.

Description
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metadataof
metadataof — Print the meta-data of a file.

Synopsis
metadataof {[ pnfsId ] | [ globalPath ]} [-v] [-n] [-se]

Arguments

pnfsId The pnfs id of the file.

globalPath The global path of the file.

Description

pathfinder
pathfinder — Print the global or local path of a file from its PNFS id.

Synopsis
pathfinder { pnfsId } [[-global] | [-local]]

Arguments

pnfsId The pnfs Id of the file.

-global Print the global path of the file.

-local Print the local path of the file.

Description

set meta
set meta — Set the meta-data of a file.

Synopsis
set meta {[pnfsId] | [globalPath]} {uid} {gid} {perm} {levelInfo...}

Arguments

pnfsId The pnfs id of the file.
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globalPath The global path oa the file.

uid The user id of the new owner of the file.

gid The new group id of the file.

perm The new file permitions.

levelInfo The new level information of the file.

Description

storageinfoof
storageinfoof — Print the storage info of a file.

Synopsis
storageinfoof {[pnfsId] | [globalPath]} [-v] [-n] [-se]

Arguments

pnfsId The pnfs id of the file.

globalPath The global path oa the file.

Description

cacheinfoof
cacheinfoof — Print the cache info of a file.

Synopsis
cacheinfoof {[pnfsId] | [globalPath]}

Arguments

pnfsId The pnfs id of the file.

globalPath The global path oa the file.

Description
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Pool Commands

rep ls
rep ls — List the files currently in the repository of the pool.

Synopsis
rep ls [pnfsId...] | [-l= s | p | l | u | nc | e ... ] [-s= k | m | g | t ]

pnfsId The pnfs ID(s) for which the files in the repository will be listed.

-l List only the files with one of the following properties:

s      sticky files
p      precious files
l      locked files
u      files in use
nc     files which are not cached
e      files with an error condition

-s Unit, the filesize is shown:

k      data amount in KBytes
m      data amount in MBytes
g      data amount in GBytes
t      data amount in TBytes

Description

st set max active
st set max active — Set the maximum number of active store transfers.

Synopsis
st set max active {maxActiveStoreTransfers}

maxActiveStoreTransfers The maximum number of active store transfers.

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.

rh set max active
rh set max active — Set the maximum number of active restore transfers.
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Synopsis
rh set max active {maxActiveRetoreTransfers}

maxActiveRetoreTransfers The maximum number of active restore transfers.

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.

mover set max active
mover set max active — Set the maximum number of active client transfers.

Synopsis
mover set max active {maxActiveClientTransfers} [-queue=moverQueueName]

maxActiveClientTransfers The maximum number of active client transfers.

moverQueueName The mover queue for which the maximum number of active transfers
should be set. If this is not specified, the default queue is assumed, in
order to be compatible with previous versions which did not support
multiple mover queues (before version 1.6.6).

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.

p2p set max active
p2p set max active — Set the maximum number of active pool-to-pool server transfers.

Synopsis
p2p set max active {maxActiveP2PTransfers}

maxActiveP2PTransfers The maximum number of active pool-to-pool server transfers.

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.
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pp set max active
pp set max active — Set the value used for scaling the performance cost of pool-to-pool client transfers
analogous to the other set max active-commands.

Synopsis
pp set max active {maxActivePPTransfers}

maxActivePPTransfers The new scaling value for the cost calculation.

Description

All pool-to-pool client requests will be performed immediately in order to avoid deadlocks. This value will
only used by the cost module for calculating the performance cost.

set gap
set gap — Set the gap parameter - the size of free space below which it will be assumed that the pool is
full within the cost calculations.

Synopsis
set gap {gapPara}

gapPara The size of free space below which it will be assumed that the pool is full. Default is 4GB.

Description

The gap parameter is used within the space cost calculation scheme described in the section called “The
Space Cost”. It specifies the size of free space below which it will be assumed that the pool is full and
consequently the least recently used file has to be removed if a new file has to be stored on the pool. If, on
the other hand, the free space is greater than gapPara, it will be expensive to store a file on the pool which
exceeds the free space.

set breakeven
set breakeven — Set the breakeven parameter - used within the cost calculations.

Synopsis
set breakeven {breakevenPara}

breakevenPara The breakeven parameter has to be a positive number smaller than 1.0. It specifies the
impact of the age of the least recently used file on space cost. It the LRU file is one
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week old, the space cost will be equal to (1 + breakeven). Note that this will
not be true, if the breakeven parameter has been set to a value greater or equal to 1.

Description

The breakeven parameter is used within the space cost calculation scheme described in the section called
“The Space Cost”.

mover ls
mover ls — List the active and waiting client transfer requests.

Synopsis
mover ls [{-queue} | {-queue=queueName}]

queueName The name of the mover queue for which the transfers should be listed.

Description

Without parameter all transfers are listed. With -queue all requests sorted according to the mover queue
are listed. If a queue is explicitly specified, only transfers in that mover queue are listed.

migration cache
migration cache — Caches replicas on other pools.

SYNOPSIS

migration cache [options] target...

DESCRIPTION

Caches replicas on other pools. Similar to migration copy, but with different defaults. See migration copy
for a description of all options. Equivalent to: migration copy -smode=same -tmode=cached

migration cancel
migration cancel — Cancels a migration job

SYNOPSIS

migration cancel [-force] job

DESCRIPTION

Cancels the given migration job. By default ongoing transfers are allowed to finish gracefully.
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migration clear
migration clear — Removes completed migration jobs.

SYNOPSIS

migration clear

DESCRIPTION

Removes completed migration jobs. For reference, information about migration jobs are kept until explicitly
cleared.

migration concurrency
migration concurrency — Adjusts the concurrency of a job.

SYNOPSIS

migration concurrency job n

DESCRIPTION

Sets the concurrency of job to n.

migration copy
migration copy — Copies files to other pools.

SYNOPSIS

migration copy [options] target...

DESCRIPTION

Copies files to other pools. Unless filter options are specified, all files on the source pool are copied.

The operation is idempotent, that is, it can safely be repeated without creating extra copies of the files. If
the replica exists on any of the target pools, then it is not copied again. If the target pool with the existing
replica fails to respond, then the operation is retried indefinitely, unless the job is marked as eager.

Both the state of the local replica and that of the target replica can be specified. If the target replica already
exists, the state is updated to be at least as strong as the specified target state, that is, the lifetime of sticky
bits is extended, but never reduced, and cached can be changed to precious, but never the opposite.

Jobs can be marked permanent. Permanent jobs never terminate and are stored in the pool setup file with the
’save’ command. Permanent jobs watch the repository for state changes and copy any replicas that match
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the selection criteria, even replicas added after the job was created. Notice that any state change will cause
a replica to be reconsidered and enqueued if it matches the selection criteria - also replicas that have been
copied before.

Options

-state=cached|precious Only copy replicas in the given state.

-sticky[=owner[,owner...]] Only copy sticky replicas. Can optionally be limited to the list of own-
ers. A sticky flag for each owner must be present for the replica to
be selected.

-storage=class Only copy replicas with the given storage class.

-pnfsid=pnfsid[,pnfsid] ... Only copy replicas with one of the given PNFS IDs.

-accessed=n|[n]..[m] Only copy replicas accessed n seconds ago, or accessed within the
given, possibly open-ended, interval. E.g. -accessed=0..60 matches
files accessed within the last minute; -accesed=60.. matches files ac-
cessed one minute or more ago.

-size=n|[n]..[m] Only copy replicas with size n, or a size within the given, possibly
open-ended, interval.

-smode=same|cached|
precious|remov-
able|delete[+owner[(lifetime)] ...]

Update the local replica to the given mode after transfer:

same does not change the local state (this is the default).

cached marks it cached.

precious marks it precious.

removable marks it cached and strips all existing sticky flags
exluding pins.

delete deletes the replica unless it is pinned.
An optional list of sticky flags can be specified. The lifetime is in
seconds. A lifetime of 0 causes the flag to immediately expire. Notice
that existing sticky flags of the same owner are overwritten.

-tmode=same|cached|
precious[+owner[(lifetime)]...]

Set the mode of the target replica:

same applies the state and sticky bits excluding pins of the
local replica (this is the default).

cached marks it cached.

precious marks it precious.
An optional list of sticky flags can be specified. The lifetime is in
seconds.

-pins=move|keep Controls how sticky flags owned by the pin manager is handled:
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move Ask pin manager to move pins to the target pool.

keep Keep pin on the source pool.

-select=proportional|best|random Determines how a pool is selected from the set of target pools:

proportional selects a pool with a probability inversely pro-
portional to the cost of the pool.

best selects the pool with the lowest cost.

random selects a pool randomly.
The default is proportional.

-target=pool|pgroup|link Determines the interpretation of the target names. The default is
’pool’.

-refresh=time Specifies the period in seconds of when target pool information is
queried from the pool manager. The default is 300 seconds.

-exclude=pool[,pool...] Exclude target pools.

-concurrency=concurrency Specifies how many concurrent transfers to perform. Defaults to 1.

-eager Copy replicas rather than retrying when pools with existing replicas
fail to respond.

-permanent Mark job as permanent.

migration info
migration info — Shows detailed information about a migration job.

SYNOPSIS

migration info job

DESCRIPTION

Shows detailed information about a migration job. Possible job states are:

INITIALIZING Initial scan of repository

RUNNING Job runs (schedules new tasks)

SLEEPING A task failed; no tasks are scheduled for 10 seconds

SUSPENDED Job suspended by user; no tasks are scheduled

CANCELLING Job cancelled by user; waiting for tasks to stop
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CANCELLED Job cancelled by user; no tasks are running

FINISHED Job completed

Job tasks may be in any of the following states:

Queued Queued for execution

GettingLocations Querying PnfsManager for file locations

UpdatingExistingFile Updating the state of existing target file

CancellingUpdate Task cancelled, waiting for update to complete

InitiatingCopy Request send to target, waiting for confirmation

Copying Waiting for target to complete the transfer

Pinging Ping send to target, waiting for reply

NoResponse Cell connection to target lost

Waiting Waiting for final confirmation from target

MovingPin Waiting for pin manager to move pin

Cancelling Attempting to cancel transfer

Cancelled Task cancelled, file was not copied

Failed The task failed

Done The task completed successfully

migration ls
migration ls — Lists all migration jobs.

SYNOPSIS

migration ls

DESCRIPTION

Lists all migration jobs.

migration move
migration move — Moves replicas to other pools.
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SYNOPSIS

migration move [options] target...

DESCRIPTION

Moves replicas to other pools. The source replica is deleted. Caches replicas on other pools. Similar to
migration copy, but with different defaults. Accepts the same options as migration copy. Equivalent to:
migration copy -smode=delete -tmode=same -pins=move

migration suspend
migration suspend — Suspends a migration job.

SYNOPSIS

migration suspend job

DESCRIPTION

Suspends a migration job. A suspended job finishes ongoing transfers, but is does not start any new transfer.

migration resume
migration resume — Resumes a suspended migration job.

SYNOPSIS

migration resume job

DESCRIPTION

Resumes a suspended migration job.

PoolManager Commands

rc ls
rc ls — List the requests currently handled by the PoolManager

Synopsis
rc ls [regularExpression] [-w]
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Description

Lists all requests currently handled by the pool manager. With the option -w only the requests currently
waiting for a response are listed. Only requests satisfying the regular expression are shown.

cm ls
cm ls — List information about the pools in the cost module cache.

Synopsis
cm ls [-r] [-d] [-s] [fileSize]

-r Also list the tags, the space cost, and performance cost as calculated by the cost module for a file of
size fileSize (or zero)

-d Also list the space cost and performance cost as calculated by the cost module for a file of size file-
Size (or zero)

-t Also list the time since the last update of the cached information in milliseconds.

Description

A typical output reads

(PoolManager) admin > cm ls -r -d -t 12312434442
poolName1={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
    (...line continues...)  SP={t=2147483648;f=924711076;p=1222772572;r=0;lru=0;{g=20000000;b=0.5}}}
poolName1={Tag={{hostname=hostname}};size=543543543;SC=1.7633947200606475;CC=0.0;}
poolName1=3180
poolName2={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
    (...line continues...)  SP={t=2147483648;f=2147483648;p=0;r=0;lru=0;{g=4294967296;b=250.0}}}
poolName2={Tag={{hostname=hostname}};size=543543543;SC=0.0030372862312942743;CC=0.0;}
poolName2=3157

set pool decision
set pool decision — Set the factors for the calculation of the total costs of the pools.

Synopsis
set pool decision [-spacecostfactor=scf] [-cpucostfactor=ccf] [-costcut=cc]

scf The factor (strength) with which the space cost will be included in the total cost.

ccf The factor (strength) with which the performance cost will be included in the total cost.

cc Deprecated since version 5 of the pool manager.
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Description
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Chapter 30. dCache Developers Corner
This chapter provides useful informatiom for dCache developers and is included as reference material and
theory of operation.

The StorageInfoQuotaObserver cell
The StorageInfoQuotaObserver keeps track on spaces for all attached pools. The space granularity is based
on the StorageInfo. It records precious, total, pinned, free and removable spaces of currently available pools.
Pools, not active are not counted. Spaces may be queried by pool, storageinfo or link. For link queries,
additional, link specific information is provided for convenience.

Calling Sequence
#
define context QuotaManagerSetup  endDefine
   set pool query interval 180
   set pool query steps     20
   set pool query break    200
   set poolmanager query interval 350
   set pool validity timeout 400
endDefine
#
create diskCacheV111.services.space.StorageInfoQuotaObserver QuotaManager \
              "default -export"
#

Parameter setter commands
These commands allow to customize the behaviour of the StorageInfoQuotaObserver. They many deter-
mine how often information is updated and how aggressive the cells queries other services for updates. The
meaning of the set pool/poolmanager query interval is obvious. Because of the fact, that the
number of pools to query can be rather large, the cell allows to send the space update queries in junks with
some time inbetween. The junk size is set by set pool query steps and the break between sending
junks by set pool query break. If no pool information arrived within the set pool validity
timeout the corresponding pool is declared OFFLINE and the spaces are no longer counted.

Table 30.1. Parameter setting reference

Command Argu-
ment Type

Argu-
ment Unit

Meaning

set pool query interval Time Seconds Time interval between pool space queries

set poolmanag-
er query interval

Time Seconds Time interval between pool
manager pool/link queries

set pool query break Time Milli-seconds Time interval between pool query 'steps'

set pool query steps Counter None Number of space queries between 'break'

set pool validity timeout Time Seconds If if pool info arrived within this
time, the pool is declared OFFLINE
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Information query commands
• show pool [poolName]

• show link [-a] Lists spaces per link. The -a option provides additional information, eg. the storage
classes and pools assigned to the particular link.

• show sci Lists spaces per storage element.

Messages
This cells currently replies on the following cell messages. The different sections are all relative to
diskCacheV111.vehicles.

PoolMgrGetPoolLinks

The StorageInfoQuotaCell provides a list of PoolLinkInfo structures, one per known link, on arrival of
the message. Each PoolLinkInfo is filled with the name of the link, the list of storage classes, this link
is associtated to, and the totally available space, left in this link. OFFLINE pools are not counted.

QuotaMgrCheckQuotaMessage

StorageInfoQuotaCell provides the soft and hard quota defined for the specified StorageClass together
with the space used.
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Chapter 31. dCache default port values
Table 31.1.

Port number Description Component

32768 and 32768 is used by the NFS layer within
dCache which is based upon rpc.
This service is essential for rpc.

NFS

1939 and 33808 is used by portmapper which is al-
so involved in the rpc dependen-
cies of dCache.

portmap

34075 is for postmaster listening to
requests for the PostgreSQL
database for dCache database
functionality.

Outbound for SRM, PnfsDomain,
dCacheDomain and doors; in-
bound for PostgreSQL server.

33823 is used for internal dCache com-
munication.

By default: outbound for all com-
ponents, inbound for dCache do-
main.

8443 is the SRM port. See Chapter 14,
dCache Storage Resource Manag-
er

Inbound for SRM

2288 is used by the web interface to
dCache.

Inbound for httpdDomain

22223 is used for the dCache admin in-
terface. See the section called
“The Admin Interface”

Inbound for adminDomain

22125 is used for the dCache dCap pro-
tocol.

Inbound for dCap door

22128 is used for the dCache GSIdCap . Inbound for GSIdCap door
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Chapter 32. Glossary
The following terms are used in dCache.

tertiary storage system A mass storage system which stores data and is connected to the dCache
system. Each dCache pool will write files to it as soon as they have been
completely written to the pool (if the pool is not configured as a LFS). The
tertiary storage system is not part of dCache. However, it is possible to
connect any mass storage system as tertiary storage system to dCache via
a simple interface.

tape backend A tertiary storage system which stores data on magnetic tapes.

Hierarchical Storage Manag-
er (HSM)

See tertiary storage system.

HSM type The type of HSM which is connected to dCache as a tertiary storage sys-
tem. The choice of the HSM type influences the communication between
dCache and the HSM. Currently there are osm and enstore. osm is used
for most HSMs (TSM, HPSS, ...).

Large File Store (LFS) A Large File Store is the name for a dCache instance that is acting as a
filesystem independent to, or in cooperation with, an HSM system. When
dCache is acting as an LFS, files may be stored and later read without in-
volving any HSM system.

Whether a dCache instance provides an LFS depends on whether there are
pools configured to do so. The LFS option, specified for each pool within
the poollist file, describes how that pool should behave. This option
can take three possible values:

none the pool does not contribute to any
LFS capacity. All newly written files
are regarded precious and sent to the
HSM backend.

precious Newly create files are regarded as
precious but are not scheduled for the
HSM store procedure. Consequently,
these file will only disappear from the
pool when deleted in the namespace.

volatile (or transient) Newly create files are regarded
cached and are not scheduled for the
HSM store procedure. Though they
will never be stored on tape, these file
are part of the aging procedure and
will be removed as soon as new space
is needed.
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Note

The volatile lfs mode is
deprecated and should not be
used.

to store Copying a file from a dCache pool to the tertiary storage system.

to restore Copying a file from the tertiary storage system to one of the dCache pools.

to stage See to restore.

transfer Any kind of transfer performed by a dCache pool. There are store, restore,
pool to pool (client and server), read, and write transfers. The latter two are
client transfers.
See Also mover.

mover The process/thread within a pool which performs a transfer. Each pool has
a limited number of movers that may be active at any time; if this limit is
reached then further requests for data are queued.

In many protocols, end clients connect to a mover to transfer file contents.
To support this, movers must speak the protocol the end client is using.
See Also transfer.

The dCacheSetup File This is the primary configuration file of a dCache host. It is locat-
ed at $dcache_home/config/dCacheSetup (typically /opt/d-
cache/config/dCacheSetup). Each domain uses the file con-
fig/domainNameSetup which is in fact a symbolic link to con-
fig/dCacheSetup. The config/dCacheSetup file might even be
the same across the hosts of a dCache instance.

Primary Network Interface

poollist File The poollist files are a collection of files in the /opt/d-cache/con-
fig directory. Each poollist file describes the set of pools that
should be available for a given node. These files have a filename like
hostname.poollist, where hostname is the simple hostname of the
node the pools are to run on.

The file consists of one or more lines, with each line describing a pool.

Location Manager The location manager is a cell that instructs a newly started domains to
which domain they should connect. This allows domains to form arbitrary
network topologies; although, by default, a dCache instance will form a star
topology with the dCacheDomain domain at the centre.

Cell A cell is a collection of Java threads that provide a discrete and simple
service within dCache. Each cell is hosted within a domain.
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Cells have an address derived from concatenating their name, the @ symbol
and their containing domain name.

Domain A domain is a collection of one or more cells that provide a set of related
services within a dCache instance. Each domain requires its own Java Vir-
tual Machine. A typical domain might provide external connectivity (i.e.,
a door) or manage the pools hosted on a machine.

Each domain has at least one cell, called the System cell and many tunnel
cells for communicating with other Domains. To provide a useful service,
a domain will contain other cells that provide specific behaviour.

Door Door is the generic name for special cells that provides the first point of
access for end clients to communicate with a dCache instance. There are
different door implementations (e.g., GSIdCap door and GridFTP door),
allowing a dCache instance to support multiple communication protocols.

A door will (typically) bind to a well-known port number depending on the
protocol the door supports. This allows for only a single door instance per
machine for each protocol.

A door will typically identify which pool will satisfy the end user’s oper-
ation and redirect the client to the corresponding pool. In some cases this
is not possible; for example, some protocols (such as GridFTP version 1)
do not allow servers to redirect end-clients, in other cases pool servers may
be behind a firewall, so preventing direct access. When direct end-client
access is not possible, the door may act as a data proxy, streaming data to
the client.

By default, each door is hosted in a dedicated domain. This allows easy
control of whether a protocol is supported from a particular machine.

Java Virtual Machine (JVM) Java programs are typically compiled into a binary form called Java byte-
code. Byte-code is comparable to the format that computers understand
native; however, no mainstream processor understands Java byte-code. In-
stead compiled Java programs typically require a translation layer for them
to run. This translation layer is called a Java Virtual Machine (JVM). It is
a standardised execution environment that Java programs may run within.
A JVM is typically represented as a process within the host computer.

Well Known Cell A well-known cell is a cell that registers itself centrally. Within the admin
interface, a well-known cell may be referred to by just its cell name.

Pinboard The pinboard is a collection of messages describing events within dCache
and is similar to a log file. Each cell will (typically) have its own pinboard.

Breakeven Parameter

Secondary Network Inter-
face
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least recently used (LRU)
File

Default Mover Queue

Namespace The namespace is a core component of dCache. It maps each stored file to a
unique identification number and allows storing of metadata against either
files or directories.

dCache supports two (independent) namespace implementations: pnfs
and Chimera.

pnfs filesystem pnfs is a filesystem that uses a database to store all information, including
the contents of files. This filesystem is made available via NFS, so autho-
rised hosts can mount pnfs and use it like any other file system.

dCache may use pnfs as its namespace. Although it is possible to store
file contents in pnfs, dCache does not do this. Instead dCache stores the
file data on one (or more) pools.

pnfs includes some unique additional properties. These include dot com-
mands, pnfs IDs, levels, directory tags and wormholes.

pnfs dot command To configure and access some of the special features of the pnfs filesys-
tem, special files may be read, written to or created. These files all start
with a dot (or period) and have one or more parameters after, each param-
eter is contained within a set of parentheses; for example, the file .(tag)
(foo) is the pnfs dot command for reading or writing the foo directory
tag value.

Care must be taken when accessing a dot command from a shell. Shells will
often expand parentheses so the filename must be protected against this;
for example, by quoting the filename or by escaping the parentheses.

pnfs level In pnfs, each file can have up to eight independent contents; these file-
contents, called levels, may be accessed independently. dCache will store
some file metadata in levels 1 and 2, but dCache will not store any file data
in pnfs.

pnfs directory tag pnfs includes the concept of tags. A tag is a keyword-value pair associat-
ed with a directory. Subdirectories inherit tags from their parent directory.
New values may be assigned, but tags cannot be removed. The dot com-
mand .(tag)(foo) may be used to read or write tag foo’s value. The
dot command .(tags)() may be read for a list of all tags in that file’s
subdirectory.

More details on directory tags are given in the section called “Directory
Tags”.

pnfs ID Each component (file, directory, etc) in a pnfs instance has a unique ID:
a 24-digit hexadecimal number. This unique ID is used in dCache to refer
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to files without knowing the component’s name or in which directory the
component is located.

More details on pnfs IDs are given in the section called “pnfsIDs”.

Pool to Pool Transfer A pool-to-pool transfer is one where a file is transferred from one dCache
pool to another. This is typically done to satisfy a read request, either as a
load-balancing technique or because the file is not available on pools that
the end-user has access.

Storage Class

batch File A batch file describes which cells in a domain are to be started and with
what options. They typically have filenames from combining the name of
a domain with .batch; for example, the dCacheDomain domain has a
corresponding batch file dCache.batch

Although the cells in a domain may be configured by altering the corre-
sponding batch file, most typical changes can be altered by editing the
dCacheConfig file and this is the preferred method.

Context

Wormhole A wormhole is a feature of the pnfs filesystem. A wormhole is a file that is
accessible in all directories; however, the file is not returned when scanning
a directory(e.g., using the ls command).

More details on wormholes are given in the section called “Global Config-
uration with Wormholes”.

Chimera Chimera is a namespace implementation that is similar to pnfs but pro-
vides better integration with a relational database. Because of this, it al-
lows additional functionality to be added, so some dCache features require
a chimera namespace.

Many pnfs features are available in Chimera, including levels, directory
tags and many of the dot commands.

Chimera ID A Chimera ID is a 36 hexadecimal digit that uniquely defines a file or di-
rectory. It’s equivalent to a pnfs ID.

Replica It is possible that dCache will choose to make a file accessible from more
than one pool using a pool-to-pool copy. If this happens, then each copy
of the file is a replica.

A file is independent of which pool is storing the data whereas a replica is
uniquely specified by the pnfs ID and the pool name it is stored on.

Precious Replica A precious replica is a replica that should be stored on tape.

Cached Replica A cached replica is a replica that should not be stored on tape.
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Replica Manager The replica manager keeps track of the number of replicas of each file with-
in a certain subset of pools and makes sure this number is always within
a specified range. This way, the system makes sure that enough versions
of each file are present and accessible at all times. This is especially useful
to ensure resilience of the dCache system, even if the hardware is not reli-
able. The replica manager cannot be used when the system is connected to
a tertiary storage system. The activation and configuration of the replica
manager is described in Chapter 6, Resilience with the Replica Manager.

Storage Resource Manager
(SRM)

An SRM provides a standardised webservice interface for managing a stor-
age resource (e.g. a dCache instance). It is possible to reserve space, initiate
file storage or retrieve, and replicate files to another SRM. The actual trans-
fer of data is not done via the SRM itself but via any protocol supported by
both parties of the transfer. Authentication and authorisation is done with
the grid security infrastructure. dCache comes with an implementation of
an SRM which can turn any dCache instance into a grid storage element.

pnfs Companion The pnfs companion is a (database) table that stores dCache specific in-
formation; specifically, on which pools a file may be found. dCache can
operate without a companion and will store file location information within
a level.

Storing replica location information in the companion database greatly im-
proves the performance of dCache as the location information is often
queried by the pool manager.

Although a companion database may be used with Chimera, doing so pro-
vides no performance improvements and is not recommended.

Billing/Accounting Accounting information is either stored in a text file or in a PostgreSQL
database by the billing cell usually started in the httpDomain do-
main. This is described in Chapter 24, Accounting.

Pool Manager The pool manager is the cell running in the dCacheDomain domain. It is
a central component of a dCache instance and decides which pool is used
for an incoming request.

Cost Module The cost module is a Java class responsible for combining the different
types of cost associated with a particular operation; for example, if a file is
to be stored, the cost module will combine the storage costs and CPU costs
for each candidate target pool. The pool manager will choose the candidate
pool with the least combined cost.

Pool Selection Unit The pool selection unit is a Java class responsible for determining the set
of candidate pools for a specific transaction. A detailed account of its con-
figuration and behaviour is given in the section called “The Pool Selection
Mechanism”.

Pin Manager The pin manager is a cell by default running in the utility domain. It is
a central service that can “pin” files to a pool for a certain time. It is used
by the SRM to satisfy prestage requests.
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Space Manager The (SRM) Space Manager is a cell by default running in the srm domain.
It is a central service that records reserved space on pools. A space reser-
vation may be either for a specific duration or never expires. The Space
Manager is used by the SRM to satisfy space reservation requests.

Pool A pool is a cell responsible for storing retrieved files and for providing
access to that data. Data access is supported via movers. A machine may
have multiple pools, perhaps due to that machine’s storage being split over
multiple partitions.

A pool must have a unique name and all pool cells on a particular machine
are hosted in a domain that derives its name from the host machine’s name.

The list of directories that are to store pool data are found in the poollist
File, which is located on the pool node.

sweeper A sweeper is an activity located on a pool. It is responsible for deleting files
on the pool that have been marked for removal. Files can be marked for
removal because their corresponding namespace entry has been deleted or
because the local file is a cache copy and more disk space is needed.

HSM sweeper The HSM sweeper, if enabled, is a component that is responsible for re-
moving files from the HSM when the corresponding namespace entry has
been removed.

cost The pool manager determines the pool used for storing a file by calculating
a cost value for each available pool. The pool with the lowest cost is used.
The costs are calculated by the cost module as described in . The total cost
is a linear combination of the I.e.,

where ccf and scf are configurable with the command set pool decision.

performance cost See Also gl-cost.

space cost See Also gl-cost.
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