[an error occurred while processing this directive]

Introduction

dCache allows control over namespace operations (e.g., creating new files and directories, deleting items, renaming items) and data operations (reading data, writing data) using the standard Unix permission model. In this model, files and directories have both owner and group-owner attributes and a set of permissions that apply to the owner, permissions for users that are members of the group-owner group and permissions for other users.

Although Unix permission model is flexible enough for many deployment scenarios there are configurations that either cannot configured easily or are impossible. To satisfy these more complex permission handling dCache has support for ACL-based permission handling.

An Access Control List (ACL) is a set of rules for determining whether an end-user is allowed to undertake some specific operation. Each ACL is tied to a specific namespace entry: a file or directory. When an end-user wishes to undertake some operation then the ACL for that namespace entry is checked to see if that user is authorised. If the operation is to create a new file or directory then the ACL of the parent directory is checked.

File- and directory- ACLs

Each ACL is associated with a specific file or directory in dCache. Although the general form is the same whether the ACL is associated with a file or directory, some aspects of an ACL may change. Because of this, we introduce the terms file-ACL and directory-ACL when taking about ACLs associated with a file or a directory respectively. If the term ACL is used then it refers to both file-ACLs and directory-ACLs.

Each ACL contains a list of one or more Access Control Entries (ACEs). The ACEs describe how dCache determines whether an end-user is authorised. Each ACE contains information about which group of end users it applies to and describes whether this group is authorised for some subset of possible operations.

The order of the ACEs within an ACL is significant. When checking whether an end-user is authorised each ACE is checked in turn to see if it applies to the end-user and the requested operation. If it does then that ACE determines whether that end-user is authorised. If not then the next ACE is checked. Thus an ACL can have several ACEs and the first matched ACE wins.

One of the problems with traditional Unix-based permission model is its inflexible handling of newly created files and directories. With transitional filesystems, the permissions that are set are under the control of the user-process creating the file. The sysadmin has no direct control over the permissions that newly files or directories will have. The ACL permission model solves this problem by allowing explicit configuration using inheritance.

ACL inheritance is when a new file or directory is created with an ACL containing a set of ACEs from the parent directory’s ACL. The inherited ACEs are specially marked so that only those that are intended will be inherited.

Inheritance only happens when a new file or directory is created. After creation, the ACL of the new file or directory is completely decoupled from the parent directory’s ACL: the ACL of the parent directory may be altered without affecting the ACL of the new file or directory and visa versa.

Inheritance is optional. Within a directory’s ACL some ACEs may be inherited whilst others are not. New files or directories will receive only those ACEs that are configured; the remaining ACEs will not be copied.