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Abstract

The dCache Book is the guide for administrators of dCache systems. The first part describes the installation of a
simple single-host dCache instance. The second part describes the components of dCache and in what ways they can
be configured. This is the place for finding information about the role and functionality of components in dCache as
needed by an administrator. The third part contains solutions for several problems and tasks which might occur during
operating of a dCache system. Finally, the last two parts contain a glossary and a parameter and command reference.
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Welcome to the dCache. dCache is a distributed storage solution for storing huge amounts of data without
a hard limit, used to provide storage in the petabyte range. Therefore it qualifies as the storage system
supporting data intensive experiments.

dCache is a joined effort between the Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Nordic Data
Grid Facility (NDGF based in Copenhagen), the Fermi National Accelerator Laboratory near Chicago with
significant distributions and support from the University of California, San Diego, INFN, Bari as well as
Rutherford Appleton Laboratory, UK and CERN in Geneva.

dCache can use hierarchical storage management (e.g., hard disk and tape), provides mechanisms to auto-
matically increase performance and balance loads, increase resilience and availability. It also supplies ad-
vanced control systems to manage data as well as data flows. Normal filesystem (btrfs, ext4, XFS, ZFS) is
used to store data on storage nodes. There are several ways of accessing data stored in dCache:

• NFS 4.1 (Chimera)

• HTTP and WebDAV

• GridFTP (GSI-FTP)

• xrootd

• SRM (versions 1.1 and 2.2)

• dCap and GSIdCap

dCache supports certificate based authentication through the Grid Security Infrastructure used in GSI-
FTP, GSIdCap transfer protocols and the SRM management protocol. Certificate authentication is also
available for HTTP and WebDAV. dCache also supports fine-grain authorization with support for POSIX file
permissions and NFS-style access control lists. Other features of dCache are:

• Resilience and high availability can be implemented in different ways by having multiple replicas of the
same files.

• Easy migration of data via the migration module.

• A powerful cost calculation system that allows to control the data flow (reading and writing from/to pools,
between pools and also between pools and tape).

• Load balancing and performance tuning by hot pool replication (via cost calculation and replicas created
by pool-to-pool-transfers).
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• Space management and support for space tokens.

• Garbage collection of replicas, depending on their flags, age, et cetera.

• Detailed logging and debugging as well as accounting and statistics.

• XML information provider with detailed live information about the cluster.

• Scriptable adminstration interface with a terminal-based front-end.

• Web-interface with live information of the most important information.

• Ensuring data integrity through checksumming.

dCache / SRM can transparently manage data distributed among dozens of disk storage nodes (sometimes
distributed over several countries). The system has shown to significantly improve the efficiency of con-
nected tape storage systems, by caching, gather and flush and scheduled staging techniques. Furthermore,
it optimizes the throughput to and from data clients by dynamically replicating datasets on the detection
of load hot spots. The system is tolerant against failures of its data servers, which allows administrators to
deploy commodity disk storage components.

Access to the data is provided by various standard protocols. Furthermore the software comes with an im-
plementation of the Storage Resource Manager protocol (SRM), which is an open standard for grid middle-
ware to communicate with site specific storage fabrics.

Who should read this book?
This book is primerally targeted at system administrators.

Minimum System Requirements?
For minimal test installation:

• Hardware: contemporary CPU , 1 GiB of RAM , 100 MiB free harddisk space

• Software: Oracle/Sun Java, Postgres SQL Server

For a high performance Grid scenario the hardware requirements highly differ, which makes it impossible
to provide such parameters here. However, if you wish to setup a dCache-based storage system, just let us
know and we will help you with your system specifications. Just contact us: <support@dcache.org>.

What is inside?
This book shall introduce you to dCache and provide you with the details of the installation. It describes
configuration, customization of dCache as well as the usage of several protocols that dCache supports. Ad-
ditionally, it provides cookbooks for standard tasks.

Here is an overview part by part:
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Part 1, Getting started: This part introduces you to the cells and domain concept in dCache. It provides a
detailed description of installing, the basic configuration, and upgrading dCache.

Part 2, Configuration of dCache: Within this part the configuration of several additional features of dCache
is described. They are not necessary to run dCache but will be needed by some users depending on their
requirements.

Part 3, Cookbook: This part comprises guides for specific tasks a system administrator might want to per-
form.

Looking for help?
This part gets you all the help that you might need:

• For acquiring resources:

• The download page [http://www.dcache.org/downloads].

• The YUM repositories [http://trac.dcache.org/projects/dcache/wiki/manuals/Yum].

• For getting help during installation:

• Developers <support@dcache.org>

• Additional Support:

• German support:<german-support@dcache.org>

• UK support:<GRIDPP-STORAGE@JISCMAIL.AC.UK>

• USA support:<osg-storage@opensciencegrid.org>

• User Forum: <user-forum@dcache.org>

• For features that you would like to see in dCache or bugs that should be fixed: Just write an e-mail to
<support@dcache.org>

• If you like to stay up-to-date about new releases you can use the RSS feeds available from our downloads
page [http://www.dcache.org/downloads].

• For EMI releases of dCache please visit the EMI dCache download page [http://www.eu-emi.eu/releases].

http://www.dcache.org/downloads
http://www.dcache.org/downloads
http://trac.dcache.org/projects/dcache/wiki/manuals/Yum
http://trac.dcache.org/projects/dcache/wiki/manuals/Yum
http://www.dcache.org/downloads
http://www.dcache.org/downloads
http://www.dcache.org/downloads
http://www.eu-emi.eu/releases
http://www.eu-emi.eu/releases
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This part is intended for people who are new to dCache. It gives an introduction to dCache, including how
to configure a simple setup, and details some simple and routine administrative operations.
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Chapter 1. Introduction
dCache is a distributed storage solution. It organises storage across computers so the combined storage can
be used without the end-users being aware of where their data is stored. They simply see a large amount
of storage.

Because end-users do not need to know on which computer their data is stored, it can be migrated from one
computer to another without any interruption of service. As a consequence, (new) servers may be added to
or taken away from the dCache storage cluster at any time.

dCache supports requesting data from a tertiary storage system. Such systems typically store data on mag-
netic tapes instead of disks, which must be loaded and unloaded using a tape robot. The main reason for us-
ing tertiary storage is the better cost-efficiency, archiving a very large amount of data on rather inexpensive
hardware. In turn the access latency for archived data is significantly higher.

dCache also supports many transfer protocols (allowing users to read and write to data). These have a modu-
lar deployment, allowing dCache to support expanded capacity by providing additional front-end machines.

Another performance feature of dCache is hot-spot data migration. In this process, dCache will detect when
files are requested very often. If this happens, dCache can generate duplicates of the popular files on other
computers. This allows the load to be spread across multiple machines, so increasing throughput.

The flow of data within dCache can also be carefully controlled. This is especially important for large sites as
chaotic movement of data may lead to suboptimal usage. Instead, incoming and outgoing data can be mar-
shaled so they use designated resources guaranteeing better throughput and improving end-user experience.

dCache provides a comprehensive administrative interface for configuring the dCache instance. This is de-
scribed in the later sections of this book.

Cells and Domains
dCache, as distributed storage software, can provide a coherent service using multiple computers or nodes
(the two terms are used interchangeable). Although dCache can provide a complete storage solution on a
single computer, one of its strengths is the ability to scale by spreading the work over multiple nodes.

A cell is dCache’s most fundamental executable building block. Even a small dCache deployment will have
many cells running. Each cell has a specific task to perform and most will interact with other cells to achieve
it.

Cells can be grouped into common types; for example, pools, doors. Cells of the same type behave in a
similar fashion and have higher-level behaviour (such as storing files, making files available). Later chapters
will describe these different cell types and how they interact in more detail.

There are only a few cells where (at most) only a single instance is required. The majority of cells within a
dCache instance can have multiple instances and dCache is designed to allow load-balancing over these cells.

A domain is a container for running cells. Each domain runs in its own Java Virtual Machine (JVM) instance,
which it cannot share with any other domain. In essence, a domain is a JVM with the additional functionality
necessary to run cells (such as system administration and inter-cell communication). This also implies, that
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a node’s resources, such as memory, available CPU and network bandwidth, are shared among several
domains running on the same node.

dCache comes with a set of domain definitions, each specifying a useful set of cells to run within that domain
to achieve a certain goal. These goals include storing data, providing a front-end to the storage, recording
file names, and so on. The list of cells to run within these domains are recommended deployments: the vast
majority of dCache deployments do not need to alter these lists.

A node is free to run multiple domains, provided there’s no conflicting requirement from the domains for
exclusive access to hardware. A node may run a single domain; but, typically a node will run multiple
domains. The choice of which domains to run on which nodes will depend on expected load of the dCache
instance and on the available hardware. If this sounds daunting, don’t worry: starting and stopping a domain
is easy and migrating a domain from one node to another is often as easy as stopping the domain on one
node and starting it on another.

dCache is scalable storage software. This means that (in most cases) the performance of dCache can be
improved by introducing new hardware. Depending on the performance issue, the new hardware may be
used by hosting a domain migrated from a overloaded node, or by running an additional instance of a domain
to allow load-balancing.

Most cells communicate in such a way that they don’t rely on in which domain they are running. This
allows a site to move cells from one domain to another or to create new domain definitions with some subset
of available cells. Although this is possible, it is rare that redefining domains or defining new domains is
necessary. Starting or stopping domains is usually sufficient for managing load.

Figure 1.1. The dCache Layer Model

GFAL

Storage Resource Mgr.

FTP Server (CSI, Kerberos)

GRIS

dCap Client (GSI, Kerberous) dCap Server

dCache Core HSM Adapter

Cell Package

PFNS

Storage Element (LCG)

Wide Area dCache

Resilient Cache

Basic Cache System
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The layer model shown in Figure 1.1, “The dCache Layer Model” gives an overview of the architecture of
the dCache system.

Protocols Supported by dCache
 dCap FTP xrootd NFSv4.1 WebDAV SRM

 + + + + + -

kerberos + + - + - -

Client Cer-
tificate

+ + + - + +

user-
name/pass-

word

+ + - - + -

Control
Connection
Encrypted

+ + + + + +

Data Con-
nection En-

crypted

- - - + - -

passiv + + + + + +

active + + - - - -



5

Chapter 2. Installing dCache
The first section describes the installation of a fresh dCache instance using RPM files downloaded from the
dCache home-page [http://www.dcache.org]. It is followed by a guide to upgrading an existing installation.
In both cases we assume standard requirements of a small to medium sized dCache instance without an
attached tertiary storage system. The third section contains some pointers on extended features.

Installing a dCache instance
In the following the installation of a dCache instance will be described. The Chimera name space provider,
some management components, and the SRM need a PostgreSQL server installed. We recommend running
this PostgreSQL on the local node. The first section describes the configuration of a PostgreSQL server. After
that the installation of Chimera and of the dCache components will follow. During the whole installation
process root access is required.

Prerequisites

In order to install dCache the following requirements must be met:

• An RPM-based Linux distribution is required for the following procedure. For Debian derived systems
we provide Debian packages and for Solaris the Solaris packages or the tarball.

• dCache requires Java 1.7 JRE. Please use the latest patch-level and check for upgrades frequently. It is
recommended to use JDK as dCache scripts can make use of some extra features that JDK provides to
gather more diagnostic information (heap-dump, etc). This helps when tracking down bugs.

• PostgreSQL must be installed and running. We recommend the use of PostgreSQL version 9.2 (at least
PostgreSQL version 8.3 is required).

Important

For good performance it is necessary to maintain and tune your PostgreSQL server. There are
several good books on this topic, one of which is PostgreSQL 9.0 High Performance [http://
www.2ndquadrant.com/books/postgresql-9-0-high-performance].

Installation of the dCache Software

The RPM packages may be installed right away, for example using the command:

[root] # rpm -ivh dcache-2.9.0-1.noarch.rpm

The actual sources lie at http://www.dcache.org/downloads/IAgree.shtml. To install for example Version
2.9.0-1 you would use this:

[root] # rpm -ivh http://www.dcache.org/downloads/1.9/repo/2.9/dcache-2.9.0-1.noarch.rpm

The client can be found in the download-section of the above url, too.

http://www.dcache.org
http://www.dcache.org
http://www.dcache.org
http://www.2ndquadrant.com/books/postgresql-9-0-high-performance
http://www.2ndquadrant.com/books/postgresql-9-0-high-performance
http://www.2ndquadrant.com/books/postgresql-9-0-high-performance
http://www.dcache.org/downloads/IAgree.shtml
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Readying the PostgreSQL server for the use with
dCache

Using a PostgreSQL server with dCache places a number of requirements on the database. You must config-
ure PostgreSQL for use by dCache and create the necessary PostgreSQL user accounts and database struc-
ture. This section describes how to do this.

Starting PostgreSQL

Install the PostgreSQL server with the tools of the operating system.

Initialize the database directory (for PostgreSQL version 9.2 this is /var/lib/pgsql/9.2/data/) ,
start the database server, and make sure that it is started at system start-up.

[root] # service postgresql-9.2 initdb
Initializing database:                                     [  OK  ]
[root] # service postgresql-9.2 start
Starting postgresql-9.2 service:                           [  OK  ]
[root] # chkconfig postgresql-9.2 on

Enabling local trust

Perhaps the simplest configuration is to allow password-less access to the database and the following doc-
umentation assumes this is so.

To allow local users to access PostgreSQL without requiring a password, ensure the file pg_hba.conf,
which (for PostgreSQL version 9.2) is located in /var/lib/pgsql/9.2/data, contains the following
lines.

# TYPE  DATABASE        USER            ADDRESS                 METHOD

# "local" is for Unix domain socket connections only
local   all             all                                     trust
# IPv4 local connections:
host    all             all             127.0.0.1/32            trust
# IPv6 local connections:
host    all             all             ::1/128                 trust

Note

Please note it is also possible to run dCache with all PostgreSQL accounts requiring passwords.
See the section called “Configuring Access to PostgreSQL” for more advice on the configuration
of PostgreSQL.

Restarting PostgreSQL

If you have edited PostgreSQL configuration files, you must restart PostgreSQL for those changes
to take effect. On many systems, this can be done with the following command:

[root] # service postgresql-9.2 restart
Stopping postgresql-9.2 service:                           [  OK  ]
Starting postgresql-9.2 service:                           [  OK  ]
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Configuring Chimera
Chimera is a library providing a hierarchical name space with associated meta data. Where pools in dCache
store the content of files, Chimera stores the names and meta data of those files. Chimera itself stores the data
in a relational database. We will use PostgreSQL in this tutorial. The properties of Chimera are defined in /
usr/share/dcache/defaults/chimera.properties. See Chapter 4, Chimera for more infor-
mation.

Creating users and databases for dCache

Create the Chimera database and user.

[root] # createdb -U postgres chimera
CREATE DATABASE
[root] # createuser -U postgres --no-superuser --no-createrole --createdb --pwprompt chimera
Enter password for new role:
Enter it again:
You do not need to enter a password.

The dCache components will access the database server with the user srmdcache.

[root] # createuser -U postgres --no-superuser --no-createrole --createdb --pwprompt srmdcache
Enter password for new role: 
Enter it again:
You do not need to enter a password.

Several management components running on the head node as well as the SRM will use the database dcache
for storing their state information:

[root] # createdb -U srmdcache dcache

There might be several of these on several hosts. Each is used by the dCache components running on the
respective host.

Create the database used for the billing plots.

[root] # createdb -O srmdcache -U postgres billing

And run the command dcache database update.

[root] # dcache database update
PnfsManager@dCacheDomain: 
INFO  - Successfully acquired change log lock
INFO  - Creating database history table with name: databasechangelog
INFO  - Reading from databasechangelog
many more like this...
      

Now the configuration of Chimera is done.

Before the first start of dCache replace the file /etc/dcache/gplazma.conf with an empty file.

[root] # mv /etc/dcache/gplazma.conf /etc/dcache/gplazma.conf.bak
[root] # touch /etc/dcache/gplazma.conf

dCache can be started now.

[root] # dcache start
Starting dCacheDomain done
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So far, no configuration of dCache is done, so only the predefined domain is started.

Configuring dCache

Terminology

dCache consists of one or more domains. A domain in dCache is a Java Virtual Machine hosting one or
more dCache cells. Each domain must have a name which is unique throughout the dCache instance and a
cell must have a unique name within the domain hosting the cell.

A service is an abstraction used in the dCache configuration to describe atomic units to add to a domain.
It is typically implemented through one or more cells. dCache keeps lists of the domains and the services
that are to be run within these domains in the layout files. The layout file may contain domain- and service-
specific configuration values. A pool is a cell providing physical data storage services.

Configuration files

In the setup of dCache, there are three main places for configuration files:

• /usr/share/dcache/defaults

• /etc/dcache/dcache.conf

• /etc/dcache/layouts

The folder /usr/share/dcache/defaults contains the default settings of the dCache. If one of the
default configuration values needs to be changed, copy the default setting of this value from one of the files
in /usr/share/dcache/defaults to the file /etc/dcache/dcache.conf, which initially is
empty and update the value.

Note

In this first installation of dCache your dCache will not be connected to a tape sytem.
Therefore please change the values for pnfsmanager.default-retention-policy and
pnfsmanager.default-access-latency in the file /etc/dcache/dcache.conf.

pnfsmanager.default-retention-policy=REPLICA
pnfsmanager.default-access-latency=ONLINE

Layouts describe which domains to run on a host and which services to run in each domain. For the cus-
tomized configuration of your dCache you will have to create a layout file in /etc/dcache/layouts.
In this tutorial we will call it the mylayout.conf file.

Important

Do not update configuration values in the files in the defaults folder, since changes to these files
will be overwritten by updates.

As the files in /usr/share/dcache/defaults/ do serve as succinct documentation for all available
configuration parameters and their default values it is quite useful to have a look at them.
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Defining domains and services

Domains and services are defined in the layout files. Depending on your site, you may have requirements
upon the doors that you want to configure and domains within which you want to organise them.

A domain must be defined if services are to run in that domain. Services will be started in the order in which
they are defined.

Every domain is a Java Virtual Machine that can be started and stopped separately. You might want to define
several domains for the different services depending on the necessity of restarting the services separately.

The layout files define which domains to start and which services to put in which domain. Configuration
can be done per domain and per service.

A name in square brackets, without a forward-slash (/) defines a domain. A name in square brackets with a
forward slash defines a service that is to run in a domain. Lines starting with a hash-symbol (#) are comments
and will be ignored by dCache.

There may be several layout files in the layout directory, but only one of them is read by dCache when
starting up. By default it is the single.conf. If the dCache should be started with another layout file you
will have to make this configuration in /etc/dcache/dcache.conf.

Example:

dcache.layout=mylayout

This entry in /etc/dcache/dcache.conf will instruct dCache to read the layout file /etc/
dcache/layouts/mylayout.conf when starting up.

Example:

These are the first lines of /etc/dcache/layouts/single.conf:

dcache.broker.scheme=none

[dCacheDomain]
[dCacheDomain/admin]
[dCacheDomain/broadcast]
[dCacheDomain/poolmanager]

[dCacheDomain] defines a domain called dCacheDomain. In this example only one domain is
defined. All the services are running in that domain. Therefore no messagebroker is needed, which is
the meaning of the entry messageBroker=none.

[dCacheDomain/admin] declares that the admin service is to be run in the dCacheDomain
domain.

Example:

This is an example for the mylayout.conf file of a single node dCache with several domains.

[dCacheDomain]
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[dCacheDomain/broadcast]
[dCacheDomain/loginbroker]
[dCacheDomain/topo]
[dCacheDomain/info]

[namespaceDomain]
[namespaceDomain/pnfsmanager]
[namespaceDomain/cleaner]
[namespaceDomain/dir]

[poolmanagerDomain]
[poolmanagerDomain/poolmanager]

[adminDoorDomain]
[adminDoorDomain/admin]

[httpdDomain]
[httpdDomain/httpd]
[httpdDomain/billing]
[httpdDomain/srm-loginbroker]

[gPlazmaDomain]
[gPlazmaDomain/gplazma]

Note

If you defined more than one domain, a messagebroker is needed, because the defined
domains need to be able to communicate with each other. This means that if you use
the file single.conf as a template for a dCache with more than one domain you
need to delete the line messageBroker=none. Then the default value will be used
which is messageBroker=cells, as defined in the defaults /usr/share/dcache/de-
faults/dcache.properties.

Creating and configuring pools

dCache will need to write the files it keeps in pools. These pools are defined as services within dCache.
Hence, they are added to the layout file of your dCache instance, like all other services.

The best way to create a pool, is to use the dcache script and restart the domain the pool runs in. The pool
will be added to your layout file.

[<domainname>/pool]
name=<poolname>
path=/path/to/pool
pool.wait-for-files=${path}/data

The property pool.wait-for-files instructs the pool not to start up until the specified file or directory
is available. This prevents problems should the underlying storage be unavailable (e.g., if a RAID device
is offline).

Note

Please restart dCache if your pool is created in a domain that did not exist before.

Example:

[root] # dcache pool create /srv/dcache/p1 pool1 poolDomain
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Created a pool in /srv/dcache/p1. The pool was added to poolDomain in
file:/etc/dcache/layouts/mylayout.conf.

In this example we create a pool called pool1 in the directory /srv/dcache/p1. The created pool
will be running in the domain poolDomain.

Mind the Gap!

The default gap for poolsizes is 4GiB. This means you should make a bigger pool than 4GiB oth-
erwise you would have to change this gap in the dCache admin tool. See the example below. See
also the section called “The Admin Interface”.

(local) admin > cd <poolname>
(<poolname>) admin > set gap 2G
(<poolname>) admin > save

Adding a pool to a configuration does not modify the pool or the data in it and can thus safely be undone
or repeated.

Starting dCache

Restart dCache to start the newly configured components dcache restart and check the status of
dCache with dcache status.

Example:

[root] # dcache restart
Stopping dCacheDomain 0 1 done
Starting dCacheDomain done
Starting namespaceDomain done
Starting poolmanagerDomain done
Starting adminDoorDomain done
Starting httpdDomain done
Starting gPlazmaDomain done
Starting poolDomain done
[root] # dcache status
DOMAIN            STATUS  PID   USER
dCacheDomain      running 17466 dcache
namespaceDomain   running 17522 dcache
poolmanagerDomain running 17575 dcache
adminDoorDomain   running 17625 dcache
httpdDomain       running 17682 dcache
gPlazmaDomain     running 17744 dcache
poolDomain        running 17798 dcache

Now you can have a look at your dCache via The Web Interface, see the section called “The Web Interface for
Monitoring dCache”: http://<httpd.example.org>:2288/, where <httpd.example.org>
is the node on which your httpd service is running. For a single node dCache this is the machine on which
your dCache is running.

Java heap size

By default the Java heap size and the maximum direct buffer size are defined as

dcache.java.memory.heap=512m
dcache.java.memory.direct=512m
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Again, these values can be changed in /etc/dcache/dcache.conf.

For optimization of your dCache you can define the Java heap size in the layout file separately for every
domain.

Example:

[dCacheDomain]
dcache.java.memory.heap=2048m
dcache.java.memory.direct=0m
...
[utilityDomain]
dcache.java.memory.heap=384m
dcache.java.memory.direct=16m

Note

dCache uses Java to parse the configuration files and will search for Java on the system path first; if it
is found there, no further action is needed. If Java is not on the system path, the environment variable
JAVA_HOME defines the location of the Java installation directory. Alternatively, the environment
variable JAVA can be used to point to the Java executable directly.

If JAVA_HOME or JAVA cannot be defined as global environment variables in the operating system,
then they can be defined in either /etc/default/dcache or /etc/dcache.env. These two
files are sourced by the init script and allow JAVA_HOME, JAVA and DCACHE_HOME to be defined.

Installing dCache on several nodes
Installing dCache on several nodes is not much more complicated than installing it on a single node. Think
about how dCache should be organised regarding services and domains. Then adapt the layout files, as de-
scribed in the section called “Defining domains and services”, to the layout that you have in mind. The files
/etc/dcache/layouts/head.conf and /etc/dcache/layouts/pool.conf contain exam-
ples for a dCache head-node and a dCache pool respectively.

Important

You must configure a domain called dCacheDomain but the other domain names can be chosen
freely.

Please make sure that the domain names that you choose are unique. Having the same domain names
in different layout files on different nodes may result in an error.

On any other nodes than the head node, the property dcache.broker.host has to be added to the file
/etc/dcache/dcache.conf. This property should point to the host containing the special domain
dCacheDomain, because that domain acts implicitly as a broker.

Tip

On dCache nodes running only pool services you do not need to install PostgreSQL. If your current
node hosts only these services, the installation of PostgreSQL can be skipped.
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Upgrading a dCache Instance
Important

Always read the release notes carefully before upgrading!

Upgrading to bugfix releases within one supported branch (e.g. from 2.9.0 to 2.9.1) may be done by upgrad-
ing the packages with

[root] # rpm -Uvh <packageName>

Now dCache needs to be started again.

For major upgrades please

• use The Ultimate Golden Release Upgrade Guide I [http://www.dcache.org/manuals/2011/goettingen/up-
gradeguide/upgrade-guide.html] to upgrade from 1.9.5 to 1.9.12.

• use the The Ultimate Golden Release Upgrade Guide II [http://www.dcache.org/manuals/up-
grade-1.9.12-to-2.2.shtml] to upgrade from 1.9.12 to 2.2.

• use the The Ultimate Golden Release Upgrade Guide III [http://www.dcache.org/manuals/upgrade/up-
grade-2.2-to-2.6.html] to upgrade from 2.2 to 2.6.

• use the /opt to /usr [http://trac.dcache.org/wiki/optToUsr] migration guide to migrate from the /opt layout
to the fhs-compliant layout.

http://www.dcache.org/manuals/2011/goettingen/upgradeguide/upgrade-guide.html
http://www.dcache.org/manuals/2011/goettingen/upgradeguide/upgrade-guide.html
http://www.dcache.org/manuals/2011/goettingen/upgradeguide/upgrade-guide.html
http://www.dcache.org/manuals/upgrade-1.9.12-to-2.2.shtml
http://www.dcache.org/manuals/upgrade-1.9.12-to-2.2.shtml
http://www.dcache.org/manuals/upgrade-1.9.12-to-2.2.shtml
http://www.dcache.org/manuals/upgrade/upgrade-2.2-to-2.6.html
http://www.dcache.org/manuals/upgrade/upgrade-2.2-to-2.6.html
http://www.dcache.org/manuals/upgrade/upgrade-2.2-to-2.6.html
http://trac.dcache.org/wiki/optToUsr
http://trac.dcache.org/wiki/optToUsr
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Chapter 3. Getting in Touch with
dCache
This section is a guide for exploring a newly installed dCache system. The confidence obtained by this
exploration will prove very helpful when encountering problems in the running system. This forms the basis
for the more detailed stuff in the later parts of this book. The starting point is a fresh installation according
to the the section called “Installing a dCache instance”.

Checking the Functionality
Reading and writing data to and from a dCache instance can be done with a number of protocols. After a
standard installation, these protocols are dCap, GSIdCap, and GridFTP. In addition dCache comes with
an implementation of the SRM protocol which negotiates the actual data transfer protocol.

dCache without mounted namespace
Create the root of the Chimera namespace and a world-writable directory by

[root] # /usr/bin/chimera mkdir /data
[root] # /usr/bin/chimera mkdir /data/world-writable
[root] # /usr/bin/chimera chmod 777 /data/world-writable

WebDAV

To use WebDAV you need to define a WebDAV service in your layout file. You can define this service in an
extra domain, e.g. [webdavDomain] or add it to another domain.

[webdavDomain]
[webdavDomain/webdav]
webdav.authz.anonymous-operations=FULL

to the file /etc/dcache/layouts/mylayout.conf.

Note

Depending on the client you might need to set webdav.redirect.on-read=false and/or
webdav.redirect.on-write=false.

#  ---- Whether to redirect GET requests to a pool
#
#   If true, WebDAV doors will respond with a 302 redirect pointing to
#   a pool holding the file. This requires that a pool can accept
#   incoming TCP connections and that the client follows the
#   redirect. If false, data is relayed through the door. The door
#   will establish a TCP connection to the pool.
#
(one-of?true|false)webdav.redirect.on-read=true

#  ---- Whether to redirect PUT requests to a pool
#
#   If true, WebDAV doors will respond with a 307 redirect pointing to
#   a pool to which to upload the file. This requires that a pool can
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#   accept incoming TCP connections and that the client follows the
#   redirect. If false, data is relayed through the door. The door
#   will establish a TCP connection to the pool. Only clients that send
#   a Expect: 100-Continue header will be redirected - other requests
#   will always be proxied through the door.
#
(one-of?true|false)webdav.redirect.on-write=true

Now you can start the WebDAV domain

[root] # dcache start webdavDomain

and access your files via http://<webdav-door.example.org>:2880 with your browser.

You can connect the webdav server to your file manager and copy a file into your dCache.

To use curl to copy a file into your dCache you will need to set  webdav.redirect.on-
write=false.

Example:

Write the file test.txt

[root] # curl -T test.txt http://webdav-door.example.org:2880/data/world-writable/curl-
testfile.txt

and read it

[root] # curl http://webdav-door.example.org:2880/data/world-writable/curl-testfile.txt

dCap

To be able to use dCap you need to have the dCap door running in a domain.

Example:

[dCacheDomain]
[dCacheDomain/dcap]

For anonymous access you need to set the property dcap.authz.anonymous-operations to FULL.

Example:

[dCacheDomain]
[dCacheDomain/dcap]
      dcap.authz.anonymous-operations=FULL

For this tutorial install dCap on your worker node. This can be the machine where your dCache is running.

Get the gLite repository (which contains dCap) and install dCap using yum.

[root] # cd /etc/yum.repos.d/
[root] # wget http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/glite-UI.repo
[root] # yum install dcap
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Create the root of the Chimera namespace and a world-writable directory for dCap to write into as described
above.

Copy the data (here /bin/sh is used as example data) using the dccp command and the dCap protocol
describing the location of the file using a URL, where <dcache.example.org> is the host on which
the dCache is running

[root] # dccp -H /bin/sh dcap://<dcache.example.org>/data/world-writable/my-test-file-1
[##########################################################################################] 100% 718
 kiB
735004 bytes (718 kiB) in 0 seconds

and copy the file back.

[root] # dccp -H dcap://<dcache.example.org>/data/world-writable/my-test-file-1 /tmp/mytestfile1
[##########################################################################################] 100% 718
 kiB
735004 bytes (718 kiB) in 0 seconds

To remove the file you will need to mount the namespace.

The Web Interface for Monitoring dCache
In the standard configuration the dCache web interface is started on the head node (meaning that the domain
hosting the httpd service is running on the head node) and can be reached via port 2288. Point a web
browser to http://<head-node.example.org>:2288/ to get to the main menu of the dCache
web interface. The contents of the web interface are self-explanatory and are the primary source for most
monitoring and trouble-shooting tasks.

The “Cell Services” page displays the status of some important cells of the dCache instance.

The “Pool Usage” page gives a good overview of the current space usage of the whole dCache instance. In
the graphs, free space is marked yellow, space occupied by cached files (which may be deleted when space
is needed) is marked green, and space occupied by precious files, which cannot be deleted is marked red.
Other states (e.g., files which are currently written) are marked purple.

The page “Pool Request Queues” (or “Pool Transfer Queues”) gives information about the number of current
requests handled by each pool. “Actions Log” keeps track of all the transfers performed by the pools up
to now.

The remaining pages are only relevant with more advanced configurations: The page “Pools” (or “Pool
Attraction Configuration”) can be used to analyze the current configuration of the pool selection unit in the
pool manager. The remaining pages are relevant only if a tertiary storage system (HSM) is connected to
the dCache instance.

The Admin Interface
Just use commands that are documented here

Only commands described in this documentation should be used for the administration of a dCache
system.
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First steps
dCache has a powerful administration interface. It can be accessed with the ssh1 or with the ssh2 protocol.
The server is part of the adminDoor domain.

It is useful to define the admin service in a seperate domain. This allowes to restart the admin service
seperatly from other services. In the example in the section called “Installing a dCache instance” this domain
was called adminDoorDomain.

Example:

[adminDoorDomain]
[adminDoorDomain/admin]

Note

The admin interface is using ssh2. It used to be available using ssh1, which is insecure and
therefore discouraged. If you want to run the admin service with ssh1 you need to define the ssh1
service.

Example:

[adminDoorDomain]
[adminDoorDomain/ssh1]

Access with ssh2
There are two ways of authorizing administrators to access the dCache ssh2 admin interface. The pre-
ferred method authorizes users through their public key. The second method employs gPlazma2 and the
dcache.kpwd file. Thereby authorization mechanisms can be added later by deploying another gPlaz-
ma2 plugin. The configuration of both authorization mechanisms is described in the following.

Note

All configurable values of the ssh2 admin interface can be found in the /usr/share/dcache/
defaults/admin.properties file. Please do NOT change any value in this file. Instead enter
the key value combination in the /etc/dcache/dcache.conf.

Public Key Authorization

To authorize administrators through their public key just insert it into the file authorized_keys2
which should by default be in the directory /etc/dcache/admin as specified in the file /usr/
share/dcache/defaults/admin.properties under admin.paths.authorized-keys=.
Keys have to be in one line and should have a standard format, such as:

ssh-dss AAAAB3....GWvM= /Users/JohnDoe/.ssh/id_dsa

Important

Please make sure that the copied key is still in one line. Any line-break will prevent the key from
being read.
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Note

You may omit the part behind the equal sign as it is just a comment and not used by dCache.

Key-based authorization will always be the default. In case the user key can not be found in the file
authorized_keys2 or the file does not exist, ssh2Admin will fall back to authorizing the user via
gPlazma2 and the dcache.kpwd file.

Now you can login to the admin interface by

[user] $ ssh -l admin -p 22224 headnode.example.org

    dCache Admin (VII) (user=admin)

(local) admin >

Access via gPlazma2 and the dcache.kpwd File

To use gPlazma make sure that you defined a gPlazmaDomain in your layout file.

Example: Part of the layout file in /etc/dcache/layouts:

[<gplazma-${host.name}>Domain]
[<gplazma-${host.name}>Domain/gplazma]

To use gPlazma2 you need to specify it in the /etc/dcache/dcache.conf file:

# This is the main configuration file of dCache.
#
...
#
# use gPlazma2
gplazma.version=2

Moreover, you need to create the file /etc/dcache/gplazma.conf with the content

auth optional kpwd "kpwd=/etc/dcache/dcache.kpwd"
map optional kpwd "kpwd=/etc/dcache/dcache.kpwd"
session optional kpwd "kpwd=/etc/dcache/dcache.kpwd"

and add the user admin to the /etc/dcache/dcache.kpwd file using the dcache script.

Example:

[user] $ dcache kpwd dcuseradd admin -u 12345 -g 1000 -h / -r / -f / -w read-write -p password
writing to /etc/dcache/dcache.kpwd :

done writing to /etc/dcache/dcache.kpwd :

[user] $

adds this to the /etc/dcache/dcache.kpwd file:

# set pwd
passwd admin 4091aba7 read-write 12345 1000 / /
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Edit the file /etc/dcache/dcachesrm-gplazma.policy to switch on the kpwd-plugin. For
more information about gPlazma see Chapter 10, Authorization in dCache.

Now the user admin can login to the admin interface with his password password by:

[user] $ ssh -l admin -p 22224 headnode.example.org
admin@headnode.example.org's password:

    dCache Admin (VII) (user=admin)

(local) admin > 

To allow other users access to the admin interface add them to the /etc/dcache/dcache.kpwd file
as described above.

Just adding a user in the dcache.kpwd file is not sufficient. The generated user also needs access rights
that can only be set within the admin interface itself.

See the section called “Create a new user” to learn how to create the user in the admin interface and set
the rights.

Access with ssh1
Connect to the server using ssh1 with:

[user] $ ssh -c blowfish -p 22223 -l admin headnode.example.org

The initial password is “dickerelch” (which is German for “fat elk”) and you will be greeted by the
prompt

   dCache Admin (VII) (user=admin)

(local) admin >

The password can now be changed with

(local) admin > cd acm
(acm) admin > create user admin
(acm) admin > set passwd -user=admin <newPasswd> <newPasswd>
(acm) admin > ..
(local) admin > logoff

How to use the Admin Interface
The command help lists all commands the cell knows and their parameters. However, many of the commands
are only used for debugging and development purposes.

Warning

Some commands are dangerous. Executing them without understanding what they do may lead to
data loss.

Starting from the local prompt ((local) admin >) the command cd takes you to the specified cell. In
general the address of a cell is a concatenation of cell name @ symbol and the domain name. cd to a cell by:
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(local) admin > cd <cellName>@<domainName>

Note

If the cells are well-known, they can be accessed without adding the domain-scope. See Chapter 5,
The Cell Package for more information.

The domains that are running on the dCache-instance, can be viewed in the layout-configuration (see Chap-
ter 2, Installing dCache). Additionally, there is the topo cell, which keeps track of the instance’s domain
topology. If it is running, it can be used to obtain the list of domains the following way:

Note

The topo cell rescans every five minutes which domains are running, so it can take some time until
ls displays the full domain list.

Example:

As the topo cell is a well-known cell you can cd to it directly by cd topo.

Use the command ls to see which domains are running.

(local) admin > cd topo
(topo) admin > ls
adminDoorDomain
gsidcapDomain
dcapDomain
utilityDomain
gPlazmaDomain
webdavDomain
gridftpDomain
srmDomain
dCacheDomain
httpdDomain
namespaceDomain
poolDomain
(topo) admin > ..
(local) admin >

The escape sequence .. takes you back to the local prompt.

The command logoff exits the admin shell.

If you want to find out which cells are running on a certain domain, you can issue the command ps in the
System cell of the domain.

Example:

For example, if you want to list the cells running on the poolDomain, cd to its System cell and issue
the ps command.

(local) admin > cd System@poolDomain
(System@poolDomain) admin > ps
  Cell List
------------------
c-dCacheDomain-101-102
System
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pool_2
c-dCacheDomain-101
pool_1
RoutingMgr
lm

The cells in the domain can be accessed using cd together with the cell-name scoped by the domain-name.
So first, one has to get back to the local prompt, as the cd command will not work otherwise.

Note

Note that cd only works from the local prompt. If the cell you are trying to access does not exist,
the cd command will complain.

Example:

(local) admin > cd nonsense
java.lang.IllegalArgumentException: Cannot cd to this cell as it doesn't exist

Type .. to return to the (local) admin > prompt.

Login to the routing manager of the dCacheDomain to get a list of all well-known cells you can directly
cd to without having to add the domain.

Example:

(System@poolDomain) admin > ..
(local) admin > cd RoutingMgr@dCacheDomain
(RoutingMgr@dCacheDoorDomain) admin > ls
Our routing knowledge :
 Local : [PoolManager, topo, broadcast, LoginBroker, info]
 adminDoorDomain : [pam]
 gsidcapDomain : [DCap-gsi-example.dcache.org]
 dcapDomain : [DCap-example.dcache.org]
 utilityDomain : [gsi-pam, PinManager]
 gPlazmaDomain : [gPlazma]
 webdavDomain : [WebDAV-example.dcache.org]
 gridftpDomain : [GFTP-example.dcache.org]
 srmDomain : [RemoteTransferManager, CopyManager, SrmSpaceManager, SRM-example.dcache.org]
 httpdDomain : [billing, srm-LoginBroker, TransferObserver]
 poolDomain : [pool_2, pool_1]
 namespaceDomain : [PnfsManager, dirLookupPool, cleaner]

All cells know the commands info for general information about the cell and show pinboard for listing
the last lines of the pinboard of the cell. The output of these commands contains useful information for
solving problems.

It is a good idea to get aquainted with the normal output in the following cells: PoolManager, Pnfs-
Manager, and the pool cells (e.g., <poolHostname>_1).

The most useful command of the pool cells is rep ls. To execute this command cd into the pool. It lists the
files which are stored in the pool by their pnfs IDs:

Example:

(RoutingMgr@dCacheDoorDomain) admin > ..
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(pool_1) admin > rep ls
000100000000000000001120 <-P---------(0)[0]> 485212 si={myStore:STRING}
000100000000000000001230 <C----------(0)[0]> 1222287360 si={myStore:STRING}

Each file in a pool has one of the 4 primary states: “cached” (<C---), “precious” (<-P--), “from
client” (<--C-), and “from store” (<---S).

See the section called “How to Store-/Restore files via the Admin Interface” for more information about
rep ls.

The most important commands in the PoolManager are: rc ls and cm ls -r.

rc ls lists the requests currently handled by the PoolManager. A typical line of output for a read request
with an error condition is (all in one line):

Example:

(pool_1) admin > ..
(local) admin > cd PoolManager
(PoolManager) admin > rc ls
000100000000000000001230@0.0.0.0/0.0.0.0 m=1 r=1 [<unknown>]
[Waiting 08.28 19:14:16]
{149,No pool candidates available or configured for 'staging'}

As the error message at the end of the line indicates, no pool was found containing the file and no pool
could be used for staging the file from a tertiary storage system.

See the section called “Obtain information via the dCache Command Line Admin Interface” for more in-
formation about the command rc ls

Finally, cm ls with the option -r gives the information about the pools currently stored in the cost module
of the pool manager. A typical output is:

Example:

(PoolManager) admin > cm ls -r
pool_1={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
    (...continues...)   SP={t=2147483648;f=924711076;p=1222772572;r=0;lru=0;{g=20000000;b=0.5}}}
pool_1={Tag={{hostname=example.org}};size=0;SC=0.16221282938326134;CC=0.0;}
pool_2={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
    (...continues...)   SP={t=2147483648;f=2147483648;p=0;r=0;lru=0;{g=4294967296;b=250.0}}}
pool_2={Tag={{hostname=example.org}};size=0;SC=2.7939677238464355E-4;CC=0.0;}

While the first line for each pool gives the information stored in the cache of the cost module, the second
line gives the costs (SC: space cost, CC: performance cost) calculated for a (hypothetical) file of zero size.
For details on how these are calculated and their meaning, see the section called “Classic Partitions”.

Create a new user
To create a new user, <new-user> and set a new password for the user cd from the local prompt ((local)
admin >) to the acm, the access control manager, and run following command sequence:

(local) admin > cd acm
(acm) admin > create user <new-user>



Getting in Touch with dCache

23

(acm) admin > set passwd -user=<new-user> <newPasswd> <newPasswd>

For the new created users there will be an entry in the directory /etc/dcache/admin/users/meta.

Note

As the initial user admin has not been created with the above command you will not find him in
the directory /etc/dcache/admin/users/meta.

Give the new user access to a particular cell:

(acm) admin > create acl cell.<cellName>.execute
(acm) admin > add access -allowed cell.<cellName>.execute <new-user>

Example:

Give the new user access to the PnfsManager.

(acm) admin > create acl cell.PnfsManager.execute
(acm) admin > add access -allowed cell.PnfsManager.execute <new-user>

Now you can check the permissions by:

(acm) admin > check cell.PnfsManager.execute <new-user>
Allowed
(acm) admin > show acl cell.PnfsManager.execute
<noinheritance>
<new-user> -> true

The following commands allow access to every cell for a user <new-user>:

(acm) admin > create acl cell.*.execute
(acm) admin > add access -allowed cell.*.execute <new-user>

The following command makes a user as powerful as admin (dCache’s equivalent to the root user):

(acm) admin > create acl *.*.*
(acm) admin > add access -allowed *.*.* <new-user>

Use of the ssh Admin Interface by scripts
The ssh admin interface can be used non-interactively by scripts. For this the dCache-internal ssh server
uses public/private key pairs.

The file /etc/dcache/authorized_keys contains one line per user. The file has the same
format as ~/.ssh/authorized_keys which is used by sshd. The keys in /etc/dcache/
authorized_keys have to be of type RSA1 as dCache only supports SSH protocol 1. Such a key is
generated with

[user] $ ssh-keygen -t rsa1 -C 'SSH1 key of <user>'
Generating public/private rsa1 key pair.
Enter file in which to save the key (/home/<user>/.ssh/identity):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/<user>/.ssh/identity.
Your public key has been saved in /home/<user>/.ssh/identity.pub.
The key fingerprint is:
c1:95:03:6a:66:21:3c:f3:ee:1b:8d:cb:46:f4:29:6a SSH1 key of <user>
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The passphrase is used to encrypt the private key (now stored in /home/<user>/.ssh/identity). If
you do not want to enter the passphrase every time the private key is used, you can use ssh-add to add it to
a running ssh-agent. If no agent is running start it with

[user] $ if [ -S $SSH_AUTH_SOCK ] ; then echo "Already running" ; else eval `ssh-agent` ; fi

and add the key to it with

[user] $ ssh-add
Enter passphrase for SSH1 key of <user>:
Identity added: /home/<user>/.ssh/identity (SSH1 key of <user>)

Now, insert the public key ~/.ssh/identity.pub as a separate line into /etc/dcache/
authorized_keys. The comment field in this line “SSH1 key of <user>” has to be changed to the
dCache user name. An example file is:

1024 35 141939124(... many more numbers ...)15331 admin

Using ssh-add -L >> /etc/dcache/authorized_keys will not work, because the line added is not
correct. The key manager within dCache will read this file every minute.

Now, the ssh program should not ask for a password anymore. This is still quite secure, since the unen-
crypted private key is only held in the memory of the ssh-agent. It can be removed from it with

[user] $ ssh-add -d
Identity removed: /home/<user>/.ssh/identity (RSA1 key of <user>)

In scripts, one can use a “Here Document” to list the commands, or supply them to ssh as standard-input
(stdin). The following demonstrates using a Here Document:

#!/bin/sh
#
#  Script to automate dCache administrative activity

outfile=/tmp/$(basename $0).$$.out

ssh -c blowfish -p 22223 admin@<adminNode> > $outfile << EOF
cd PoolManager
cm ls -r
(more commands here)
logoff
EOF

or, the equivalent as stdin.

#!/bin/bash
#
#   Script to automate dCache administrative activity.

echo -e 'cd <pool_1>\nrep ls\n(more commands here)\nlogoff' \
  | ssh -c blowfish -p 22223 admin@<adminNode> \
  | tr -d '\r' > rep_ls.out

Authentication and Authorization in
dCache
In dCache digital certificates are used for authentication and authorisation. To be able to verify the chain
of trust when using the non-commercial grid-certificates you should install the list of certificates of grid
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Certification Authorities (CAs). In case you are using commercial certificates you will find the list of CAs
in your browser.

[root] # wget http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/lcg-CA.repo
--2011-02-10 10:26:10--  http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/lcg-
CA.repo
Resolving grid-deployment.web.cern.ch... 137.138.142.33, 137.138.139.19
Connecting to grid-deployment.web.cern.ch|137.138.142.33|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 449 [text/plain]
Saving to: `lcg-CA.repo'

100%[====================================================================>] 449         --.-K/s   in
 0s

2011-02-10 10:26:10 (61.2 MB/s) - `lcg-CA.repo' saved [449/449]
[root] # mv lcg-CA.repo /etc/yum.repos.d/
[root] # yum install lcg-CA
Loaded plugins: allowdowngrade, changelog, kernel-module
CA                                                                                     |  951 B    
 00:00
CA/primary                                                                             |  15 kB    
 00:00
CA
...

You will need a server certificate for the host on which your dCache is running and a user certificate. The
host certificate needs to be copied to the directory /etc/grid-security/ on your server and converted
to hostcert.pem and hostkey.pem as described in Using X.509 Certificates. Your user certificate
is usually located in .globus. If it is not there you should copy it from your browser to .globus and
convert the *.p12 file to usercert.pem and userkey.pem.

Example:

If you have the clients installed on the machine on which your dCache is running you will need to add
a user to that machine in order to be able to execute the voms-proxy-init command and execute voms-
proxy-init as this user.

[root] # useradd johndoe

Change the password of the new user in order to be able to copy files to this account.

[root] # passwd johndoe
Changing password for user johndoe.
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.
[root] # su johndoe
[user] $ cd
[user] $ mkdir .globus

Copy your key files from your local machine to the new user on the machine where the dCache is
running.

[user] $ scp .globus/user*.pem johndoe@<dcache.example.org>:.globus

Install glite-security-voms-clients (contained in the gLite-UI).

[root] # yum install glite-security-voms-clients

Generate a proxy certificate using the command voms-proxy-init.
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Example:

[user] $ voms-proxy-init
Enter GRID pass phrase:
Your identity: /C=DE/O=GermanGrid/OU=DESY/CN=John Doe

Creating proxy .............................................. Done
Your proxy is valid until Mon Mar  7 22:06:15 2011

With voms-proxy-init -voms <yourVO> you can add VOMS attributes to the proxy. A user’s roles (Fully
Qualified Attribute Names) are read from the certificate chain found within the proxy. These attributes are
signed by the user’s VOMS server when the proxy is created. For the voms-proxy-init -voms  command
you need to have the file /etc/vomses which contains entries about the VOMS servers like

Example:

"desy" "grid-voms.desy.de" "15104" "/C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de" "desy"
 "24"
"atlas" "voms.cern.ch" "15001" "/DC=ch/DC=cern/OU=computers/CN=voms.cern.ch" "atlas" "24"
"dteam" "lcg-voms.cern.ch" "15004" "/DC=ch/DC=cern/OU=computers/CN=lcg-voms.cern.ch" "dteam" "24"
"dteam" "voms.cern.ch" "15004" "/DC=ch/DC=cern/OU=computers/CN=voms.cern.ch" "dteam" "24"
      

Now you can generate your voms proxy containing your VO.

Example:

[user] $ voms-proxy-init -voms desy
Enter GRID pass phrase:
Your identity: /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
Creating temporary proxy ................................... Done
Contacting  grid-voms.desy.de:15104 [/C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de] "desy"
 Done
Creating proxy .................... Done
Your proxy is valid until Thu Mar 31 21:49:06 2011

Authentication and authorization in dCache is done by the gplazma service. Define this service in the
layout file.

[gPlazmaDomain]
[gPlazmaDomain/gplazma]

In this tutorial we will use the gplazmalite-vorole-mapping plugin. To this end you need to edit the /etc/
grid-security/grid-vorolemap and the /etc/grid-security/storage-authzdb as
well as the /etc/dcache/dcachesrm-gplazma.policy.

Example:

The /etc/grid-security/grid-vorolemap:

"/C=DE/O=GermanGrid/OU=DESY/CN=John Doe" "/desy" doegroup

The /etc/grid-security/storage-authzdb:

version 2.1

authorize  doegroup read-write 12345 1234 / / /
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The /etc/dcache/dcachesrm-gplazma.policy:

# Switches
xacml-vo-mapping="OFF"
saml-vo-mapping="OFF"
kpwd="OFF"
grid-mapfile="OFF"
gplazmalite-vorole-mapping="ON"

# Priorities
xacml-vo-mapping-priority="5"
saml-vo-mapping-priority="2"
kpwd-priority="3"
grid-mapfile-priority="4"
gplazmalite-vorole-mapping-priority="1"
      

How to work with secured dCache
If you want to copy files into dCache with GSIdCap, SRM or WebDAV with certificates you need to follow
the instructions in the section above.

GSIdCap

To use GSIdCap you must run a GSIdCap door. This is achieved by including the gsidcap service in
your layout file on the machine you wish to host the door.

[gsidcapDomain]
[gsidcapDomain/dcap]
dcap.authn.protocol=gsi

In addition, you need to have libdcap-tunnel-gsi installed on your worker node, which is contained in the
gLite-UI.

Note

As ScientificLinux 5 32bit is not supported by gLite there is no libdcap-tunnel-gsi for SL5 32bit.

[root] # yum install libdcap-tunnel-gsi

It is also available on the dCap downloads page [http://www.dcache.org/downloads/dcap/].

Example:

[root] # rpm -i http://www.dcache.org/repository/yum/sl5/x86_64/RPMS.stable//libdcap-tunnel-
gsi-2.47.5-0.x86_64.rpm

The machine running the GSIdCap door needs to have a host certificate and you need to have a valid user
certificate. In addition, you should have created a voms proxy as mentioned above.

Now you can copy a file into your dCache using GSIdCap

[user] $ dccp /bin/sh gsidcap://<dcache.example.org>:22128/data/world-writable/my-test-file3
801512 bytes in 0 seconds

and copy it back

http://www.dcache.org/downloads/dcap/
http://www.dcache.org/downloads/dcap/
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[user] $ dccp gsidcap://<dcache.example.org>:22128/data/world-writable/my-test-file3 /tmp/
mytestfile3.tmp
801512 bytes in 0 seconds

SRM

To use the SRM you need to define the srm service in your layout file.

[srmDomain]
[srmDomain/srm]

In addition, the user needs to install an SRM client for example the dcache-srmclient, which is con-
tained in the gLite-UI, on the worker node and set the PATH environment variable.

[root] # yum install dcache-srmclient

You can now copy a file into your dCache using the SRM,

[user] $ srmcp -2 file:////bin/sh srm://<dcache.example.org>:8443/data/world-writable/my-test-file4

copy it back

[user] $ srmcp -2 srm://<dcache.example.org>:8443/data/world-writable/my-test-file4 file:////tmp/
mytestfile4.tmp

and delete it

[user] $ srmrm -2 srm://<dcache.example.org>:8443/data/world-writable/my-test-file4

If the grid functionality is not required the file can be deleted with the NFS mount of the Chimera namespace:

[user] $ rm /data/world-writable/my-test-file4

WebDAV with certificates
To use WebDAV with certificates you change the entry in /etc/dcache/layouts/mylayout.conf
from

[webdavDomain]
[webdavDomain/webdav]
webdav.authz.anonymous-operations=FULL
webdav.root=/data/world-writable

to

[webdavDomain]
[webdavDomain/webdav]
webdav.authz.anonymous-operations=NONE
webdav.root=/data/world-writable
webdav.authn.protocol=https

Then you will need to import the host certificate into the dCache keystore using the command

[root] # dcache import hostcert

and initialise your truststore by

[root] # dcache import cacerts

Now you need to restart the WebDAV domain
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[root] # dcache restart webdavDomain

and access your files via https://<dcache.example.org>:2880 with your browser.

Important

If the host certificate contains an extended key usage extension, it must include the extended usage
for server authentication. Therefore you have to make sure that your host certificate is either unre-
stricted or it is explicitly allowed as a certificate for TLS Web Server Authentication.

Allowing authenticated and non-authenticated access with
WebDAV

You can also choose to have secure and insecure access to your files at the same time. You might for example
allow access without authentication for reading and access with authentication for reading and writing.

[webdavDomain]
[webdavDomain/webdav]
webdav.root=/data/world-writable
webdav.authz.anonymous-operations=READONLY
port=2880
webdav.authn.protocol=https

You can access your files via https://<dcache.example.org>:2880 with your browser.

Files
In this section we will have a look at the configuration and log files of dCache.

The dCache software is installed in various directories according to the Filesystem Hierarchy Standard. All
configuration files can be found in /etc/dcache.

Log files of domains are by default stored in /var/log/dcache/<domainName>.log.

More details about domains and cells can be found in Chapter 5, The Cell Package.

The most central component of a dCache instance is the PoolManager cell. It reads additional configura-
tion information from the file /var/lib/dcache/config/poolmanager.conf at start-up. How-
ever, it is not necessary to restart the domain when changing the file. We will see an example of this below.
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Chapter 4. Chimera
dCache is a distributed storage system, nevertheless it provides a single-rooted file system view. While
dCache supports multiple namespace providers, Chimera is the recommended provider and is used by de-
fault.

The inner dCache components talk to the namespace via a module called PnfsManager, which in turn
communicates with the Chimera database using a thin Java layer, which in turn communicates directly with
the Chimera database. Chimera allows direct access to the namespace by providing an NFSv3 and NFSv4.1
server. Clients can NFS-mount the namespace locally. This offers the opportunity to use OS-level tools like
ls, mkdir, mv for Chimera. Direct I/O-operations like cp and cat are possible with the NFSv4.1 door.

The properties of Chimera are defined in /usr/share/dcache/de-
faults/chimera.properties. For customisation the files /etc/dcache/lay-
outs/mylayout.conf or /etc/dcache/dcache.conf should be modified (see the section called
“Defining domains and services”).

Example:

This example shows an extract of the /etc/dcache/layouts/mylayout.conf file in order to
run dCache with NFSv3.

[namespaceDomain]
[namespaceDomain/pnfsmanager]
[namespaceDomain/nfs]
nfs.version=3

Example:

If you want to run the NFSv4.1 server you need to add the corresponding nfs service to a domain in
the /etc/dcache/layouts/mylayout.conf file and start this domain.

[namespaceDomain]
[namespaceDomain/pnfsmanager]
[namespaceDomain/nfs]
nfs.version = 4.1

If you wish dCache to access your Chimera with a PostgreSQL user other than chimera then you must specify
the username and password in /etc/dcache/dcache.conf.

chimera.db.user=myuser
chimera.db.password=secret

Important

Do not update configuration values in /usr/share/dcache/de-
faults/chimera.properties, since changes to this file will be overwritten by updates.

Mounting Chimera through NFS
dCache does not need the Chimera filesystem to be mounted but a mounted file system is convenient for
administrative access. This offers the opportunity to use OS-level tools like ls and mkdir for Chimera.
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However, direct I/O-operations like cp are not possible, since the NFSv3 interface provides the namespace
part only. This section describes how to start the Chimera NFSv3 server and mount the name space.

If you want to mount Chimera for easier administrative access, you need to edit the /etc/exports file
as the Chimera NFS server uses it to manage exports. If this file doesn’t exist it must be created. The typical
exports file looks like this:

/ localhost(rw)
/data
# or
# /data *.my.domain(rw)

As any RPC service Chimera NFS requires rpcbind service to run on the host. Nevertheless rpcbind
has to be configured to accept requests from Chimera NFS.

On RHEL6 based systems you need to add

RPCBIND_ARGS="-i"

into /etc/sysconfig/rpcbind and restart rpcbind. Check your OS manual for details.

[root] # service rpcbind restart
Stopping rpcbind:                                          [  OK  ]
Starting rpcbind:                                          [  OK  ]

If your OS does not provide rpcbind Chimera NFS can use an embedded rpcbind. This requires to
disable the portmap service if it exists.

[root] # /etc/init.d/portmap stop
Stopping portmap: portmap

and restart the domain in which the NFS server is running.

Example:

[root] # dcache restart namespaceDomain

Now you can mount Chimera by

[root] # mount localhost:/ /mnt

and create the root of the Chimera namespace which you can call data:

[root] # mkdir -p /mnt/data

If you don’t want to mount chimera you can create the root of the Chimera namespace by

[root] # /usr/bin/chimera mkdir /data

You can now add directory tags. For more information on tags see the section called “Directory Tags”.

[root] # /usr/bin/chimera writetag /data sGroup "chimera"
[root] # /usr/bin/chimera writetag /data OSMTemplate "StoreName sql"

Using dCap with a mounted file system
If you plan to use dCap with a mounted file system instead of the URL-syntax (e.g. dccp /data/file1
/tmp/file1), you need to mount the root of Chimera locally (remote mounts are not allowed yet). This
will allow us to establish wormhole files so dCap clients can discover the dCap doors.
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[root] # mount localhost:/ /mnt
[root] # mkdir /mnt/admin/etc/config/dCache
[root] # touch /mnt/admin/etc/config/dCache/dcache.conf
[root] # touch /mnt/admin/etc/config/dCache/'.(fset)(dcache.conf)(io)(on)'
[root] # echo "<door host>:<port>" > /mnt/admin/etc/config/dCache/dcache.conf

The default values for ports can be found in Chapter 29, dCache Default Port Values (for dCap the default
port is 22125) and in the file /usr/share/dcache/defaults/dcache.properties. They can
be altered in /etc/dcache/dcache.conf

Create the directory in which the users are going to store their data and change to this directory.

[root] # mkdir -p /mnt/data
[root] # cd /mnt/data

Now you can copy a file into your dCache

[root] # dccp /bin/sh test-file
735004 bytes (718 kiB) in 0 seconds

and copy the data back using the dccp command.

[root] # dccp test-file /tmp/testfile
735004 bytes (718 kiB) in 0 seconds

The file has been transferred succesfully.

Now remove the file from the dCache.

[root] # rm  test-file

When the configuration is complete you can unmount Chimera:

[root] # umount /mnt

Note

Please note that whenever you need to change the configuration, you have to remount the root
localhost:/ to a temporary location like /mnt.

Communicating with Chimera
Many configuration parameters of Chimera and the application specific meta data is accessed by reading,
writing, or creating files of the form .(<command>)(<para>). For example, the following prints the
ChimeraID of the file /data/some/dir/file.dat:

[user] $ cat /data/any/sub/directory/'.(id)(file.dat)'
0004000000000000002320B8 [user] $ 

From the point of view of the NFS protocol, the file .(id)(file.dat) in the directory /data/some/
dir/ is read. However, Chimera interprets it as the command id with the parameter file.dat executed
in the directory /data/some/dir/. The quotes are important, because the shell would otherwise try to
interpret the parentheses.

Some of these command files have a second parameter in a third pair of parentheses. Note, that files of the
form .(<command>)(<para>) are not really files. They are not shown when listing directories with ls.
However, the command files are listed when they appear in the argument list of ls as in
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[user] $ ls -l '.(tag)(sGroup)'
-rw-r--r-- 11 root root 7 Aug 6 2010 .(tag)(sGroup)

Only a subset of file operations are allowed on these special command files. Any other operation will result
in an appropriate error. Beware, that files with names of this form might accidentally be created by typos.
They will then be shown when listing the directory.

IDs
Each file in Chimera has a unique 18 byte long ID. It is referred to as ChimeraID or as pnfsID. This is
comparable to the inode number in other filesystems. The ID used for a file will never be reused, even if the
file is deleted. dCache uses the ID for all internal references to a file.

Example:

The ID of the file example.org/data/examplefile can be obtained by reading the com-
mand-file .(id)(examplefile) in the directory of the file.

[user] $ cat /example.org/data/'.(id)(examplefile)'
0000917F4A82369F4BA98E38DBC5687A031D

A file in Chimera can be referred to by the ID for most operations.

Example:

The name of a file can be obtained from the ID with the command nameof as follows:

[user] $ cd /example.org/data/
[user] $ cat '.(nameof)(0000917F4A82369F4BA98E38DBC5687A031D)'
examplefile

And the ID of the directory it resides in is obtained by:

[user] $ cat '.(parent)(0000917F4A82369F4BA98E38DBC5687A031D)'
0000595ABA40B31A469C87754CD79E0C08F2

This way, the complete path of a file may be obtained starting from the ID.

Directory Tags
In the Chimera namespace, each directory can have a number of tags. These directory tags may be used
within dCache to control the file placement policy in the pools (see the section called “The Pool Selection
Mechanism”). They might also be used by a tertiary storage system for similar purposes (e.g. controlling
the set of tapes used for the files in the directory).

Note

Directory tags are not needed to control the behaviour of dCache. dCache works well without di-
rectory tags.
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Create, List and Read Directory Tags if the Name-
space is not Mounted
You can create tags with

[user] $ /usr/bin/chimera writetag <directory> <tagName> "<content>"

list tags with

[user] $ /usr/bin/chimera lstag <directory> 

and read tags with

[user] $ /usr/bin/chimera readtag <directory> <tagName>

Example:

Create tags for the directory data with

[user] $ /usr/bin/chimera writetag /data sGroup "myGroup"
[user] $ /usr/bin/chimera writetag /data OSMTemplate "StoreName myStore"

list the existing tags with

[user] $ /usr/bin/chimera lstag /data
Total: 2
OSMTemplate
sGroup

and their content with

[user] $ /usr/bin/chimera readtag /data OSMTemplate
StoreName myStore
[user] $ /usr/bin/chimera readtag /data sGroup
myGroup

Create, List and Read Directory Tags if the Name-
space is Mounted
If the namespace is mounted, change to the directory for which the tag should be set and create a tag with

[user] $ cd <directory>
[user] $ echo '<content1>' > '.(tag)(<tagName1>)'
[user] $ echo '<content2>' > '.(tag)(<tagName2>)'

Then the existing tags may be listed with

[user] $ cat '.(tags)()'
.(tag)(<tagname1>)
.(tag)(<tagname2>)

and the content of a tag can be read with

[user] $ cat '.(tag)(<tagname1>)'
<content1>
[user] $ cat '.(tag)(<tagName2>)'
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<content2>

Example:

Create tags for the directory data with

[user] $ cd data
[user] $ echo 'StoreName myStore' > '.(tag)(OSMTemplate)'
[user] $ echo 'myGroup' > '.(tag)(sGroup)'

list the existing tags with

[user] $ cat '.(tags)()'
.(tag)(OSMTemplate)
.(tag)(sGroup)

and their content with

[user] $ cat '.(tag)(OSMTemplate)'
StoreName myStore
[user] $ cat '.(tag)(sGroup)'
 myGroup

A nice trick to list all tags with their contents is

[user] $ grep "" $(cat  ".(tags)()")
.(tag)(OSMTemplate):StoreName myStore
.(tag)(sGroup):myGroup

Directory Tags and Command Files
When creating or changing directory tags by writing to the command file as in

[user] $ echo '<content>' > '.(tag)(<tagName>)'

one has to take care not to treat the command files in the same way as regular files, because tags are different
from files in the following aspects:

1. The <tagName> is limited to 62 characters and the <content> to 512 bytes. Writing more to the
command file, will be silently ignored.

2. If a tag which does not exist in a directory is created by writing to it, it is called a primary tag.

3. Tags are inherited from the parent directory by a newly created directory. Changing a primary tag in one
directory will change the tags inherited from it in the same way. Creating a new primary tag in a directory
will not create an inherited tag in its subdirectories.

Moving a directory within the Chimera namespace will not change the inheritance. Therefore, a directory
does not necessarily inherit tags from its parent directory. Removing an inherited tag does not have any
effect.

4. Empty tags are ignored.

Directory Tags for dCache
The following directory tags appear in the dCache context:
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OSMTemplate
Must contain a line of the form “StoreName <storeName>” and specifies the name of the store that
is used by dCache to construct the storage class if the HSM Type is osm.

HSMType
The HSMType tag is normally determined from the other existing tags. E.g., if the tag OSMTemplate
exists, HSMType=osm is assumed. With this tag it can be set explicitly. A class implementing that HSM
type has to exist. Currently the only implementations are osm and enstore.

sGroup
The storage group is also used to construct the storage class if the HSMType is osm.

cacheClass
The cache class is only used to control on which pools the files in a directory may be stored, while the
storage class (constructed from the two above tags) might also be used by the HSM. The cache class is
only needed if the above two tags are already fixed by HSM usage and more flexibility is needed.

hsmInstance
If not set, the hsmInstance tag will be the same as the HSMType tag. Setting this tag will only change
the name as used in the storage class and in the pool commands.

WriteToken
Assign a WriteToken tag to a directory in order to be able to write to a space token without using
the SRM.

Storage Class and Directory Tags
The storage class is a string of the form <StoreName>:<StorageGroup>@<hsm-type>, where
<StoreName> is given by the OSMTemplate tag, <StorageGroup> by the sGroup tag and <hsm-
type> by the HSMType tag. As mentioned above the HSMType tag is assumed to be osm if the tag
OSMTemplate exists.

In the examples above two tags have been created.

Example:

[user] $ /usr/bin/chimera lstag /data
Total: 2
OSMTemplate
sGroup

As the tag OSMTemplate was created the tag HSMType is assumed to be osm.

The storage class of the files which are copied into the directory /data after the tags have been set
will be myStore:myGroup@osm.

If directory tags are used to control the behaviour of dCache and/or a tertiary storage system, it is a good
idea to plan the directory structure in advance, thereby considering the necessary tags and how they should
be set up. Moving directories should be done with great care or even not at all. Inherited tags can only be
created by creating a new directory.

Example:



Chimera

39

Assume that data of two experiments, experiment-a and experiment-b is written into a name-
space tree with subdirectories /data/experiment-a and /data/experiment-b. As some
pools of the dCache are financed by experiment-a and others by experiment-b they probably
do not like it if they are also used by the other group. To avoid this the directories of experiment-a
and experiment-b can be tagged.

[user] $ /usr/bin/chimera writetag /data/experiment-a OSMTemplate "StoreName exp-a"
[user] $ /usr/bin/chimera writetag /data/experiment-b OSMTemplate "StoreName exp-b"

Data from experiment-a taken in 2010 shall be written into the directory /data/experi-
ment-a/2010 and data from experiment-a taken in 2011 shall be written into /data/exper-
iment-a/2011. Data from experiment-b shall be written into /data/experiment-b. Tag
the directories correspondingly.

[user] $ /usr/bin/chimera writetag /data/experiment-a/2010 sGroup "run2010"
[user] $ /usr/bin/chimera writetag /data/experiment-a/2011 sGroup "run2011"
[user] $ /usr/bin/chimera writetag /data/experiment-b sGroup "alldata"

List the content of the tags by

[user] $ /usr/bin/chimera readtag /data/experiment-a/2010 OSMTemplate
StoreName exp-a
[user] $ /usr/bin/chimera readtag /data/experiment-a/2010 sGroup
run2010
[user] $ /usr/bin/chimera readtag /data/experiment-a/2011 OSMTemplate
StoreName exp-a
[user] $ /usr/bin/chimera readtag /data/experiment-a/2011 sGroup
run2011
[user] $ /usr/bin/chimera readtag /data/experiment-b/2011 OSMTemplate
StoreName exp-b
[user] $ /usr/bin/chimera readtag /data/experiment-b/2011 sGroup
alldata

As the tag OSMTemplate was created the HSMType is assumed to be osm.

The storage classes of the files which are copied into these directories after the tags have been set will be

• exp-a:run2010@osm for the files in /data/experiment-a/2010

• exp-a:run2011@osm for the files in /data/experiment-a/2011

• exp-b:alldata@osm for the files in /data/experiment-b

To see how storage classes are used for pool selection have a look at the example ’Reserving Pools for
Storage and Cache Classes’ in the PoolManager chapter.

There are more tags used by dCache if the HSMType is enstore.
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Chapter 5. The Cell Package
All of dCache makes use of the cell package. It is a framework for a distributed and scalable server system
in Java. The dCache system is divided into cells which communicate with each other via messages. Several
cells run simultaneously in one domain.

Each domain runs in a separate Java virtual machine and each cell is run as a separate thread therein. Do-
main names have to be unique. The domains communicate with each other via TCP using connections that
are established at start-up. The topology is controlled by the location manager service. In the standard con-
figuration, all domains connect with the dCacheDomain, which routes all messages to the appropriate
domains. This forms a star topology.

Only for message communication

The TCP communication controlled by the location manager service is for the short control messages
sent between cells. Any transfer of the data stored within dCache does not use these connections;
instead, dedicated TCP connections are established as needed.

A single node provides the location-manager service. For a single-host dCache instance, this is localhost;
for multi-host dCache instances, the hostname of the node providing this service must be configured using
the serviceLocatorHost property.

The domain that hosts the location manager service is also configurable. By default, the ser-
vice runs within the dCacheDomain domain; however, this may be changed by setting the
dcache.broker.domain property. The port that the location manager listens on is also configurable,
using the dcache.broker.port property; however, most sites may leave this property unaltered and
use the default value.

Within this framework, cells send messages to other cells addressing them in the form
<cellName>@<domainName>. This way, cells can communicate without knowledge about the host they
run on. Some cells are well known, i.e. they can be addressed just by their name without @<domainName>.
Evidently, this can only work properly if the name of the cell is unique throughout the whole system. If two
well known cells with the same name are present, the system will behave in an undefined way. Therefore
it is wise to take care when starting, naming, or renaming the well known cells. In particular this is true for
pools, which are well known cells.

A domain is started with a shell script bin/dcache start <domainName>. The routing manager and
location manager cells are started in each domain and are part of the underlying cell package structure. Each
domain will contain at least one cell in addition to them.
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Chapter 6. The replica Service
(Replica Manager)
The replica service (which is also referred to as Replica Manager) controls the number of replicas of a
file on the pools. If no tertiary storage system is connected to a dCache instance (i.e., it is configured as a
large file store), there might be only one copy of each file on disk. (At least the precious replica.) If a higher
security and/or availability is required, the resilience feature of dCache can be used: If running in the default
configuration, the replica service will make sure that the number of replicas of a file will be at least 2
and not more than 3. If only one replica is present it will be copied to another pool by a pool to pool transfer.
If four or more replicas exist, some of them will be deleted.

The Basic Setup
The standard configuration assumes that the database server is installed on the same machine as the repli-
ca service — usually the admin node of the dCache instance. If this is not the case you need to set the
property replica.db.host.

To create and configure the database replicas used by the replica service in the database server do:

[root] # createdb -U srmdcache replicas
[root] # psql -U srmdcache -d replicas -f /usr/share/dcache/replica/psql_install_replicas.sql

To activate the replica service you need to

1. Enable the replica service in a layout file.

[<someDomain>]
...

[<someDomain>/replica]

2. Configure the service in the /etc/dcache/dcache.conf file on the node with the dCacheDo-
main and on the node on which the pnfsmanager is running.

dcache.enable.replica=true

Note

It will not work properly if you defined the replica service in one of the layout files and
set this property to no on the node with the dCacheDomain or on the node on which the
pnfsmanager is running.

3. Define a pool group for the resilient pools if necessary.

4. Start the replica service.

In the default configuration, all pools of the dCache instance which have been created with the command
dcache pool create will be managed. These pools are in the pool group named default which does exist
by default. The replica service will keep the number of replicas between 2 and 3 (including). At each
restart of the replica service the pool configuration in the database will be recreated.
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Example:

This is a simple example to get started with. All your pools are assumed to be in the pool group de-
fault.

1. In your layout file in the directory /etc/dcache/layouts define the replica service.

[dCacheDomain]
...

[replicaDomain]
[replicaDomain/replica]

2. In the file /etc/dcache/dcache.conf set the value for the property replicaManager to
true and the replica.poolgroup to default.

dcache.enable.replica=true
replica.poolgroup=default

3. The pool group default exists by default and does not need to be defined.

4. To start the replica service restart dCache.

[root] # dcache restart

Define a poolgroup for resilient pools

For more complex installations of dCache you might want to define a pool group for the resilient pools.

Define the resilient pool group in the /var/lib/dcache/config/poolmanager.conf file on the
host running the poolmanager service. Only pools defined in the resilient pool group will be managed
by the replica service.

Example:

Login to the admin interface and cd to the PoolManager. Define a poolgroup for resilient pools and
add pools to that poolgroup.

(local) admin > cd PoolManager
(PoolManager) admin > psu create pgroup ResilientPools
(PoolManager) admin > psu create pool  pool3
(PoolManager) admin > psu create pool  pool4
(PoolManager) admin > psu addto pgroup ResilientPools pool3
(PoolManager) admin > psu addto pgroup ResilientPools pool4
(PoolManager) admin > save

By default the pool group named ResilientPools is used for replication.

To use another pool group defined in /var/lib/dcache/config/poolmanager.conf for repli-
cation, please specify the group name in the etc/dcache.conf file.

replica.poolgroup=<NameOfResilientPoolGroup>.
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Operation
When a file is transfered into dCache its replica is copied into one of the pools. Since this is the only replica
and normally the required range is higher (e.g., by default at least 2 and at most 3), this file will be replicated
to other pools.

When some pools go down, the replica count for the files in these pools may fall below the valid range and
these files will be replicated. Replicas of the file with replica count below the valid range and which need
replication are called deficient replicas.

Later on some of the failed pools can come up and bring online more valid replicas. If there are too many
replicas for some file these extra replicas are called redundant replicas and they will be “reduced”. Extra
replicas will be deleted from pools.

The replica service counts the number of replicas for each file in the pools which can be
used online (see Pool States below) and keeps the number of replicas within the valid range
(replica.limits.replicas.min, replica.limits.replicas.max).

Pool States
The possible states of a pool are online, down, offline, offline-prepare and drainoff. They
can be set by the admin through the admin interface. (See the section called “Commands for the admin
interface”.)

Figure 6.1. Pool State Diagram

online
Normal operation.

Replicas in this state are readable and can be counted. Files can be written (copied) to this pool.

down
A pool can be down because
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• the admin stopped the domain in which the pool was running.

• the admin set the state value via the admin interface.

• the pool crashed

To confirm that it is safe to turn pool down there is the command ls unique in the admin interface to
check number of files which can be locked in this pool. (See the section called “Commands for the
admin interface”.)

Replicas in pools which are down are not counted, so when a pool crashes the number of online
replicas for some files is reduced. The crash of a pool (pool departure) may trigger replication of multiple
files.

On startup, the pool comes briefly to the online state, and then it goes down to do pool “Inventory”
to cleanup files which broke when the pool crashed during transfer. When the pool comes online again,
the replica service will update the list of replicas in the pool and store it in the database.

Pool recovery (arrival) may trigger massive deletion of file replicas, not necessarily in this pool.

offline
The admin can set the pool state to be offline. This state was introduced to avoid unnecessary massive
replication if the operator wants to bring the pool down briefly without triggering massive replication.

Replicas in this pool are counted, therefore it does not matter for replication purpose if an offline
pool goes down or up.

When a pool comes online from an offline state replicas in the pool will be inventoried to make
sure we know the real list of replicas in the pool.

offline-prepare
This is a transient state betweeen online and offline.

The admin will set the pool state to be offline-prepare if he wants to change the pool state and
does not want to trigger massive replication.

Unique files will be evacuated — at least one replica for each unique file will be copied out. It is unlikely
that a file will be locked out when a single pool goes down as normally a few replicas are online. But
when several pools go down or set drainoff or offline file lockout might happen.

Now the admin can set the pool state offline and then down and no file replication will be triggered.

drainoff
This is a transient state betweeen online and down.

The admin will set the pool state to be drainoff if he needs to set a pool or a set of pools permanently
out of operation and wants to make sure that there are no replicas “locked out”.

Unique files will be evacuated — at least one replica for each unique file will be copied out. It is unlikely
that a file will be locked out when a single pool goes down as normally a few replicas are online. But
when several pools go down or set drainoff or offline file lockout might happen.



The replica Ser-
vice (Replica Manager)

45

Now the admin can set the pool state down. Files from other pools might be replicated now, depending
on the values of replica.limits.replicas.min and replica.limits.replicas.max.

Startup
When the replica service starts it cleans up the database. Then it waits for some time to give a chance to
most of the pools in the system to connect. Otherwise unnecessary massive replication would start. Currently
this is implemented by some delay to start adjustments to give the pools a chance to connect.

Cold Start

Normally (during Cold Start) all information in the database is cleaned up and recreated again by polling
pools which are online shortly after some minimum delay after the replica service starts. The repli-
ca service starts to track the pools’ state (pool up/down messages and polling list of online pools) and up-
dates the list of replicas in the pools which came online. This process lasts for about 10-15 minutes to make
sure all pools came up online and/or got connected. Pools which once get connected to the replica service
are in online or down state.

It can be annoying to wait for some large period of time until all known “good” pools get connected. There
is a “Hot Restart” option to accelerate the restart of the system after the crash of the head node.

Hot Restart

On Hot Restart the replica service retrieves information about the pools’ states before the crash from the
database and saves the pools’ states to some internal structure. When a pool gets connected the replica
service checks the old pool state and registers the old pool’s state in the database again if the state was
offline, offline-prepare or drainoff state. The replica service also checks if the pool was
online before the crash. When all pools which were online get connected once, the replica service
supposes it recovered its old configuration and the replica service starts adjustments. If some pools went
down during the connection process they were already accounted and adjustment would take care of it.

Example:

Suppose we have ten pools in the system, where eight pools were online and two were offline
before a crash. The replica service does not care about the two offline pools to get connected
to start adjustments. For the other eight pools which were online, suppose one pool gets connected
and then it goes down while the other pools try to connect. The replica service considers this pool
in known state, and when the other seven pools get connected it can start adjustments and does not wait
any more.

If the system was in equilibrium state before the crash, the replica service may find some deficient
replicas because of the crashed pool and start replication right away.

Avoid replicas on the same host
For security reasons you might want to spread your replicas such that they are not on the same
host, or in the same building or even in the same town. To configure this you need to set the
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tag.hostname label for your pools and check the properties replica.enable.check-pool-
host and replica.enable.same-host-replica.

Example:

We assume that some pools of your dCache are in Hamburg and some are in Berlin. In the layout files
where the respective pools are defined you can set

[poolDomain]
[poolDomain/pool1]
name=pool1
path=/srv/dcache/p1
pool.size=500G
pool.wait-for-files=${path}/data
tag.hostname=Hamburg

and

[poolDomain]
[poolDomain/pool2]
name=pool2
path=/srv/dcache/p2
pool.size=500G
pool.wait-for-files=${path}/data
tag.hostname=Berlin

By default the property replica.enable.check-pool-host is true and
replica.enable.same-host-replica is false. This means that the tag.hostname will be
checked and the replication to a pool with the same tag.hostname is not allowed.

Hybrid dCache
A hybrid dCache operates on a combination of pools (maybe connected to tape) which are not in a resilient
pool group and the set of resilient pools. The replica service takes care only of the subset of pools con-
figured in the pool group for resilient pools and ignores all other pools.

Note

If a file in a resilient pool is marked precious and the pool were connected to a tape system, then
it would be flushed to tape. Therefore, the pools in the resilient pool group are not allowed to be
connected to tape.

Commands for the admin interface
If you are an advanced user, have proper privileges and you know how to issue a command to the admin
interface you may connect to the ReplicaManager cell and issue the following commands. You may
find more commands in online help which are for debug only — do not use them as they can stop replica
service operating properly.

set pool <pool><state>
set pool state

show pool <pool>
show pool state
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ls unique <pool>
Reports number of unique replicas in this pool.

exclude <pnfsId>
exclude <pnfsId> from adjustments

release <pnfsId>
removes transaction/BAD status for <pnfsId>

debug true | false
enable/disable DEBUG messages in the log file

Properties of the replica service
replica.cell.name

Default: dcache.enable.replica

Cell name of the replica service

dcache.enable.replica
Default: false

Set this value to true if you want to use the replica service.

replica.poolgroup
Default: ResilientPools

If you want to use another pool group for the resilient pools set this value to the name of the resilient
pool group.

replica.db.host
Default: localhost

Set this value to the name of host of the replica service database.

replica.db.name
Default: replicas

Name of the replica database table.

replica.db.user
Default: srmdcache

Change if the replicas database was created with a user other than srmdcache.

replica.db.password.file
Default: no password

replica.db.driver
Default: org.postgresql.Driver

replica service was tested with PostgreSQL only.
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replica.limits.pool-watchdog-period
Default: 600 (10 min)

Pools Watch Dog poll period. Poll the pools with this period to find if some pool went south without
sending a notice (messages). Can not be too short because a pool can have a high load and not send
pings for some time. Can not be less than pool ping period.

replica.limits.excluded-files-expiration-timeout
Default: 43200 (12 hours)

replica.limits.delay-db-start-timeout
Default: 1200 (20 min)

On first start it might take some time for the pools to get connected. If replication started right away, it
would lead to massive replications when not all pools were connected yet. Therefore the database init
thread sleeps some time to give a chance to the pools to get connected.

replica.limits.adjust-start-timeout
Default: 1200 (20 min)

Normally Adjuster waits for database init thread to finish. If by some abnormal reason it cannot find a
database thread then it will sleep for this delay.

replica.limits.wait-replicate-timeout
Default: 43200 (12 hours)

Timeout for pool-to-pool replica copy transfer.

replica.limits.wait-reduce-timeout
Default: 43200 (12 hours)

Timeout to delete replica from the pool.

replica.limits.workers
Default: 6

Number of worker threads to do the replication. The same number of worker threads is used for reduction.
Must be more for larger systems but avoid situation when requests get queued in the pool.

replica.limits.replicas.min
Default: 2

Minimum number of replicas in pools which are online or offline.

replica.limits.replicas.max
Default: 3

Maximum number of replicas in pools which are online or offline.

replica.enable.check-pool-host
Default: true

Checks tag.hostname which can be specified in the layout file for each pool.
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Set this property to false if you do not want to perform this check.

replica.enable.same-host-replica
Default: false

If set to true you allow files to be copied to a pool, which has the same tag.hostname as the source
pool.

Note
The property replica.enable.check-pool-host needs to be set to true if
replica.enable.same-host-replica is set to false.
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Chapter 7. The poolmanager Service
The heart of a dCache system is the poolmanager. When a user performs an action on a file - reading or
writing - a transfer request is sent to the dCache system. The poolmanager then decides how to handle
this request.

If a file the user wishes to read resides on one of the storage-pools within the dCache system, it will be
transferred from that pool to the user. If it resides on several pools, the file will be retrieved from one of the
pools determined by a configurable load balancing policy. If all pools the file is stored on are busy, a new
copy of the file on an idle pool will be created and this pool will answer the request.

A new copy can either be created by a pool to pool transfer (p2p) or by fetching it from a connected tertiary
storage system (sometimes called HSM - hierarchical storage manager). Fetching a file from a tertiary storage
system is called staging. It is also performed if the file is not present on any of the pools in the dCache system.
The pool manager has to decide on which pool the new copy will be created, i.e. staged or p2p-copied.

The behaviour of the poolmanager service is highly configurable. In order to exploit the full potential
of the software it is essential to understand the mechanisms used and how they are configured. The pool-
manager service creates the PoolManager cell, which is a unique cell in dCache and consists of several
sub-modules: The important ones are the pool selection unit (PSU) and the load balancing policy as defined
by the partition manager (PM).

The poolmanager can be configured by either directly editing the file /var/lib/dcache/con-
fig/poolmanager.conf or via the Admin Interface. Changes made via the Admin Interface will be
saved in the file /var/lib/dcache/config/poolmanager.conf by the save command. This file
will be parsed, whenever the dCache starts up. It is a simple text file containing the corresponding Admin
Interface commands. It can therefore also be edited before the system is started. It can also be loaded into a
running system with the reload command. In this chapter we will describe the commands allowed in this file.

The Pool Selection Mechanism
The PSU is responsible for finding the set of pools which can be used for a specific transfer-request. By
telling the PSU which pools are permitted for which type of transfer-request, the administrator of the dCache
system can adjust the system to any kind of scenario: Separate organizations served by separate pools, special
pools for writing the data to a tertiary storage system, pools in a DMZ which serves only a certain kind
of data (e.g., for the grid). This section explains the mechanism employed by the PSU and shows how to
configure it with several examples.

The PSU generates a list of allowed storage-pools for each incoming transfer-request. The PSU configuration
described below tells the PSU which combinations of transfer-request and storage-pool are allowed. Imagine
a two-dimensional table with a row for each possible transfer-request and a column for each pool - each field
in the table containing either “yes” or “no”. For an incoming transfer-request the PSU will return a list of
all pools with “yes” in the corresponding row.

Instead of “yes” and “no” the table really contains a preference - a non-negative integer. However, the PSU
configuration is easier to understand if this is ignored.

Actually maintaining such a table in memory (and as user in a configuration file) would be quite inefficient,
because there are many possibilities for the transfer-requests. Instead, the PSU consults a set of rules in order
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to generate the list of allowed pools. Each such rule is called a link because it links a set of transfer-requests
to a group of pools.

Links
A link consists of a set of unit groups and a list of pools. If all the unit groups are matched, the pools belonging
to the link are added to the list of allowable pools.

A link is defined in the file /var/lib/dcache/config/poolmanager.conf by

psu create link <link> <unitgroup> psu set link <link> -readpref=<rpref> -
writepref=<wpref> -cachepref=<cpref> -p2ppref=<ppref> psu add link <link>
<poolgroup>

For the preference values see the section called “Preference Values for Type of Transfer”.

The main task is to understand how the unit groups in a link are defined. After we have dealt with that, the
preference values will be discussed and a few examples will follow.

The four properties of a transfer request, which are relevant for the PSU, are the following:

Location of the File
The location of the file in the file system is not used directly. Each file has the following two properties
which can be set per directory:

• Storage Class.  The storage class is a string. It is used by a tertiary storage system to decide where
to store the file (i.e. on which set of tapes) and dCache can use the storage class for a similar purpose
(i.e. on which pools the file can be stored.). A detailed description of the syntax and how to set the
storage class of a directory in the namespace is given in the section called “Storage Classes”.

• Cache Class.  The cache class is a string with essentially the same functionality as the storage
class, except that it is not used by a tertiary storage system. It is used in cases, where the storage class
does not provide enough flexibility. It should only be used, if an existing configuration using storage
classes does not provide sufficient flexibility.

IP Address
The IP address of the requesting host.

Protocol / Type of Door
The protocol respectively the type of door used by the transfer.

Type of Transfer
The type of transfer is either read, write, p2p request or cache.

A request for reading a file which is not on a read pool will trigger a p2p request and a subsequent
read request. These will be treated as two separate requests.

A request for reading a file which is not stored on disk, but has to be staged from a connected tertiary
storage system will trigger a cache request to fetch the file from the tertiary storage system and a
subsequent read request. These will be treated as two separate requests.

Each link contains one or more unit groups, all of which have to be matched by the transfer request. Each
unit group in turn contains several units. The unit group is matched if at least one of the units is matched.
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Types of Units

There are four types of units: network (-net), protocol (-protocol), storage class (-store) and cache
class (-dcache) units. Each type imposes a condition on the IP address, the protocol, the storage class and
the cache class respectively.

For each transfer at most one of each of the four unit types will match. If more than one unit of the same
type could match the request then the most restrictive unit matches.

The unit that matches is selected from all units defined in dCache, not just those for a particular unit group.
This means that, if a unit group has a unit that could match a request but this request also matches a more
restrictive unit defined elsewhere then the less restrictive unit will not match.

Network Unit
A network unit consists of an IP address and a net mask written as <IP-address>/<net mask>,
say 111.111.111.0/255.255.255.0. It is satisfied, if the request is coming from a host with IP
address within the subnet given by the address/netmask pair.

psu create ugroup <name-of-unitgroup>
psu create unit -net <IP-address>/<net mask>
psu addto ugroup <name-of-unitgroup> <IP-address>/<net mask>

Protocol Unit
A protocol unit consists of the name of the protocol and the version number written as <proto-
col-name>/<version-number>, e.g., xrootd/3.

psu create ugroup <name-of-unitgroup>
psu create unit -protocol <protocol-name>/<version-number>
psu addto ugroup <name-of-unitgroup> <protocol-name>/<version-number>

Storage Class Unit
A storage class unit is given by a storage class. It is satisfied if the requested file has this storage class.
Simple wild cards are allowed: for this it is important to know that a storage class must always contain
exactly one @-symbol as will be explained in the section called “Storage Classes”. In a storage class unit,
either the part before the @-symbol or both parts may be replaced by a *-symbol; for example, *@osm
and *@* are both valid storage class units whereas something@* is invalid. The *-symbol represents
a limited wildcard: any string that doesn’t contain an @-symbol will match.

psu create ugroup <name-of-unitgroup>
psu create unit -store <StoreName>:<StorageGroup>@<type-of-storage-system>
psu addto ugroup <name-of-unitgroup> <StoreName>:<StorageGroup>@<type-of-storage-system>

Cache Class Unit
A cache class unit is given by a cache class. It is satisfied, if the cache class of the requested file agrees
with it.

psu create ugroup <name-of-unitgroup>
psu create unit -dcache <name-of-cache-class>
psu addto ugroup <name-of-unitgroup> <name-of-cache-class>

Preference Values for Type of Transfer

The conditions for the type of transfer are not specified with units. Instead, each link contains four attributes
-readpref, -writepref, -p2ppref and -cachepref, which specify a preference value for the
respective types of transfer. If all the unit groups in the link are matched, the corresponding preference is
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assigned to each pool the link points to. Since we are ignoring different preference values at the moment, a
preference of 0 stands for no and a non-zero preference stands for yes. A negative value for -p2ppref
means, that the value for -p2ppref should equal the one for the -readpref.

Multiple non-zero Preference Values

Note

This explanation of the preference values can be skipped at first reading. It will not be relevant, if
all non-zero preference values are the same. If you want to try configuring the pool manager right
now without bothering about the preferences, you should only use 0 (for no) and, say, 10 (for yes)
as preferences. You can choose -p2ppref=-1 if it should match the value for -readpref. The
first examples below are of this type.

If several different non-zero preference values are used, the PSU will not generate a single list but a set
of lists, each containing pools with the same preference. The Pool Manager will use the list of pools with
highest preference and select a pool according to the load balancing policy for the transfer. Only if all pools
with the highest preference are offline, the next list will be considered by the Pool Manager. This can be
used to configure a set of fall-back pools which are used if none of the other pools are available.

Pool Groups

Pools can be grouped together to pool groups.

psu create pgroup <name-of-poolgroup>
psu create pool <name-of-pool>
psu addto pgroup <name-of-poolgroup> <name-of-pool>

Example:

Consider a host pool1 with two pools, pool1_1 and pool1_2, and a host pool2 with one pool
pool2_1. If you want to treat them in the same way, you would create a pool group and put all of
them in it:

psu create pgroup normal-pools
psu create pool pool1_1
psu addto pgroup normal-pools pool1_1
psu create pool pool1_2
psu addto pgroup normal-pools pool1_2
psu create pool pool2_1
psu addto pgroup normal-pools pool2_1

If you later want to treat pool1_2 differently from the others, you would remove it from this pool
group and add it to a new one:

psu removefrom pgroup normal-pools pool1_2
psu create pgroup special-pools
psu addto pgroup special-pools pool1_2

In the following, we will assume that the necessary pool groups already exist. All names ending with -
pools will denote pool groups.

Note that a pool-node will register itself with the PoolManager: The pool will be created within the PSU
and added to the pool group default, if that exists. This is why the dCache system will automatically
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use any new pool-nodes in the standard configuration: All pools are in default and can therefore handle
any request.

Storage Classes

The storage class is a string of the form <StoreName>:<StorageGroup>@<type-of-stor-
age-system>, where <type-of-storage-system> denotes the type of storage system in use, and
<StoreName>:<StorageGroup> is a string describing the storage class in a syntax which depends on
the storage system. In general use <type-of-storage-system>=osm.

Consider for example the following setup:

Example:

[root] # /usr/bin/chimera lstag /data/experiment-a
Total: 2
OSMTemplate
sGroup
[root] # /usr/bin/chimera readtag /data/experiment-a OSMTemplate
StoreName myStore
[root] # /usr/bin/chimera readtag /data/experiment-a sGroup
STRING

This is the setup after a fresh installation and it will lead to the storage class myStore:STRING@osm.
An adjustment to more sensible values will look like

[root] # /usr/bin/chimera writetag /data/experiment-a OSMTemplate "StoreName exp-a"
[root] # /usr/bin/chimera writetag /data/experiment-a sGroup "run2010"

and will result in the storage class exp-a:run2010@osm for any data stored in the /data/exper-
iment-a directory.

To summarize: The storage class depends on the directory the data is stored in and is configurable.

Cache Class

Storage classes might already be in use for the configuration of a tertiary storage system. In most cases
they should be flexible enough to configure the PSU. However, in rare cases the existing configuration and
convention for storage classes might not be flexible enough.

Consider for example a situation, where data produced by an experiment always has the same storage class
exp-a:alldata@osm. This is good for the tertiary storage system, since all data is supposed to go to the
same tape set sequentially. However, the data also contains a relatively small amount of meta-data, which is
accessed much more often by analysis jobs than the rest of the data. You would like to keep the meta-data
on a dedicated set of dCache pools. However, the storage class does not provide means to accomplish that.

The cache class of a directory is set by the tag cacheClass as follows:

Example:

[root] # /usr/bin/chimera writetag /data/experiment-a cacheClass "metaData"

In this example the meta-data is stored in directories which are tagged in this way.

Check the existing tags of a directory and their content by:
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[root] # /usr/bin/chimera lstag /path/to/directory
Total: numberOfTags
tag1
tag2
...
[root] # /usr/bin/chimera readtag /path/to/directory tag1
contentOfTag1

Note

A new directory will inherit the tags from the parent directory. But updating a tag will not update
the tags of any child directories.

Define a link

Now we have everything we need to define a link.

psu create ugroup <name-of-unitgroup>
psu create unit - <type> <unit>
psu addto ugroup <name-of-unitgroup> <unit>

psu create pgroup <poolgroup>
psu create pool <pool>
psu addto pgroup <poolgroup> <pool>

psu create link <link> <name-of-unitgroup>
psu set link <link> -readpref=<10> -writepref=<0> -cachepref=<10>-p2ppref=<-1>
psu add link <link>  <poolgroup>

Examples
Find some examples for the configuration of the PSU below.

Separate Write and Read Pools

The dCache we are going to configure receives data from a running experiment, stores the data onto a tertiary
storage system, and serves as a read cache for users who want to analyze the data. While the new data from
the experiment should be stored on highly reliable and therefore expensive systems, the cache functionality
may be provided by inexpensive hardware. It is therefore desirable to have a set of pools dedicated for
writing the new data and a separate set for reading.

Example:

The simplest configuration for such a setup would consist of two links “write-link” and “read-link”.
The configuration is as follows:

psu create pgroup read-pools
psu create pool pool1
psu addto pgroup read-pools pool1
psu create pgroup write-pools
psu create pool pool2
psu addto pgroup write-pools pool2

psu create unit -net 0.0.0.0/0.0.0.0
psu create ugroup allnet-cond
psu addto ugroup allnet-cond 0.0.0.0/0.0.0.0

psu create link read-link allnet-cond
psu set link read-link -readpref=10 -writepref=0 -cachepref=10
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psu add link read-link read-pools

psu create link write-link allnet-cond
psu set link write-link -readpref=0 -writepref=10 -cachepref=0
psu add link write-link write-pools

Why is the unit group allnet-cond necessary? It is used as a condition which is always true in both
links. This is needed, because each link must contain at least one unit group.

Restricted Access by IP Address

You might not want to give access to the pools for the whole network, as in the previous example (the section
called “Separate Write and Read Pools”), though.

Example:

Assume, the experiment data is copied into the cache from the hosts with IP 111.111.111.201,
111.111.111.202, and 111.111.111.203. As you might guess, the subnet of the site is
111.111.111.0/255.255.255.0. Access from outside should be denied. Then you would mod-
ify the above configuration as follows:

psu create pgroup read-pools
psu create pool pool1
psu addto pgroup read-pools pool1
psu create pgroup write-pools
psu create pool pool2
psu addto pgroup write-pools pool2

psu create unit -store *@*

psu create unit -net 111.111.111.0/255.255.255.0
psu create unit -net 111.111.111.201/255.255.255.255
psu create unit -net 111.111.111.202/255.255.255.255
psu create unit -net 111.111.111.203/255.255.255.255

psu create ugroup write-cond
psu addto ugroup write-cond 111.111.111.201/255.255.255.255
psu addto ugroup write-cond 111.111.111.202/255.255.255.255
psu addto ugroup write-cond 111.111.111.203/255.255.255.255

psu create ugroup read-cond
psu addto ugroup read-cond 111.111.111.0/255.255.255.0
psu addto ugroup read-cond 111.111.111.201/255.255.255.255
psu addto ugroup read-cond 111.111.111.202/255.255.255.255
psu addto ugroup read-cond 111.111.111.203/255.255.255.255

psu create link read-link read-cond
psu set link read-link -readpref=10 -writepref=0 -cachepref=10
psu add link read-link read-pools

psu create link write-link write-cond
psu set link write-link -readpref=0 -writepref=10 -cachepref=0
psu add link write-link write-pools

Important

For a given transfer exactly zero or one storage class unit, cache class unit, net
unit and protocol unit will match. As always the most restrictive one will match,
the IP 111.111.111.201 will match the 111.111.111.201/255.255.255.255
unit and not the 111.111.111.0/255.255.255.0 unit. Therefore if you only add
111.111.111.0/255.255.255.0 to the unit group “read-cond”, the transfer request
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coming from the IP 111.111.111.201 will only be allowed to write and not to read. The
same is true for transfer requests from 111.111.111.202 and 111.111.111.203.

Reserving Pools for Storage and Cache Classes

If pools are financed by one experimental group, they probably do not like it if they are also used by another
group. The best way to restrict data belonging to one experiment to a set of pools is with the help of storage
class conditions. If more flexibility is needed, cache class conditions can be used for the same purpose.

Example:

Assume, data of experiment A obtained in 2010 is written into subdirectories in the namespace tree
which are tagged with the storage class exp-a:run2010@osm, and similarly for the other years.
(How this is done is described in the section called “Storage Classes”.) Experiment B uses the storage
class exp-b:alldata@osm for all its data. Especially important data is tagged with the cache class
important. (This is described in the section called “Cache Class”.) A suitable setup would be

psu create pgroup exp-a-pools
psu create pool pool1
psu addto pgroup exp-a-pools pool1

psu create pgroup exp-b-pools
psu create pool pool2
psu addto pgroup exp-b-pools pool2

psu create pgroup exp-b-imp-pools
psu create pool pool3
psu addto pgroup exp-b-imp-pools pool3

psu create unit -net 111.111.111.0/255.255.255.0
psu create ugroup allnet-cond
psu addto ugroup allnet-cond 111.111.111.0/255.255.255.0

psu create ugroup exp-a-cond
psu create unit -store exp-a:run2011@osm
psu addto ugroup exp-a-cond exp-a:run2011@osm
psu create unit -store exp-a:run2010@osm
psu addto ugroup exp-a-cond exp-a:run2010@osm

psu create link exp-a-link allnet-cond exp-a-cond
psu set link exp-a-link -readpref=10 -writepref=10 -cachepref=10
psu add link exp-a-link exp-a-pools

psu create ugroup exp-b-cond
psu create unit -store exp-b:alldata@osm
psu addto ugroup exp-b-cond exp-b:alldata@osm

psu create ugroup imp-cond
psu create unit -dcache important
psu addto ugroup imp-cond important

psu create link exp-b-link allnet-cond exp-b-cond
psu set link exp-b-link -readpref=10 -writepref=10 -cachepref=10
psu add link exp-b-link exp-b-pools

psu create link exp-b-imp-link allnet-cond exp-b-cond imp-cond
psu set link exp-b-imp-link -readpref=20 -writepref=20 -cachepref=20
psu add link exp-b-link exp-b-imp-pools

Data tagged with cache class “important” will always be written and read from pools in the pool
group exp-b-imp-pools, except when all pools in this group cannot be reached. Then the pools in
exp-a-pools will be used.
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Note again that these will never be used otherwise. Not even, if all pools in exp-b-imp-pools are
very busy and some pools in exp-a-pools have nothing to do and lots of free space.

The central IT department might also want to set up a few pools, which are used as fall-back, if none of the
pools of the experiments are functioning. These will also be used for internal testing. The following would
have to be added to the previous setup:

Example:

psu create pgroup it-pools
psu create pool pool_it
psu addto pgroup it-pools pool_it

psu create link fallback-link allnet-cond
psu set link fallback-link -readpref=5 -writepref=5 -cachepref=5
psu add link fallback-link it-pools

Note again that these will only be used, if none of the experiments pools can be reached, or if
the storage class is not of the form exp-a:run2009@osm, exp-a:run2010@osm, or exp-
b:alldata@osm. If the administrator fails to create the unit exp-a:run2005@osm and add it to
the unit group exp-a-cond, the fall-back pools will be used eventually.

The Partition Manager
The partition manager defines one or more load balancing policies. Whereas the PSU produces a prioritized
set of candidate pools using a collection of rules defined by the administrator, the load balancing policy
determines the specific pool to use. It is also the load balancing policy that determines when to fall back to
lesser prirority links, or when to trigger creation of additional copies of a file.

Since the load balancing policy and parameters are defined per partition, understanding the partition manager
is essential to tuning load balancing. This does not imply that one has to partition the dCache instance. It is
perfectly valid to use a single partition for the complete instance.

This section documents the use of the partition manager, how to create partitions, set parameters and how to
associate links with partitions. In the following sections the available partition types and their configuration
parameters are described.

Overview
There are various parameters that affect the load balancing policy. Some of them are generic and apply
to any load balancing policy, but many are specific to a particular policy. To avoid limiting the complete
dCache instance to a single configuration, the choice of load balancing policy and the various parameters
apply to partitions of the instance. The load balancing algorithm and the available parameters is determined
by the partition type.

Each PSU link can be associated with a different partion and the policy and parameters of that partition
will be used to choose a pool from the set of candidate pools. The only partition that exists without being
explicitly created is the partition called default. This partition is used by all links that do not explicitly
identify a partition. Other partitions can be created or modified as needed.
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The default partition has a hard-coded partition type called classic. This type implements the one load
balancing policy that was available in dCache before version 2.0. The classic partition type is described
later. Other partitions have one of a number of available types. The system is pluggable, meaning that third
party plugins can be loaded at runtime and add additional partition types, thus providing the ultimate control
over load balancing in dCache. Documentation on how to develop plugins is beyond the scope of this chapter.

To ease the management of partition parameters, a common set of shared parameters can be defined outside
all partitions. Any parameter not explicitly set on a partition inherits the value from the common set. If not
defined in the common set, a default value determined by the partition type is used. Currently, the common
set of parameters happens to be the same as the parameters of the default partition, however this is only
due to compatibility constraints and may change in future versions.

Managing Partitions
For each partition you can choose the load balancing policy. You do this by chosing the type of the partition.

Currently four different partition types are supported:

classic:
This is the pool selection algorithm used in the versions of dCache prior to version 2.0. See the section
called “Classic Partitions” for a detailed description.

random:
This pool selection algorithm selects a pool randomly from the set of available pools.

lru:
This pool selection algorithm selects the pool that has not been used the longest.

wass:
This pool selection algorithm selects pools randomly weighted by available space, while incorporating
age and amount of garbage collectible files and information about load.

This is the partition type of the default partition. See How to Pick a Pool [http://www.dcache.org/arti-
cles/wass.html] for more details.

Commands related to dCache partitioning:

• pm types
Lists available partition types. New partition types can be added through plugins.

• pm create [-type=<partitionType>] <partitionName>
Creates a new partition. If no partition type is specified, then a wass partition is created.

• pm set [<partitionName>] -<parameterName> =<value>|off
Sets a parameter <parameterName> to a new value.

If <partitionName> is omitted, the common shared set of parameters is updated. The value is used
by any partition for which the parameter is not explicitly set.

If a parameter is set to off then this parameter is no longer defined and is inherited from the common
shared set of parameters, or a partition type specific default value is used if the parameter is not defined
in the common set.

http://www.dcache.org/articles/wass.html
http://www.dcache.org/articles/wass.html
http://www.dcache.org/articles/wass.html
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• pm ls [-l] [<partitionName>]
Lists a single or all partitions, including the type of each partition. If a partition name or the -l option
are used, then the partition parameters are shown too. Inherited and default values are identified as such.

• pm destroy <partitionName>
Removes a partition from dCache. Any links configured to use this partition will fall back to the default
partition.

Using Partitions
A partition, so far, is just a set of parameters which may or may not differ from the default set. To let a
partition relate to a part of the dCache, links are used. Each link may be assigned to exactly one partition. If
not set, or the assigned partition doesn’t exist, the link defaults to the default partition.

psu set link [<linkName>] -section=<partitionName> [<other-options>...]

Whenever this link is chosen for pool selection, the associated parameters of the assigned partition will
become active for further processing.

Warning

Depending on the way links are setup it may very well happen that more than just one link is trig-
gered for a particular dCache request. This is not illegal but leads to an ambiguity in selecting an
appropriate dCache partition. If only one of the selected links has a partition assigned, this partition
is chosen. Otherwise, if different links point to different partitions, the result is indeterminate. This
issue is not yet solved and we recommend to clean up the poolmanager configuration to eliminate
links with the same preferences for the same type of requests.

In the Web Interface you can find a web page listing partitions and more information. You will find a page
summarizing the partition status of the system. This is essentially the output of the command pm ls -l.

Example:

For your dCache on dcache.example.org the address is

http://dcache.example.org:2288/poolInfo/parameterHandler/set/
matrix/*

Examples

For the subsequent examples we assume a basic poolmanager setup :

Example:

#
# define the units
#
psu create unit -protocol   */*
psu create unit -protocol   xrootd/*
psu create unit -net        0.0.0.0/0.0.0.0
psu create unit -net        131.169.0.0/255.255.0.0
psu create unit -store      *@*
#
#  define unit groups
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#
psu create ugroup  any-protocol
psu create ugroup  any-store
psu create ugroup  world-net
psu create ugroup  xrootd
#
psu addto ugroup any-protocol */*
psu addto ugroup any-store    *@*
psu addto ugroup world-net    0.0.0.0/0.0.0.0
psu addto ugroup desy-net     131.169.0.0/255.255.0.0
psu addto ugroup xrootd       xrootd/*
#
#  define the pools
#
psu create pool pool1
psu create pool pool2
psu create pool pool3
psu create pool pool4

#
#  define the pool groups
#
psu create pgroup default-pools
psu create pgroup special-pools
#
psu addto pgroup default-pools pool1
psu addto pgroup default-pools pool2
#
psu addto pgroup special-pools pool3
psu addto pgroup special-pools pool4
#

Disallowing pool to pool transfers for special pool groups based on the ac-
cess protocol

For a special set of pools, where we only allow the xrootd protocol, we don’t want the datasets to be
replicated on high load while for the rest of the pools we allow replication on hot spot detection.

Example:

#
pm create xrootd-section
#
pm set default        -p2p=0.4
pm set xrootd-section -p2p=0.0
#
psu create link default-link any-protocol any-store world-net
psu add    link default-link default-pools
psu set    link default-link -readpref=10 -cachepref=10 -writepref=0
#
psu create link xrootd-link xrootd any-store world-net
psu add    link xrootd-link special-pools
psu set    link xrootd-link -readpref=10 -cachepref=10 -writepref=0
psu set    link xrootd-link -section=xrootd-section
#        

Choosing pools randomly for incoming traffic only

For a set of pools we select pools following the default setting of cpu and space related cost factors. For
incoming traffic from outside, though, we select the same pools, but in a randomly distributed fashion. Please
note that this is not really a physical partitioning of the dCache system, but rather a virtual one, applied to
the same set of pools.
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Example:

#
pm create incoming-section
#
pm set default          -cpucostfactor=0.2 -spacecostfactor=1.0
pm set incoming-section -cpucostfactor=0.0 -spacecostfactor=0.0
#
psu create link default-link any-protocol any-store desy-net
psu add    link default-link default-pools
psu set    link default-link -readpref=10 -cachepref=10 -writepref=10
#
psu create link default-link any-protocol any-store world-net
psu add    link default-link default-pools
psu set    link default-link -readpref=10 -cachepref=10 -writepref=0
#
psu create link incoming-link any-protocol any-store world-net
psu add    link incoming-link default-pools
psu set    link incoming-link -readpref=10 -cachepref=10 -writepref=10
psu set    link incoming-link -section=incoming-section
#

Classic Partitions
The classic partition type implements the load balancing policy known from dCache releases before
version 2.0. This partition type is still the default. This section describes this load balancing policy and the
available configuration parameters.

Example:

To create a classic partition use the command: pm create -type=classic <partitionName>

Load Balancing Policy

From the allowable pools as determined by the pool selection unit, the pool manager determines the pool used
for storing or reading a file by calculating a cost value for each pool. The pool with the lowest cost is used.

If a client requests to read a file which is stored on more than one allowable pool, the performance costs
are calculated for these pools. In short, this cost value describes how much the pool is currently occupied
with transfers.

If a pool has to be selected for storing a file, which is either written by a client or restored from a tape
backend, this performance cost is combined with a space cost value to a total cost value for the decision.
The space cost describes how much it “hurts” to free space on the pool for the file.

The cost module is responsible for calculating the cost values for all pools. The pools regularly send all
necessary information about space usage and request queue lengths to the cost module. It can be regarded as
a cache for all this information. This way it is not necessary to send “get cost” requests to the pools for each
client request. The cost module interpolates the expected costs until a new precise information package is
coming from the pools. This mechanism prevents clumping of requests.

Calculating the cost for a data transfer is done in two steps. First, the cost module merges all information
about space and transfer queues of the pools to calculate the performance and space costs separately. Second,
in the case of a write or stage request, these two numbers are merged to build the total cost for each pool.
The first step is isolated within a separate loadable class. The second step is done by the partition.
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The Performance Cost

The load of a pool is determined by comparing the current number of active and waiting transfers to the
maximum number of concurrent transfers allowed. This is done separately for each of the transfer types
(store, restore, pool-to-pool client, pool-to-pool server, and client request) with the following equation:

perfCost(per Type) = ( activeTransfers + waitingTransfers ) / maxAllowed .

The maximum number of concurrent transfers (maxAllowed) can be configured with the commands st set
max active (store), rh set max active (restore), mover set max active (client request), mover set max
active -queue=p2p (pool-to-pool server), and pp set max active (pool-to-pool client).

Then the average is taken for each mover type where maxAllowed is not zero. For a pool where store, restore
and client transfers are allowed, e.g.,

perfCost(total) = ( perfCost(store) + perfCost(restore) + perfCost(client) ) / 3 ,

and for a read only pool:

perfCost(total) = ( perfCost(restore) + perfCost(client) ) / 2 .

For a well balanced system, the performance cost should not exceed 1.0.

The Space Cost

In this section only the new scheme for calculating the space cost will be described. Be aware, that the old
scheme will be used if the breakeven parameter of a pool is larger or equal 1.0.

The cost value used for determining a pool for storing a file depends either on the free space on the pool or
on the age of the least recently used (LRU) file, which whould have to be deleted.

The space cost is calculated as follows:

If freeSpace > gapPara   then spaceCost = 3 * newFileSize / freeSpace

If freeSpace <= gapPara and lruAge < 60 then spaceCost = 1 + costForMinute

If freeSpace <= gapPara and lruAge >= 60 then spaceCost = 1 + costForMinute * 60 / lru-
Age

where the variable names have the following meanings:

freeSpace
The free space left on the pool

newFileSize
The size of the file to be written to one of the pools, and at least 50MB.

lruAge
The age of the least recently used file on the pool.

gapPara
The gap parameter. Default is 4 GiB. The size of free space below which it will be assumed that the pool
is full and consequently the least recently used file has to be removed. If, on the other hand, the free space
is greater than gapPara, it will be expensive to store a file on the pool which exceeds the free space.
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It can be set per pool with the set gap command. This has to be done in the pool cell and not in the pool
manager cell. Nevertheless it only influences the cost calculation scheme within the pool manager and
not the bahaviour of the pool itself.

costForMinute
A parameter which fixes the space cost of a one-minute-old LRU file to (1 + costForMinute). It can be
set with the set breakeven, where

costForMinute = breakeven * 7 * 24 * 60.

I.e. the the space cost of a one-week-old LRU file will be (1 + breakeven). Note again, that all this only
applies if breakeven < 1.0

The prescription above can be stated a little differently as follows:

If freeSpace > gapPara then spaceCost = 3 * newFileSize / freeSpace

If freeSpace <= gapPara then spaceCost = 1 + breakeven * 7 * 24 * 60 * 60 / lruAge ,

where newFileSize is at least 50MB and lruAge at least one minute.

Rationale

As the last version of the formula suggests, a pool can be in two states: Either freeSpace > gapPara or
freeSpace <= gapPara - either there is free space left to store files without deleting cached files or there isn’t.

Therefore, gapPara should be around the size of the smallest files which frequently might be written to
the pool. If files smaller than gapPara appear very seldom or never, the pool might get stuck in the first
of the two cases with a high cost.

If the LRU file is smaller than the new file, other files might have to be deleted. If these are much younger
than the LRU file, this space cost calculation scheme might not lead to a selection of the optimal pool.
However, in pratice this happens very seldomly and this scheme turns out to be very efficient.

The Total Cost

The total cost is a linear combination of the performance and space cost. I.e. totalCost = ccf * perfCost +
scf * spaceCost , where ccf and scf are configurable with the command set pool decision. E.g.,

(PoolManager) admin > set pool decision -spacecostfactor=3 -cpucostfactor=1

will give the space cost three times the weight of the performance cost.

Parameters of Classic Partitions

Classic partitions have a large number of tunable parameters. These parameters are set using the pm set
command.

Example:

To set the space cost factor on the default partition to 0.3, use the following command:
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                  pm set default -spacecostfactor=0.3
              

Command Meaning Type

pm set [<par-
titionName>] -
spacecostfactor=<scf>

Sets the space cost factor for the partition.

The default value is 1.0.

float

pm set [<par-
titionName>] -
cpucostfactor=<ccf>

Sets the cpu cost factor for the partition.

The default value is 1.0.

float

pm set [<partition-
Name>] -idle=<idle-val-
ue>

The concept of the idle value will be turned on if <idle-
value> > 0.0.

A pool is idle if its performance cost is smaller than the
<idle-value>. Otherwise it is not idle.

If one or more pools that satisfy the read request are idle then
only one of them is chosen for a particular file irrespective
of total cost. I.e. if the same file is requested more than once
it will always be taken from the same pool. This allowes the
copies on the other pools to age and be garbage collected.

The default value is 0.0, which disables this feature.

float

pm set [<partition-
Name>] -p2p=<p2p-value>

Sets the static replication threshold for the partition.

If the performance cost on the best pool exceeds <p2p-val-
ue> and the value for <slope> = 0.0 then this pool is
called hot and a pool to pool replication may be triggered.

The default value is 0.0, which disables this feature.

float

pm set [<partition-
Name>] -alert=<value>

Sets the alert value for the partition.

If the best pool’s performance cost exceeds the p2p value and
the alert value then no pool to pool copy is triggered and a
message will be logged stating that no pool to pool copy will
be made.

The default value is 0.0, which disables this feature.

float

pm set [<partition-
Name>] -panic=<value>

Sets the panic cost cut level for the partition.

If the performance cost of the best pool exceeds the panic cost
cut level the request will fail.

The default value is 0.0, which disables this feature.

float

pm set [<partition-
Name>] -fallback=<value>

Sets the fallback cost cut level for the partition.

If the best pool’s performance cost exceeds the fallback
cost cut level then a pool of the next level will be chosen.

float
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Command Meaning Type
This means for example that instead of choosing a pool with
readpref = 20 a pool with readpref < 20 will be chosen.

The default value is 0.0, which disables this feature.

pm set [<partition-
Name>] -slope=<slope>

Sets the dynamic replication threshold value for the partition.

If <slope>> 0.01 then the product of best pool’s perfor-
mance cost and <slope> is used as threshold for pool to pool
replication.

If the performance cost on the best pool exceeds this threshold
then this pool is called hot.

The default value is 0.0, which disables this feature.

float

pm set [<parti-
tionName>] -p2p-
allowed=<value>

This value can be specified if an HSM is attached to the
dCache.

If a partition has no HSM connected, then this option is over-
ridden. This means that no matter which value is set for p2p-
allowed the pool to pool replication will always be allowed.

By setting <value> = off the values for p2p-allowed,
p2p-oncost and p2p-fortransfer will take over the
value of the default partition.

If <value> = yes then pool to pool replication is allowed.

As a side effect of setting <value> = no the values for p2p-
oncost and p2p-fortransfer will also be set to no.

The default value is yes.

boolean

pm set [<parti-
tionName>] -p2p-
oncost=<value>

Determines whether pool to pool replication is allowed if the
best pool for a read request is hot.

The default value is no.

boolean

pm set [<parti-
tionName>] -p2p-
fortransfer=<value>

If the best pool is hot and the requested file will be copied ei-
ther from the hot pool or from tape to another pool, then the re-
quested file will be read from the pool where it just had been
copied to if <value> = yes. If <value> = no then the re-
quested file will be read from the hot pool.

The default value is no.

boolean

pm set [<parti-
tionName>] -stage-
allowed=<value>

Set the stage allowed value to yes if a tape system is connect-
ed and to no otherwise.

As a side effect, setting the value for stage-allowed to no
changes the value for stage-oncost to no.

boolean
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Command Meaning Type
The default value is no.

pm set [<parti-
tionName>] -stage-
oncost=<value>

If the best pool is hot, p2p-oncost is disabled and an HSM is
connected to a pool then this parameter determines whether to
stage the requested file to a different pool.

The default value is no.

boolean

pm set [<parti-
tionName>] -max-
copies=<copies>

Sets the maximal number of replicas of one file. If the maxi-
mum is reached no more replicas will be created.

The default value is 500.

integer

Link Groups
The PoolManager supports a type of objects called link groups. These link groups are used by the SRM
SpaceManager to make reservations against space. Each link group corresponds to a number of dCache
pools in the following way: A link group is a collection of links and each link points to a set of pools. Each
link group knows about the size of its available space, which is the sum of all sizes of available space in
all the pools included in this link group.

To create a new link group login to the Admin Interface and cd to the PoolManager.

(local) admin > cd PoolManager
(PoolManager) admin > psu create linkGroup <linkgroup>
(PoolManager) admin > psu addto linkGroup <linkgroup> <link>
(PoolManager) admin > save

With save the changes will be saved to the file /var/lib/dcache/config/poolmanager.conf.

Note

You can also edit the file /var/lib/dcache/config/poolmanager.conf to create a new
link group. Please make sure that it already exists. Otherwise you will have to create it first via the
Admin Interface by

(PoolManager) admin > save

Edit the file /var/lib/dcache/config/poolmanager.conf

psu create linkGroup <linkgroup>
psu addto linkGroup <linkgroup> <link>

After editing this file you will have to restart the domain which contains the PoolManager cell
to apply the changes.

Note

Administrators will have to take care, that no pool is present in more than one link group.

Access latency and retention policy.  A space reservation has a retention policy and an access latency,
where retention policy describes the quality of the storage service that will be provided for files in the space
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reservation and access latency describes the availability of the files. See the section called “Properties of
Space Reservation” for further details.

A link group has five boolean properties called replicaAllowed, outputAllowed, custodialAl-
lowed, onlineAllowed and nearlineAllowed, which determine the access latencies and retention
policies allowed in the link group. The values of these properties (true or false) can be configured via
the Admin Interface or directly in the file /var/lib/dcache/config/poolmanager.conf.

For a space reservation to be allowed in a link group, the the retention policy and access latency of the space
reservation must be allowed in the link group.

(PoolManager) admin > psu set linkGroup custodialAllowed <linkgroup> <true|false>
(PoolManager) admin > psu set linkGroup outputAllowed <linkgroup> <true|false>
(PoolManager) admin > psu set linkGroup replicaAllowed <linkgroup> <true|false>
(PoolManager) admin > psu set linkGroup onlineAllowed <linkgroup> <true|false>
(PoolManager) admin > psu set linkGroup nearlineAllowed <linkgroup> <true|false>

Important

It is up to the administrator to ensure that the link groups’ properties are specified correctly.

For example dCache will not complain if a link group that does not support a tape backend will be
declared as one that supports custodial files.

It is essential that space in a link group is homogeneous with respect to access latencies, retention
policies and storage groups accepted. Otherwise space reservations cannot be guaranteed. For in-
stance, if only a subset of pools accessible through a link group support custodial files, there is no
guarantee that a custodial space reservation created within the link group will fit on those pools.
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Chapter 8. The dCache Tertiary Storage
System Interface

Introduction
One of the features dCache provides is the ability to migrate files from its disk repository to one or more
connected Tertiary Storage Systems (TSS) and to move them back to disk when necessary. Although the
interface between dCache and the TSS is kept simple, dCache assumes to interact with an intelligent TSS.
dCache does not drive tape robots or tape drives by itself. More detailed requirements to the storage system
are described in one of the subsequent paragraphs.

Scope of this chapter
This document describes how to enable a standard dCache installation to interact with a Tertiary Storage
System. In this description we assume that

• every dCache disk pool is connected to only one TSS instance.

• all dCache disk pools are connected to the same TSS instance.

• the dCache instance has not yet been populated with data, or only with a negligible amount of files.

In general, not all pools need to be configured to interact with the same Tertiary Storage System or with a
storage system at all. Furthermore pools can be configured to have more than one Tertiary Storage System
attached, but all those cases are not in the scope of the document.

Requirements for a Tertiary Storage Sys-
tem
dCache can only drive intelligent Tertiary Storage Systems. This essentially means that tape robot and tape
drive operations must be done by the TSS itself and that there is some simple way to abstract the file PUT,
GET and REMOVE operation.

Migrating Tertiary Storage Systems with a file sys-
tem interface.
Most migrating storage systems provide a regular POSIX file system interface. Based on rules, data is mi-
grated from primary to tertiary storage (mostly tape systems). Examples for migrating storage systems are:

• HPSS [http://www.hpss-collaboration.org/] (High Performance Storage System)

• DMF [http://www.sgi.com/products/storage/software/dmf.html] (Data Migration Facility)

http://www.hpss-collaboration.org/
http://www.hpss-collaboration.org/
http://www.sgi.com/products/storage/software/dmf.html
http://www.sgi.com/products/storage/software/dmf.html
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Tertiary Storage Systems with a minimalistic PUT,
GET and REMOVE interface
Some tape systems provide a simple PUT, GET, REMOVE interface. Typically, a copy-like application writes
a disk file into the TSS and returns an identifier which uniquely identifies the written file within the Tertiary
Storage System. The identifier is sufficient to get the file back to disk or to remove the file from the TSS.
Examples are:

• OSM [http://www.qstar.com/qstar-products/qstar-object-storage-manager] (Object Storage Manager)

• Enstore [http://www-ccf.fnal.gov/enstore/] (FERMIlab)

How dCache interacts with a Tertiary Stor-
age System
Whenever dCache decides to copy a file from disk to tertiary storage a user-provided executable which
can be either a script or a binary is automatically started on the pool where the file is located. That ex-
ecutable is expected to write the file into the Backend Storage System and to return a URI, uniquely
identifying the file within that storage system. The format of the URI as well as the arguments to the exe-
cutable, are described later in this document. The unique part of the URI can either be provided by the
storage element, in return of the STORE FILE operation, or can be taken from dCache. A non-error return
code from the executable lets dCache assume that the file has been successfully stored and, depending
on the properties of the file, dCache can decide to remove the disk copy if space is running short on that
pool. On a non-zero return from the executable, the file doesn’t change its state and the operation is
retried or an error flag is set on the file, depending on the error return code from the executable.

If dCache needs to restore a file to disk the same executable is launched with a different set of arguments,
including the URI, provided when the file was written to tape. It is in the responsibility of the executable
to fetch the file back from tape based on the provided URI and to return 0 if the FETCH FILE operation
was successful or non-zero otherwise. In case of a failure the pool retries the operation or dCache decides
to fetch the file from tape using a different pool.

Details on the TSS-support executable

Summary of command line options
This part explains the syntax of calling the executable that supports STORE FILE, FETCH FILE and
REMOVE FILE operations.

put <pnfsID> <filename> -si=<storage-information> [<other-options>...]

get <pnfsID> <filename> -si=<storage-information> -uri=<storage-uri> [<oth-
er-options>...]

remove -uri=<storage-uri> [<other-options>...]

• put / get / remove: these keywords indicate the operation to be performed.

http://www.qstar.com/qstar-products/qstar-object-storage-manager
http://www.qstar.com/qstar-products/qstar-object-storage-manager
http://www-ccf.fnal.gov/enstore/
http://www-ccf.fnal.gov/enstore/
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• put: copy file from disk to TSS.

• get: copy file back from TSS to disk.

• remove: remove the file from TSS.

• <pnfsID>: The internal identifier (i-node) of the file within dCache. The <pnfsID> is unique within
a single dCache instance and globally unique with a very high probability.

• <filename>: is the full path of the local file to be copied to the TSS (for put) and respectively into
which the file from the TSS should be copied (for get).

• <storage-information>: the storage information of the file, as explained below.

• <storage-uri>: the URI, which was returned by the executable, after the file was written to
tertiary storage. In order to get the file back from the TSS the information of the URI is preferred over
the information in the <storage-information>.

• <other-options>: -<key> = <value> pairs taken from the TSS configuration commands of the
pool 'setup' file. One of the options, always provided is the option -command=<full path of this
executable>.

Storage Information

The <storage-information> is a string in the format

-si=size=<bytes>;new=<true/false>;stored=<true/false>;sClass=<StorageClass>;\
cClass0<CacheClass>;hsm=<StorageType>;<key>=<value>;[<key>=<value>;[...]]

Example:

-si=size=1048576000;new=true;stored=false;sClass=desy:cms-sc3;cClass=-;hsm=osm;Host=desy;

Mandatory storage information’s keys

• <size>: Size of the file in bytes

• <new>: False if file already in the dCache; True otherwise

• <stored>: True if file already stored in the TSS; False otherwise

• <sClass>: HSM depended, is used by the poolmanager for pool attraction.

• <cClass>: Parent directory tag (cacheClass). Used by the poolmanager for pool attraction. May be
'-'.

• <hsm>: Storage manager name (enstore/osm). Can be overwritten by the parent directory tag (hsmType).

OSM specific storage information’s keys

• <group>: The storage group of the file to be stored as specified in the ".(tag)(sGroup)" tag of the parent
directory of the file to be stored.
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• <store>: The store name of the file to be stored as specified in the ".(tag)(OSMTemplate)" tag of the
parent directory of the file to be stored.

• <bfid>: Bitfile ID (get and remove only) (e.g. 000451243.2542452542.25424524)

Enstore specific storage information’s keys

• <group>: The storage group (e.g. cdf, cms ...)

• <family>: The file family (e.g. sgi2test, h6nxl8, ...)

• <bfid>: Bitfile ID (get only) (e.g. B0MS105746894100000)

• <volume>: Tape Volume (get only) (e.g. IA6912)

• <location>: Location on tape (get only) (e.g. : 0000_000000000_0000117)

There might be more key values pairs which are used by the dCache internally and which should not affect
the behaviour of the executable.

Storage URI

The <storage-uri> is formatted as follows:

hsmType://hsmInstance/?store=<storename>&group=<groupname>&bfid=<bfid>

• <hsmType>: The type of the Tertiary Storage System

• <hsmInstance>: The name of the instance

• <storename> and <groupname> : The store and group name of the file as provided by the arguments
to this executable.

• <bfid>: The unique identifier needed to restore or remove the file if necessary.

Example:

A storage-uri:

osm://osm/?store=sql&group=chimera&bfid=3434.0.994.1188400818542

Summary of return codes

Return Code Meaning Behaviour for PUT
FILE

Behaviour for GET
FILE

30 <= rc < 40 User defined Deactivates request Reports problem to
poolmanager
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Return Code Meaning Behaviour for PUT
FILE

Behaviour for GET
FILE

41 No space left on device Pool retries Disables pool and reports
problem to poolman-
ager

42 Disk read I/O error Pool retries Disables pool and reports
problem to poolman-
ager

43 Disk write I/O error Pool retries Disables pool and reports
problem to poolman-
ager

other - Pool retries Reports problem to
poolmanager

The executable and the STORE FILE operation
Whenever a disk file needs to be copied to a Tertiary Storage System dCache automatically launches an
executable on the pool containing the file to be copied. Exactly one instance of the executable is
started for each file. Multiple instances of the executable may run concurrently for different files. The
maximum number of concurrent instances of the executables per pool as well as the full path of the
executable can be configured in the ’setup’ file of the pool as described in the section called “The pool
’setup’ file”.

The following arguments are given to the executable of a STORE FILE operation on startup.

put <pnfsID> <filename> -si=<storage-information> <more options>
Details on the meaning of certain arguments are described in the section called “Summary of command line
options”.

With the arguments provided the executable is supposed to copy the file into the Tertiary Storage System.
The executable must not terminate before the transfer of the file was either successful or failed.

Success must be indicated by a 0 return of the executable. All non-zero values are interpreted as a failure
which means, dCache assumes that the file has not been copied to tape.

In case of a 0 return code the executable has to return a valid storage URI to dCache in formate:

hsmType://hsmInstance/?store=<storename>&group=<groupname>&bfid=<bfid>

Details on the meaning of certain parameters are described above.

The <bfid> can either be provided by the TSS as result of the STORE FILE operation or the pnfsID
may be used. The latter assumes that the file has to be stored with exactly that pnfsID within the TSS.
Whatever URI is chosen, it must allow to uniquely identify the file within the Tertiary Storage System.

Note

Only the URI must be printed to stdout by the executable. Additional information printed either
before or after the URI will result in an error. stderr can be used for additional debug information
or error messages.
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The executable and the FETCH FILE operation
Whenever a disk file needs to be restored from a Tertiary Storage System dCache automatically launches
an executable on the pool containing the file to be copied. Exactly one instance of the executable
is started for each file. Multiple instances of the executable may run concurrently for different files.
The maximum number of concurrent instances of the executable per pool as well as the full path of
the executable can be configured in the ’setup’ file of the pool as described in the section called “The
pool ’setup’ file”.

The following arguments are given to the executable of a FETCH FILE operation on startup:

get <pnfsID> <filename> -si=<storage-information> -uri=<storage-uri> <more op-
tions>
Details on the meaning of certain arguments are described in the section called “Summary of command line
options”. For return codes see the section called “Summary of return codes”.

The executable and the REMOVE FILE operation
Whenever a file is removed from the dCache namespace (file system) a process inside dCache makes sure
that all copies of the file are removed from all internal and external media. The pool which is connected to
the TSS which stores the file is activating the executable with the following command line options:

remove -uri=<storage-uri> <more options>
Details on the meaning of certain arguments are described in the section called “Summary of command line
options”. For return codes see the section called “Summary of return codes”.

The executable is supposed to remove the file from the TSS and report a zero return code. If a non-zero
error code is returned, the dCache will call the script again at a later point in time.

Configuring pools to interact with a Ter-
tiary Storage System
The executable interacting with the Tertiary Storage System (TSS), as described in the chapter above,
has to be provided to dCache on all pools connected to the TSS. The executable, either a script or a
binary, has to be made “executable” for the user, dCache is running as, on that host.

The following files have to be modified to allow dCache to interact with the TSS.

• The /var/lib/dcache/config/poolmanager.conf file (one per system)

• The pool layout file (one per pool host)

• The pool 'setup' file (one per pool)

• The namespaceDomain layout file (one per system)

After the layout files and the various ’setup’ files have been corrected, the following domains have to be
restarted :

• pool services
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• dCacheDomain

• namespaceDomain

The dCache layout files

The /var/lib/dcache/config/poolmanager.conf file
To be able to read a file from the tape in case the cached file has been deleted from all pools, enable the
restore-option. The best way to do this is to log in to the Admin Interface and run the following commands:

[example.dcache.org] (local) admin > cd PoolManager
[example.dcache.org] (PoolManager) admin > pm set -stage-allowed=yes
[example.dcache.org] (PoolManager) admin > save

A restart of the dCacheDomain is not necessary in this case.

Alternatively, if the file /var/lib/dcache/config/poolmanager.conf already exists then you
can add the entry

pm set -stage allowed=yes

and restart the dCacheDomain.

Warning
Do not create the file /var/lib/dcache/config/poolmanager.conf with this single en-
try! This will result in an error.

The pool layout
The dCache layout file must be modified for each pool node connected to a TSS. If your pool nodes have been
configured correctly to work without TSS, you will find the entry lfs=precious in the layout file (that
is located in /etc/dcache/layouts and in the file /etc/dcache/dcache.conf respectively) for
each pool service. This entry is a disk-only-option and has to be removed for each pool which should be
connected to a TSS. This will default the lfs parameter to hsm which is exactly what we need.

The pool ’setup’ file
The pool ’setup’ file is the file $poolHomeDir/$poolName/setup. It mainly defines 3 details related
to TSS connectivity.

• Pointer to the executable which is launched on storing and fetching files.

• The maximum number of concurrent STORE FILE requests allowed per pool.

• The maximum number of concurrent FETCH FILE requests allowed per pool.

Define the executable and Set the maximum number of concurrent PUT and GET operations:

hsm set <hsmType> [<hsmInstanceName>] [-command=</path/to/executable>] [-key=<value>]

#
#  PUT operations
# set the maximum number of active PUT operations >= 1
#
st set max active <numberOfConcurrentPUTS>
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#
# GET operations
# set the maximum number of active GET operations >= 1
#
rh set max active <numberOfConcurrentGETs>

• <hsmType>: the type ot the TSS system. Must be set to “osm” for basic setups.

• <hsmInstanceName>: the instance name of the TSS system. Must be set to “osm” for basic setups.

• </path/to/executable>: the full path to the executable which should be launched for each
TSS operation.

Setting the maximum number of concurrent PUT and GET operations.

Both numbers must be non zero to allow the pool to perform transfers.

Example:

We provide a script to simulate a connection to a TSS. To use this script place it in the directory /usr/
share/dcache/lib, and create a directory to simulate the base of the TSS.

[root] # mkdir -p /hsmTape/data

Login to the Admin Interface to change the entry of the pool ’setup’ file for a pool named pool_1.

(local) admin > cd pool_1
(pool_1) admin > hsm set osm osm
(pool_1) admin > hsm set osm -command=/usr/share/dcache/lib/hsmscript.sh
(pool_1) admin > hsm set osm -hsmBase=/hsmTape
(pool_1) admin > st set max active 5
(pool_1) admin > rh set max active 5
(pool_1) admin > save

The namespace layout

In order to allow dCache to remove files from attached TSSes, the “cleaner.enable.hsm = true” must be
added immediately underneath the [namespaceDomain/cleaner] service declaration:

[namespaceDomain]
 ... other services ...
[namespaceDomain/cleaner]
cleaner.enable.hsm = true
.. more ...

What happens next
After restarting the necessary dCache domains, pools, already containing files, will start transferring them
into the TSS as those files only have a disk copy so far. The number of transfers is determined by the
configuration in the pool ’setup’ file as described above in the section called “The pool ’setup’ file”.

How to Store-/Restore files via the Admin
Interface
In order to see the state of files within a pool, login into the pool in the admin interface and run the command
rep ls.
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[example.dcache.org] (<poolname>) admin > rep ls

The output will have the following format:

PNFSID <MODE-BITS(LOCK-TIME)[OPEN-COUNT]> SIZE si={STORAGE-CLASS}

• PNFSID: The pnfsID of the file

• MODE-BITS:

   CPCScsRDXEL
   |||||||||||
   ||||||||||+--  (L) File is locked (currently in use)
   |||||||||+---  (E) File is in error state
   ||||||||+----  (X) File is pinned (aka "sticky")
   |||||||+-----  (D) File is in process of being destroyed
   ||||||+------  (R) File is in process of being removed
   |||||+-------  (s) File sends data to back end store
   ||||+--------  (c) File sends data to client (dCap,FTP...)
   |||+---------  (S) File receives data from back end store
   ||+----------  (C) File receives data from client (dCap,FTP)
   |+-----------  (P) File is precious, i.e., it is only on disk
   +------------  (C) File is on tape and only cached on disk.

• LOCK-TIME: The number of milli-seconds this file will still be locked. Please note that this is an internal
lock and not the pin-time (SRM).

• OPEN-COUNT: Number of clients currently reading this file.

• SIZE: File size

• STORAGE-CLASS: The storage class of this file.

Example:

[example.dcache.org] (pool_1) admin > rep ls
00008F276A952099472FAD619548F47EF972 <-P---------L(0)[0]> 291910 si={dteam:STATIC}
00002A9282C2D7A147C68A327208173B81A6 <-P---------L(0)[0]> 2011264 si={dteam:STATIC}
0000EE298D5BF6BB4867968B88AE16BA86B0 <C----------L(0)[0]> 1976 si={dteam:STATIC}

In order to flush a file to the tape run the command flush pnfsid.

[example.dcache.org] (<poolname>) admin > flush pnfsid <pnfsid>

Example:

[example.dcache.org] (pool_1) admin > flush pnfsid 00002A9282C2D7A147C68A327208173B81A6
Flush Initiated

A file that has been flushed to tape gets the flag ’C’.

Example:

[example.dcache.org] (pool_1) admin > rep ls
00008F276A952099472FAD619548F47EF972 <-P---------L(0)[0]> 291910 si={dteam:STATIC}
00002A9282C2D7A147C68A327208173B81A6 <C----------L(0)[0]> 2011264 si={dteam:STATIC}
0000EE298D5BF6BB4867968B88AE16BA86B0 <C----------L(0)[0]> 1976 si={dteam:STATIC}

To remove such a file from the repository run the command rep rm.

[example.dcache.org] (<poolname>) admin > rep rm <pnfsid>
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Example:

[example.dcache.org] (pool_1) admin > rep rm  00002A9282C2D7A147C68A327208173B81A6
Removed 00002A9282C2D7A147C68A327208173B81A6

In this case the file will be restored when requested.

To restore a file from the tape you can simply request it by initializing a reading transfer or you can fetch
it by running the command rh restore.

[example.dcache.org] (<poolname>) admin > rh restore [-block] <pnfsid>

Example:

[example.dcache.org] (pool_1) admin > rh restore 00002A9282C2D7A147C68A327208173B81A6
Fetch request queued

How to monitor what’s going on
This section briefly describes the commands and mechanisms to monitor the TSS PUT, GET and REMOVE
operations. dCache provides a configurable logging facility and a Command Line Admin Interface to query
and manipulate transfer and waiting queues.

Log Files
By default dCache is configured to only log information if something unexpected happens. However, to
get familiar with Tertiary Storage System interactions you might be interested in more details. This section
provides advice on how to obtain this kind of information.

The executable log file

Since you provide the executable, interfacing dCache and the TSS, it is in your responsibility to ensure
sufficient logging information to be able to trace possible problems with either dCache or the TSS. Each
request should be printed with the full set of parameters it receives, together with a timestamp. Furthermore
information returned to dCache should be reported.

dCache log files in general

In dCache, each domain (e.g. dCacheDomain, <pool>Domain etc) prints logging information into its
own log file named after the domain. The location of those log files it typically the /var/log or /var/
log/dCache directory depending on the individual configuration. In the default logging setup only errors
are reported. This behavior can be changed by either modifying /etc/dcache/logback.xml or using
the dCache CLI to increase the log level of particular components as described below.

Increase the dCache log level by changes in /etc/dcache/logback.xml

If you intend to increase the log level of all components on a particular host you would need to change
the /etc/dcache/logback.xml file as described below. dCache components need to be restarted to
activate the changes.
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<threshold>
     <appender>stdout</appender>
     <logger>root</logger>
     <level>warn</level>
   </threshold>

needs to be changed to

<threshold>
     <appender>stdout</appender>
     <logger>root</logger>
     <level>info</level>
   </threshold>

Important

The change might result in a significant increase in log messages. So don’t forget to change back
before starting production operation. The next section describes how to change the log level in a
running system.

Increase the dCache log level via the Command Line Admin Interface

Example:

Login into the dCache Command Line Admin Interface and increase the log level of a particular service,
for instance for the poolmanager service:

[example.dcache.org] (local) admin > cd PoolManager
[example.dcache.org] (PoolManager) admin > log set stdout ROOT INFO
[example.dcache.org] (PoolManager) admin > log ls
stdout:
  ROOT=INFO
  dmg.cells.nucleus=WARN*
  logger.org.dcache.cells.messages=ERROR*
.....

Obtain information via the dCache Command Line
Admin Interface
The dCache Command Line Admin Interface gives access to information describing the process of storing
and fetching files to and from the TSS, as there are:

• The Pool Manager Restore Queue. A list of all requests which have been issued to all pools for a FETCH
FILE operation from the TSS (rc ls)

• The Pool Collector Queue. A list of files, per pool and storage group, which will be scheduled for a
STORE FILE operation as soon as the configured trigger criteria match.

• The Pool STORE FILE Queue. A list of files per pool, scheduled for the STORE FILE operation.
A configurable amount of requests within this queue are active, which is equivalent to the number of
concurrent store processes, the rest is inactive, waiting to become active.

• The Pool FETCH FILE Queue. A list of files per pool, scheduled for the FETCH FILE operation.
A configurable amount of requests within this queue are active, which is equivalent to the number of
concurrent fetch processes, the rest is inactive, waiting to become active.
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For evaluation purposes, the pinboard of each component can be used to track down dCache behavior. The
pinboard only keeps the most recent 200 lines of log information but reports not only errors but informational
messages as well.

Example:

Check the pinboard of a service, here the poolmanager service.

[example.dcache.org] (local) admin > cd PoolManager
[example.dcache.org] (PoolManager) admin > show pinboard 100
08.30.45  [Thread-7] [pool_1 PoolManagerPoolUp] sendPoolStatusRelay: ...
08.30.59  [writeHandler] [NFSv41-dcachetogo PoolMgrSelectWritePool ...
....

Example:

The PoolManager Restore Queue.  Remove the file test.root with the pnfs-ID
00002A9282C2D7A147C68A327208173B81A6.

[example.dcache.org] (pool_1) admin > rep rm  00002A9282C2D7A147C68A327208173B81A6

Request the file test.root

[user] $ dccp dcap://example.dcache.org:/data/test.root test.root

Check the PoolManager Restore Queue:

[example.dcache.org] (local) admin > cd PoolManager
[example.dcache.org] (PoolManager) admin > rc ls
0000AB1260F474554142BA976D0ADAF78C6C@0.0.0.0/0.0.0.0-*/* m=1 r=0 [pool_1] [Staging 08.15
 17:52:16] {0,}

Example:

The Pool Collector Queue. 

[example.dcache.org] (local) admin > cd pool_1
[example.dcache.org] (pool_1) admin > queue ls -l queue
                   Name: chimera:alpha
              Class@Hsm: chimera:alpha@osm
 Expiration rest/defined: -39 / 0   seconds
 Pending   rest/defined: 1 / 0
 Size      rest/defined: 877480 / 0
 Active Store Procs.   :  0
  00001BC6D76570A74534969FD72220C31D5D

[example.dcache.org] (pool_1) admin > flush ls
Class                 Active   Error  Last/min  Requests    Failed
dteam:STATIC@osm           0       0         0         1         0

Example:

The pool STORE FILE Queue. 

[example.dcache.org] (local) admin > cd pool_1
[example.dcache.org] (pool_1) admin > st ls
0000EC3A4BFCA8E14755AE4E3B5639B155F9  1   Fri Aug 12 15:35:58 CEST 2011

Example:
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The pool FETCH FILE Queue. 

[example.dcache.org] (local) admin > cd pool_1
[example.dcache.org] (pool_1) admin >  rh ls
0000B56B7AFE71C14BDA9426BBF1384CA4B0  0   Fri Aug 12 15:38:33 CEST 2011

To check the repository on the pools run the command rep ls that is described in the beginning of the section
called “How to Store-/Restore files via the Admin Interface”.

Example of an executable to simulate a
tape backend

Example:

#!/bin/sh
#
#set -x
#
logFile=/tmp/hsm.log
#
################################################################
#
#  Some helper functions
#
##.........................................
#
# print usage
#
usage() {
   echo "Usage : put|get <pnfsId> <filePath> [-si=<storageInfo>] [-key[=value] ...]" 1>&2
}
##.........................................
#
#
printout() {
#---------
   echo "$pnfsid : $1" >>${logFile}
   return 0
}
##.........................................
#
#  print error into log file and to stdout.
#
printerror() {
#---------

   if [ -z "$pnfsid" ] ; then
#      pp="000000000000000000000000000000000000"
      pp="------------------------------------"
   else
      pp=$pnfsid
   fi

   echo "$pp : (E) : $*" >>${logFile}
   echo "$pp : $*" 1>&2

}
##.........................................
#
#  find a key in the storage info
#
findKeyInStorageInfo() {
#-------------------
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   result=`echo $si  | awk  -v hallo=$1 -F\; '{ for(i=1;i<=NF;i++){ split($i,a,"=") ; if( a[1] ==
 hallo )print a[2]} }'`
   if [ -z "$result" ] ; then return 1 ; fi
   echo $result
   exit 0

}
##.........................................
#
#  find a key in the storage info
#
printStorageInfo() {
#-------------------
   printout "storageinfo.StoreName : $storeName"
   printout "storageinfo.store : $store"
   printout "storageinfo.group : $group"
   printout "storageinfo.hsm   : $hsmName"
   printout "storageinfo.accessLatency   : $accessLatency"
   printout "storageinfo.retentionPolicy : $retentionPolicy"
   return 0
}
##.........................................
#
#  assign storage info the keywords
#
assignStorageInfo() {
#-------------------

    store=`findKeyInStorageInfo "store"`
    group=`findKeyInStorageInfo "group"`
    storeName=`findKeyInStorageInfo "StoreName"`
    hsmName=`findKeyInStorageInfo "hsm"`
    accessLatency=`findKeyInStorageInfo "accessLatency"`
    retentionPolicy=`findKeyInStorageInfo "retentionPolicy"`
    return 0
}
##.........................................
#
# split the arguments into the options -<key>=<value> and the
# positional arguments.
#
splitArguments() {
#----------------
#
  args=""
  while [ $# -gt 0 ] ; do
    if expr "$1" : "-.*" >/dev/null ; then
       a=`expr "$1" : "-\(.*\)" 2>/dev/null`
       key=`echo "$a" | awk -F= '{print $1}' 2>/dev/null`
         value=`echo "$a" | awk -F= '{for(i=2;i<NF;i++)x=x $i "=" ; x=x $NF ; print x }' 2>/dev/
null`
       if [ -z "$value" ] ; then a="${key}=" ; fi
       eval "${key}=\"${value}\""
       a="export ${key}"
       eval "$a"
    else
       args="${args} $1"
    fi
    shift 1
  done
  if [ ! -z "$args" ] ; then
     set `echo "$args" | awk '{ for(i=1;i<=NF;i++)print $i }'`
  fi
  return 0
}
#
#
##.........................................
#
splitUri() {
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#----------------
#
  uri_hsmName=`expr "$1" : "\(.*\)\:.*"`
  uri_hsmInstance=`expr "$1" : ".*\:\/\/\(.*\)\/.*"`
  uri_store=`expr "$1" : ".*\/\?store=\(.*\)&group.*"`
  uri_group=`expr "$1" : ".*group=\(.*\)&bfid.*"`
  uri_bfid=`expr "$1" : ".*bfid=\(.*\)"`
#
  if [  \( -z "${uri_store}" \) -o \( -z "${uri_group}" \) -o \(  -z "${uri_bfid}" \) \
     -o \( -z "${uri_hsmName}" \) -o \( -z "${uri_hsmInstance}" \) ] ; then
     printerror "Illegal URI formal : $1"
     return 1
  fi
  return 0

}
#########################################################
#
echo "--------- $* `date`" >>${logFile}
#
#########################################################
#
createEnvironment() {

   if [ -z "${hsmBase}" ] ; then
      printerror "hsmBase not set, can't continue"
      return 1
   fi
   BASE=${hsmBase}/data
   if [ ! -d ${BASE} ] ; then
      printerror "${BASE} is not a directory or doesn't exist"
      return 1
   fi
}
##
#----------------------------------------------------------
doTheGetFile() {

   splitUri $1
   [ $? -ne 0 ] && return 1

   createEnvironment
   [ $? -ne 0 ] && return 1

   pnfsdir=${BASE}/$uri_hsmName/${uri_store}/${uri_group}
   pnfsfile=${pnfsdir}/$pnfsid

   cp $pnfsfile $filename 2>/dev/null
   if [ $? -ne 0 ] ; then
      printerror "Couldn't copy file $pnfsfile to $filename"
      return 1
   fi

   return 0
}
##
#----------------------------------------------------------
doTheStoreFile() {

   splitUri $1
   [ $? -ne 0 ] && return 1

   createEnvironment
   [ $? -ne 0 ] && return 1

   pnfsdir=${BASE}/$hsmName/${store}/${group}
   mkdir -p ${pnfsdir} 2>/dev/null
   if [ $? -ne 0 ] ; then
      printerror "Couldn't create $pnfsdir"
      return 1
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   fi
   pnfsfile=${pnfsdir}/$pnfsid

   cp $filename $pnfsfile 2>/dev/null
   if [ $? -ne 0 ] ; then
      printerror "Couldn't copy file $filename to $pnfsfile"
      return 1
   fi

   return 0

}
##
#----------------------------------------------------------
doTheRemoveFile() {

   splitUri $1
   [ $? -ne 0 ] && return 1

   createEnvironment
   [ $? -ne 0 ] && return 1

   pnfsdir=${BASE}/$uri_hsmName/${uri_store}/${uri_group}
   pnfsfile=${pnfsdir}/$uri_bfid

   rm $pnfsfile 2>/dev/null
   if [ $? -ne 0 ] ; then
      printerror "Couldn't remove file $pnfsfile"
      return 1
   fi

   return 0
}
#########################################################
#
#  split arguments
#
  args=""
  while [ $# -gt 0 ] ; do
    if expr "$1" : "-.*" >/dev/null ; then
       a=`expr "$1" : "-\(.*\)" 2>/dev/null`
       key=`echo "$a" | awk -F= '{print $1}' 2>/dev/null`
         value=`echo "$a" | awk -F= '{for(i=2;i<NF;i++)x=x $i "=" ; x=x $NF ; print x }' 2>/dev/
null`
       if [ -z "$value" ] ; then a="${key}=" ; fi
       eval "${key}=\"${value}\""
       a="export ${key}"
       eval "$a"
    else
       args="${args} $1"
    fi
    shift 1
  done
  if [ ! -z "$args" ] ; then
     set `echo "$args" | awk '{ for(i=1;i<=NF;i++)print $i }'`
  fi
#
#
if [ $# -lt 1 ] ; then
    printerror "Not enough arguments : ... put/get/remove ..."
    exit 1
fi
#
command=$1
pnfsid=$2
#
# !!!!!!  Hides a bug in the dCache HSM remove
#
if [ "$command" = "remove" ] ; then pnfsid="000000000000000000000000000000000000" ; fi
#
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#
printout "Request for $command started `date`"
#
################################################################
#
if [ "$command" = "put" ] ; then
#
################################################################
#
  filename=$3
#
  if [ -z "$si" ] ; then
     printerror "StorageInfo (si) not found in put command"
     exit 5
  fi
#
  assignStorageInfo
#
  printStorageInfo
#
  if [ \( -z "${store}" \) -o \( -z "${group}" \) -o \( -z "${hsmName}" \) ] ; then
     printerror "Didn't get enough information to flush : hsmName = $hsmName store=$store group=
$group pnfsid=$pnfsid "
     exit 3
  fi
#
  uri="$hsmName://$hsmName/?store=${store}&group=${group}&bfid=${pnfsid}"

  printout "Created identifier : $uri"

  doTheStoreFile $uri
  rc=$?
  if [ $rc -eq 0 ] ; then echo $uri ; fi

  printout "Request 'put' finished at `date` with return code $rc"
  exit $rc
#
#
################################################################
#
elif [ "$command" = "get"  ] ; then
#
################################################################
#
  filename=$3
  if [ -z "$uri" ] ; then
     printerror "Uri not found in arguments"
     exit 3
  fi
#
  printout "Got identifier : $uri"
#
  doTheGetFile $uri
  rc=$?
  printout "Request 'get' finished at `date` with return code $rc"
  exit $rc
#
################################################################
#
elif [ "$command" = "remove" ] ; then
#
################################################################
#
   if [ -z "$uri" ] ; then
      printerror "Illegal Argument error : URI not specified"
      exit 4
   fi
#
   printout "Remove uri = $uri"
   doTheRemoveFile $uri
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   rc=$?
#
   printout "Request 'remove' finished at `date` with return code $rc"
   exit $rc
#
else
#
   printerror "Expected command : put/get/remove , found : $command"
   exit 1
#
fi



87

Chapter 9. File Hopping
File hopping is a collective term in dCache, summarizing the possibility of having files being transferred
between dCache pools triggered by a variety of conditions. The most prominent examples are:

• If a file is requested by a client but the file resides on a pool from which this client, by configuration, is
not allowed to read data, the dataset is transferred to an “allowed” pool first.

• If a pool encounters a steady high load, the system may, if configured, decide to replicate files to other
pools to achieve an equal load distribution.

• HSM restore operations may be split into two steps. The first one reads data from tertiary storage to
an “HSM connected” pool and the second step takes care that the file is replicated to a general read
pool. Under some conditions this separation of HSM and non-HSM pools might become necessary for
performance reasons.

• If a dataset has been written into dCache it might become necessary to have this file replicated instantly.
The reasons can be, to either have a second, safe copy, or to make sure that clients don’t access the file
for reading on the write pools.

File Hopping on arrival from outside
dCache
File Hopping on arrival is a term, denoting the possibility of initiating a pool to pool transfer as the result
of a file successfully arriving on a pool from some external client. Files restored from HSM or arriving on
a pool as the result of a pool to pool transfer will not yet be forwarded.

Forwarding of incoming files can be enabled by setting the pool.destination.replicate property
in the /etc/dcache/dcache.conf file or per pool in the layout file. It can be set to on, PoolMan-
ager or HoppingManager, where on does the same as PoolManager.

The pool is requested to send a replicateFile message to either the PoolManager or to the Hop-
pingManager, if available. The different approaches are briefly described below and in more detail in
the subsequent sections.

• The replicateFile message is sent to the PoolManager. This happens for all files arriving at that
pool from outside (no restore or p2p). No intermediate HoppingManager is needed. The restrictions are

• All files are replicated. No pre-selection, e.g. on the storage class can be done.

• The mode of the replicated file is determined by the destination pool and cannot be overwritten. See
the section called “File mode of replicated files”

• The replicateFile message is sent to the HoppingManager. The HoppingManager can be
configured to replicate certain storage classes only and to set the mode of the replicated file according to
rules. The file mode of the source file cannot be modified.
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File mode of replicated files
The mode of a replicated file can either be determined by settings in the destination pool or by the Hop-
pingManager. It can be cached or precious.

• If the PoolManager is used for replication, the mode of the replicated file is determined by the desti-
nation pool. The default setting is cached.

• If a HoppingManager is used for file replication, the mode of the replicated file is determined by the
HoppingManager rule responsible for this particular replication. If the destination mode is set to keep
in the rule, the mode of the destination pool determines the final mode of the replicated file.

File Hopping managed by the PoolManager
To enable replication on arrival by the PoolManager set the property
pool.destination.replicate to PoolManager for the particular pool

[<exampleDomain>]
[<exampleDomain>/pool]
...
pool.destination.replicate=PoolManager

or for several pools in the /etc/dcache/dcache.conf file.

...
pool.destination.replicate=PoolManager

File hopping configuration instructs a pool to send a replicateFile request to the PoolManager as
the result of a file arriving on that pool from some external client. All arriving files will be treated the same.
The PoolManager will process this transfer request by trying to find a matching link (Please find detailed
information at Chapter 7, The poolmanager Service.

It is possible to configure the PoolManager such that files are replicated from this pool to a special set
of destination pools.

Example:

Assume that we want to have all files, arriving on pool ocean to be immediately replicated to a subset
of read pools. This subset of pools is described by the poolgroup ocean-copies. No other pool is
member of the poolgroup ocean-copies.

Other than that, files arriving at the pool mountain should be replicated to all read pools from which
farm nodes on the 131.169.10.0/24 subnet are allowed to read.

The layout file defining the pools ocean and mountain should read like this:

[exampleDomain]
[exampleDomain/pool]

name=ocean
path=/path/to/pool-ocean
pool.wait-for-files=${path}/data
pool.destination.replicate=PoolManager

name=mountain
path=/path/to/pool-mountain
pool.wait-for-files=${path}/data
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pool.destination.replicate=PoolManager

In the layout file it is defined that all files arriving on the pools ocean or mountain should be repli-
cated immediately. The following PoolManager.conf file contains instructions for the PoolMan-
ager how to replicate these files. Files arriving at the ocean pool will be replicated to the ocean-
copies subset of the read pools and files arriving at the pool mountain will be replicated to all read
pools from which farm nodes on the 131.169.10.0/24 subnet are allowed to read.

#
# define the units
#
psu create unit -protocol   */*
psu create unit -net        0.0.0.0/0.0.0.0
psu create unit -net        131.169.10.0/255.255.255.0
# create the faked net unit
psu create unit -net        192.1.1.1/255.255.255.255
psu create unit -store      *@*
psu create unit -store      ocean:raw@osm
#
#
#  define unit groups
#
psu create ugroup  any-protocol
psu create ugroup  any-store
psu create ugroup  ocean-copy-store
psu create ugroup farm-network
psu create ugroup ocean-copy-network
#
psu addto ugroup any-protocol */*
psu addto ugroup any-store    *@*
psu addto ugroup ocean-copy-store ocean:raw@osm
psu addto ugroup farm-network  131.169.10.0/255.255.255.0
psu addto ugroup ocean-copy-network  192.1.1.1/255.255.255.255
psu addto ugroup allnet-cond 0.0.0.0/0.0.0.0
psu addto ugroup allnet-cond 131.169.10.0/255.255.255.0
psu addto ugroup allnet-cond 192.1.1.1/255.255.255.255
#
#
#  define the write-pools
#
psu create pool ocean
psu create pool mountain
#
#
#  define the write-pools poolgroup
#
psu create pgroup write-pools
psu addto pgroup write-pools ocean
psu addto pgroup write-pools mountain
#
#
#  define the write-pools-link, add write pools and set transfer preferences
#
psu create link write-pools-link any-store any-protocol allnet-cond
psu addto link write-pools-link write-pools
psu set link farm-read-link -readpref=0 -writepref=10 -cachepref=0 -p2ppref=-1
#
#
#  define the read-pools
#
psu create pool read-pool-1
psu create pool read-pool-2
psu create pool read-pool-3
psu create pool read-pool-4
#
#
#  define the farm-read-pools poolgroup and add pool members
#
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psu create pgroup farm-read-pools
psu addto pgroup farm-read-pools read-pool-1
psu addto pgroup farm-read-pools read-pool-2
psu addto pgroup farm-read-pools read-pool-3
psu addto pgroup farm-read-pools read-pool-4
#
#
#  define the ocean-copy-pools poolgroup and add a pool
#
psu create pgroup ocean-copy-pools
psu addto pgroup ocean-copy-pools  read-pool-1
#
#
# define the farm-read-link, add farm-read-pools and set transfer preferences
#
psu create link farm-read-link any-store any-protocol farm-network
psu addto link farm-read-link farm-read-pools
psu set link farm-read-link -readpref=10 -writepref=0 -cachepref=10 -p2ppref=-1
#
#
# define the ocean-copy-link, add ocean-copy-pools and set transfer preferences
#
psu create link ocean-copy-link ocean-copy-store any-protocol ocean-copy-network
psu addto link ocean-copy-link ocean-copy-pools
psu set link ocean-copy-link -readpref=10 -writepref=0 -cachepref=10 -p2ppref=-1
#
#

While 131.169.10.1 is a legal IP address e.g. of one of your farm nodes, the 192.1.1.1 IP address
must not exist anywhere at your site.

File Hopping managed by the HoppingManager
With the HoppingManager you have several configuration options for file hopping on arrival,
e.g.:

• With the HoppingManager you can define a rule such that only the files with a specific storage class
should be replicated.

• You can specify the protocol the replicated files can be accessed with.

• You can specify from which ip-adresses it should be possible to access the files.

Starting the FileHopping Manager service

Add the hoppingmanager service to a domain in your layout file and restart the domain.

[<DomainName>]
[<DomainName>/hoppingmanager]

Initially no rules are configured for the HoppingManager. You may add rules by either edit the file /var/
lib/dcache/config/HoppingManager.conf and restart the hoppingmanager service, or use
the admin interface and save the modifications by the save command into the HoppingManager.conf

Configuring pools to use the HoppingManager

To enable replication on arrival by the HoppingManager set the property
pool.destination.replicate to HoppingManager for the particular pool

[<exampleDomain>]
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[<exampleDomain>/pool]
...
pool.destination.replicate=HoppingManager

or for several pools in the /etc/dcache/dcache.conf file.

...
pool.destination.replicate=HoppingManager

HoppingManager Configuration Introduction

• The HoppingManager essentially receives replicateFile messages from pools, configured to
support file hopping, and either discards or modifies and forwards them to the PoolManager, depending
on rules described below.

• The HoppingManager decides on the action to perform, based on a set of configurable rules. Each rule
has a name. Rules are checked in alphabetic order concerning their names.

• A rule it triggered if the storage class matches the storage class pattern assigned to that rule. If a rule is
triggered, it is processed and no further rule checking is performed. If no rule is found for this request
the file is not replicated.

• If for whatever reason, a file cannot be replicated, NO RETRY is being performed.

• Processing a triggered rule can be :

• The message is discarded. No replication is done for this particular storage class.

• The rule modifies the replicateFile message, before it is forwarded to the PoolManager.

An ip-number of a farm-node of the farm that should be allowed to read the file can be added to the
replicateFile message.

The mode of the replicated file can be specified. This can either be precious, cached or keep.
keep means that the pool mode of the source pool determines the replicated file mode.

The requested protocol can be specified.

HoppingManager Configuration Reference
         define hop OPTIONS <name> <pattern> precious|cached|keep
            OPTIONS
              -destination=<cellDestination> # default : PoolManager
              -overwrite
              -continue
              -source=write|restore|*   #  !!!! for experts only      StorageInfoOptions
              -host=<destinationHostIp>
              -protType=dCap|ftp...
              -protMinor=<minorProtocolVersion>
              -protMajor=<majorProtocolVersion> 

name
This is the name of the hopping rule. Rules are checked in alphabetic order concerning their names.

pattern
pattern is a storage class pattern. If the incoming storage class matches this pattern, this rule is
processed.
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precious|cached|keep
precious|cached|keep determines the mode of the replicated file. With keep the mode of the
file will be determined by the mode of the destination pool.

-destination
This defines which cell to use for the pool to pool transfer. By default this is the PoolManager and
this should not be changed.

-overwrite
In case, a rule with the same name already exists, it is overwritten.

-continue
If a rule has been triggered and the corresponding action has been performed, no other rules are checked.
If the continue option is specified, rule checking continues. This is for debugging purposes only.

-source
-source defines the event on the pool which has triggered the hopping. Possible values are restore
and write. restore means that the rule should be triggered if the file was restored from a tape and
write means that it should be triggered if the file was written by a client.

-host
Choose the id of a node of the farm of worker-nodes that should be allowed to access the file. Configure
the poolmanager respectively.

-protType, -protMajor, -protMinor
Specify the protocol which should be used to access the replicated files.

HoppingManager configuration examples

In order to instruct a particular pool to send a replicateFile message to the hoppingmanager ser-
vice, you need to add the line pool.destination.replicate=HoppingManager to the layout
file.

Example:

[exampleDomain]
[exampleDomain/pool]

name=write-pool
path=/path/to/write-pool-exp-a
pool.wait-for-files=${path}/data
pool.destination.replicate=HoppingManager
...

Assume that all files of experiment-a will be written to an expensive write pool and subsequently flushed
to tape. Now some of these files need to be accessed without delay. The files that need fast acceess
possibility will be given the storage class exp-a:need-fast-access@osm.

In this example we will configure the file hopping such that a user who wants to access a file that has
the above storage info with the NFSv4.1 protocol will be able to do so.

Define a rule for hopping in the /var/lib/dcache/config/HoppingManager.conf file.

define hop nfs-hop exp-a:need-fast-access@osm cached -protType=nfs -protMajor=4 -protMinor=1
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This assumes that the storage class of the file is exp-a:nfs@osm. The mode of the file, which was
precious on the write pool will have to be changed to cached on the read pool.

The corresponding /var/lib/dcache/config/poolmanager.conf file could read like this:

#
# define the units
#
psu create unit -protocol   */*
psu create unit -net        0.0.0.0/0.0.0.0
psu create unit -store      exp-a:need-fast-access@osm
#
#
#  define unit groups
#
psu create ugroup  any-protocol
psu create ugroup  exp-a-copy-store
psu create ugroup allnet-cond
#
psu addto ugroup any-protocol */*
psu addto ugroup exp-a-copy-store    exp-a:need-fast-access@osm
psu addto ugroup allnet-cond 0.0.0.0/0.0.0.0
#
#
#  define the write-pool
#
psu create pool write-pool
#
#
#  define the read-pool
#
psu create pool read-pool
#
#
#  define the exp-a-read-pools poolgroup and add a pool
#
psu create pgroup exp-a-read-pools
psu addto pgroup exp-a-read-pools read-pool
#
#
#  define the exp-a-write-pools poolgroup and add a pool
#
psu create pgroup exp-a-write-pools
psu addto pgroup exp-a-write-pools write-pool
#
#
# define the exp-a-read-link, add exp-a-read-pools and set transfer preferences
#
psu create link exp-a-read-link exp-a-copy-store any-protocol allnet-cond
psu addto link exp-a-read-link exp-a-read-pools
psu set link exp-a-read-link -readpref=10 -writepref=0 -cachepref=10 -p2ppref=-1
#
#
# define the exp-a-write-link, add exp-a-write-pools and set transfer preferences
#
psu create link exp-a-write-link exp-a-copy-store any-protocol allnet-cond
psu addto link exp-a-write-link exp-a-write-pools
psu set link exp-a-write-link -readpref=0 -writepref=10 -cachepref=0 -p2ppref=-1
#
#
#
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Chapter 10. Authorization in dCache
To limit access to data, dCache comes with an authentication and authorization interface called gPlazma2.
gPlazma is an acronym for Grid-aware PLuggable AuthorZation Management. Earlier versions of dCache
worked with gPlazma1 which has now been completely removed from dCache. So if you are upgrading,
you have to reconfigure gPlazma if you used gPlazma1 until now.

Basics
Though it is possible to allow anonymous access to dCache it is usually desirable to authenticate users. The
user then has to connect to one of the different doors (e.g., GridFTP door, dCap door) and login with
credentials that prove his identity. In Grid-World these credentials are very often X.509 certificates, but
dCache also supports other methods like username/password and kerberos authentication.

The door collects the credential information from the user and sends a login request to the configured au-
thorization service (i.e., gPlazma) Within gPlazma the configured plug-ins try to verify the users identity
and determine his access rights. From this a response is created that is then sent back to the door and added to
the entity representing the user in dCache. This entity is called subject. While for authentication usually
more global services (e.g., ARGUS) may be used, the mapping to site specific UIDs has to be configured
on a per site basis.

Configuration
gPlazma2 is configured by the PAM-style configuration file /etc/dcache/gplazma.conf. Each
line of the file is either a comment (i.e., starts with #, is empty, or defines a plugin. Plugin defining lines start
with the plugin stack type (one of auth, map, account, session identity), followed by a PAM-style
modifier (one of optional, sufficient, required, requisite), the plugin name and an optional
list of key-value pairs of parameters. During the login process they will be executed in the order auth, map,
account and session. The identity plugins are not used during login, but later on to map from UID
+GID back to user names (e.g., for NFS). Within these groups they are used in the order they are specified.

auth|map|account|session|identity optional|required|requisite|sufficient <plug-in>
 ["<key>=<value>" ...]

A complete configuration file will look something like this:

Example:

# Some comment
auth    optional  x509
auth    optional  voms
map     requisite vorolemap
map     requisite authzdb authzdb=/etc/grid-security/authzdb
session requisite authzdb

Login Phases

auth
auth-plug-ins are used to read the users public and private credentials and ask some authority, if those
are valid for accessing the system.
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map
map-plug-ins map the user information obtained in the auth step to UID and GIDs. This may also be
done in several steps (e.g., the vorolemap plug-in maps the users DN+FQAN to a username which
is then mapped to UID/GIDs by the authzdb plug-in.

account
account-plug-ins verify the validity of a possibly mapped identity of the user and may reject the login
depending on information gathered within the map step.

session
session plug-ins usually enrich the session with additional attributes like the user’s home directory.

identity
identity plug-ins are responsible for mapping UID and GID to user names and vice versa during
the work with dCache.

The meaning of the modifiers follow the PAM specification:

Modifiers

optional
The success or failure of this plug-in is only important if it is the only plug-in in the stack associated
with this type.

sufficient
Success of such a plug-in is enough to satisfy the authentication requirements of the stack of plug-ins
(if a prior required plug-in has failed the success of this one is ignored). A failure of this plug-in is not
deemed as fatal for the login attempt. If the plug-in succeeds gPlazma2 immediately proceeds with
the next plug-in type or returns control to the door if this was the last stack.

required
Failure of such a plug-in will ultimately lead to gPlazma2 returning failure but only after the remaining
plug-ins for this type have been invoked.

requisite
Like required, however, in the case that such a plug-in returns a failure, control is directly returned
to the door.

Plug-ins
gPlazma2 functionality is configured by combining different types of plug-ins to work together in a way
that matches your requirements. For this purpose there are five different types of plug-ins. These types
correspond to the keywords auth, map, account, session and identity as described in the previous
section. The plug-ins can be configured via properties that may be set in dcache.conf, the layout-file
or in gplazma.conf.

auth Plug-ins

kpwd

The kpwd plug-in authorizes users by username and password, by pairs of DN and FQAN and by Ker-
beros principals.
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Properties

gplazma.kpwd.file
Path to dcache.kpwd

Default: /etc/dcache/dcache.kpwd

voms

The voms plug-in is an auth plug-in. It can be used to verify X.509 credentials. It takes the certificates
and checks their validity by testing them against the trusted CAs. The verified certificates are then stored
and passed on to the other plug-ins in the stack.

Properties

gplazma.vomsdir.ca
Path to ca certificates

Default: /etc/grid-security/certificates

gplazma.vomsdir.dir
Path to vomsdir

Default: /etc/grid-security/vomsdir

X.509 plug-in

The X.509 plug-in is a auth plug-in that extracts X.509 certificate chains from the credentials of a user
to be used by other plug-ins.

map Plug-ins

kpwd

As a map plug-in it maps usernames to UID and GID. And as a session plug-in it adds root and home
path information to the session based on the user’s username.

Properties

gplazma.kpwd.file
Path to dcache.kpwd

Default: /etc/dcache/dcache.kpwd

authzdb

The authzdb plug-in takes a username and maps it to UID+GID using the storage-authzdb file.

Properties

gplazma.authzdb.file
Path to storage-authzdb
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Default: /etc/grid-security/storage-authzdb

GridMap

The gridmap plug-in maps GLOBUS identities and Kerberos identities to usernames.

Properties

gplazma.gridmap.file
Path to grid-mapfile

Default: /etc/grid-security/grid-mapfile

vorolemap

The voms plug-in maps pairs of DN and FQAN to usernames via a vorolemap file.

Properties

gplazma.vorolemap.file
Path to grid-vorolemap

/etc/grid-security/grid-vorolemap

krb5

The krb5 plug-in maps a kerberos principal to a username by removing the domain part from the principal.

Example:

                user@KRB-DOMAIN.EXAMPLE.ORG to user
              

nsswitch

The nsswitch plug-in uses the system’s nsswitch configuration to provide mapping.

Typically nsswitch plug-in will be combined with vorolemap plug-in, gridmap plug-in or krb5
plug-in:

Example:

# Map grid users to local accounts
auth    optional  x509 #1
auth    optional  voms #2
map     requisite vorolemap #3
map     requisite nsswitch #4
session requisite nsswitch #5
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In this example following is happening: extract user’s DN (1), extract and verify VOMS attributes (2),
map DN+Role to a local account (3), extract uid and gids for a local account (4) and, finally, extract
users home directory (5).

nis

The nis plug-in uses an existing NIS service to map username+password to a username.

Properties

gplazma.nis.server
NIS server host

Default: nisserv.domain.com

gplazma.nis.domain
NIS domain

Default: domain.com

The result of nis plug-in can be used by other plug-ins:

Example:

# Map grid or kerberos users to local accounts
auth    optional  x509 #1
auth    optional  voms #2
map     requisite vorolemap #3
map     optional  krb5 #4
map     optional  nis #5
session requisite nis #6

In this example two access methods are considered: grid based and kerberos based. If user comes with
grid certificate and VOMS role: extract user’s DN (1), extract and verify VOMS attributes (2), map
DN+Role to a local account (3). If user comes with Kerberos ticket: extract local account (4). After
this point in both cases we talk to NIS to get uid and gids for a local account (5) and, finally, adding
users home directory (6).

account Plug-ins

argus

The argus plug-in bans users by their DN. It talks to your site’s ARGUS system (see  https://
twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework  [https://twiki.cern.ch/twiki/bin/view/EGEE/
AuthorizationFramework]) to check for banned users.

Properties

gplazma.argus.hostcert
Path to host certificate

Default: /etc/grid-security/hostcert.pem

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
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gplazma.argus.hostkey
Path to host key

Default: /etc/grid-security/hostkey.pem

gplazma.argus.hostkey.password
Password for host key

Default:

gplazma.argus.ca
Path to CA certificates

Default: /etc/grid-security/certificates

gplazma.argus.endpoint
URL of PEP service

Default: https://localhost:8154/authz

banfile

The banfile plug-in bans users by their principal class and the associated name. It is configured via a
simple plain text file.

Example:

# Ban users by principal
alias dn=org.globus.gsi.jaas.GlobusPrincipal
alias kerberos=javax.security.auth.kerberos.KerberosPrincipal
alias fqan=org.dcache.auth.FQANPrincipal
alias name=org.dcache.auth.LoginNamePrincipal

ban name:ernie
ban kerberos:BERT@EXAMPLE.COM
ban com.example.SomePrincipal:Samson

In this example the first line is a comment. Lines 2 to 5 define aliases for principal class names that
can then be used in the following banning section. The four aliases defined in this example are actually
hard coded into gPlazma, therefore you can use these short names without explicitly defining them
in your configuration file. Line 7 to 9 contain ban definitions. Line 9 directly uses the class name of a
principal class instead of using an alias.

Please note that the plug-in only supports principals whose assiciated name is a single line of plain text.
In programming terms this means the constructor of the principal class has to take exactly one single
string parameter.

For the plugin to work, the configuration file has to exist even if it is empty.

Properties

gplazma.banfile.path
Path to configuration file
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Default: /etc/dcache/ban.conf

To activate the banfile plug-in it has to be added to gplazma.conf:

Example:

# Map grid or kerberos users to local accounts
auth    optional  x509
auth    optional  voms
map     requisite vorolemap
map     optional  krb5
map     optional  nis
session requisite nis
account requisite banfile

session Plug-ins

kpwd

The kpwd plug-in adds root and home path information to the session, based on the username.

Properties

gplazma.kpwd.file
Path to dcache.kpwd

Default: /etc/dcache/dcache.kpwd

authzdb

The authzdb plug-in adds root and home path information to the session, based and username using the
storage-authzdb file.

Properties

gplazma.authzdb.file
Path to storage-authzdb

Default: /etc/grid-security/storage-authzdb

nsswitch

The nsswitch plug-in adds root and home path information to the session, based on the username using
your system’s nsswitch service.

Typically nsswitch plug-in will be combined with vorolemap plug-in, gridmap plug-in or krb5
plug-in:

Example:

# Map grid users to local accounts
auth    optional  x509 #1
auth    optional  voms #2
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map     requisite vorolemap #3
map     requisite nsswitch #4
session requisite nsswitch #5

In this example following is happening: extract user’s DN (1), extract and verify VOMS attributes (2),
map DN+Role to a local account (3), extract uid and gids for a local account (4) and, finally, extract
users home directory (5).

nis

The nis plug-in adds root and home path information to the session, based on the username using your
site’s NIS service.

Properties

gplazma.nis.server
NIS server host

Default: nisserv.domain.com

gplazma.nis.domain
NIS domain

Default: domain.com

The result of nis plug-in can be used by other plug-ins:

Example:

# Map grid or kerberos users to local accounts
auth    optional  x509 #1
auth    optional  voms #2
map     requisite vorolemap #3
map     optional  krb5 #4
map     optional  nis #5
session requisite nis #6

In this example two access methods are considered: grid based and kerberos based. If user comes with
grid certificate and VOMS role: extract user’s DN (1), extract and verify VOMS attributes (2), map
DN+Role to a local account (3). If user comes with Kerberos ticket: extract local account (4). After
this point in both cases we talk to NIS to get uid and gids for a local account (5) and, finally, adding
users home directory (6).

ldap

The ldap plug-in is a map, session and identity plugin. As a map plugin it maps user names to UID and
GID. As a session plugin it adds root and home path information to the session. As an identity plugin it
supports reverse mapping of UID and GID to user and group names repectively.

Properties

gplazma.ldap.url
LDAP server url. Use ldap:// prefix to connect to plain LDAP and ldaps:// for secured LDAP.
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Example: ldaps://example.org:389

gplazma.ldap.organization
Top level (base DN) of the LDAP directory tree

Example: o="Example, Inc.", c=DE

gplazma.ldap.tree.people
LDAP subtree containing user information. The path to the user records will be formed using the base
DN and the value of this property as a organizational unit (ou) subdirectory.

Default: People

Example: Setting gplazma.ldap.organization=o="Example, Inc.", c=DE and
gplazma.ldap.tree.people=People will have the plugin looking in the LDAP directory
ou=People, o="Example, Inc.", c=DE for user information.

gplazma.ldap.tree.groups
LDAP subtree containing group information. The path to the group records will be formed using the
base DN and the value of this property as a organizational unit (ou) subdirectory.

Default: Groups

Example: Setting gplazma.ldap.organization=o="Example, Inc.", c=DE and
gplazma.ldap.tree.groups=Groups will have the plugin looking in the LDAP directory
ou=Groups, o="Example, Inc.", c=DE for group information.

gplazma.ldap.userfilter
LDAP filter expression to find user entries. The filter has to contain the %s exactly once. That occurence
will be substituted with the user name before the filter is applied.

Default: (uid=%s)

gplazma.ldap.home-dir
the user’s home directory. LDAP attribute identifiers surrounded by % will be expanded to their corre-
sponding value. You may also use a literal value or mix literal values and attributes.

Default: %homeDirectory%

gplazma.ldap.root-dir
the user’s root directory. LDAP attribute identifiers surrounded by % will be expanded to their corre-
sponding value. You may also use a literal value or mix literal values and attributes.

Default: /

As a session plugin the ldap plug-in assigns two directories to the user’s session: the root directory and the
home directory. The root directory is the root of the directory hierarchy visible to the user, while the home
directory is the directory the user starts his session in. In default mode, the root directory is set to / and the
home directory is set to %homeDirectory%, thus the user starts his session in the home directory, as it is
stored on the LDAP server, and is able to go up in the directory hierarchy to /. For a different use-case, for
example if dCache is used as a cloud storage, it may be desireable for the users to see only their own storage
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space. For this use case home-dir can be set to / and root-dir be set to %homeDirectory%. In both
path properties any %val% expression will be expanded to the the value of the attribute with the name val
as it is stored in the user record on the LDAP server.

identity Plug-ins

nsswitch

The nsswitch plug-in provides forward and reverse mapping for NFSv4.1 using your system’s nss-
witch service.

nis

The nis plug-in forward and reverse mapping for NFSv4.1 using your site’s NIS service.

Properties

gplazma.nis.server
NIS server host

Default: nisserv.domain.com

gplazma.nis.domain
NIS domain

Default: domain.com

Using X.509 Certificates
Most plug-ins of gPlazma support X.509 certificates for authentication and authorisation. X.509 cer-
tificates are used to identify entities (e.g., persons, hosts) in the Internet. The certificates contain a DN (Dis-
tinguished Name) that uniquely describes the entity. To give the certificate credibility it is issued by a CA
(Certificate Authority) which checks the identity upon request of the certificate (e.g., by checking the per-
sons id). For the use of X.509 certificates with dCache your users will have to request a certificate from a
CA you trust and you need host certificates for every host of your dCache instance.

CA Certificates
To be able to locally verify the validity of the certificates, you need to store the CA certificates on your
system. Most operating systems come with a number of commercial CA certificates, but for the Grid you
will need the certificates of the Grid CAs. For this, CERN packages a number of CA certificates. These are
deployed by most grid sites. By deploying these certificates, you state that you trust the CA’s procedure for
the identification of individuals and you agree to act promptly if there are any security issues.

To install the CERN CA certificates follow the following steps:

[root] # cd /etc/yum.repos.d/
[root] # wget http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/lcg-CA.repo
[root] # yum install lcg-CA
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This will create the directory /etc/grid-security/certificates which contains the Grid CA
certificates.

Certificates which have been revoked are collected in certificate revocation lists (CRLs). To get the CRLs
install the fetch-crl command as described below.

[root] # yum install fetch-crl
[root] # /usr/sbin/fetch-crl

fetch-crl adds X.509 CRLs to /etc/grid-security/certificates. It is recommended to set up
a cron job to periodically update the CRLs.

User Certificate
If you do not have a valid grid user certificate yet, you have to request one from your CA. Follow the
instructions from your CA on how to get a certificate. After your request was accepted you will get a URL
pointing to your new certificate. Install it into your browser to be able to access grid resources with it. Once
you have the certificate in your browser, make a backup and name it userCertificate.p12. Copy the
user certificate to the directory ~/.globus/ on your worker node and convert it to usercert.pem and
userkey.pem as described below.

[user] $ openssl pkcs12 -clcerts -nokeys -in <userCertificate>.p12 -out usercert.pem
Enter Import Password:
MAC verified OK

During the backup your browser asked you for a password to encrypt the certificate. Enter this password
here when asked for a password. This will create your user certificate.

[user] $ openssl pkcs12 -nocerts -in <userCertificate>.p12 -out userkey.pem
Enter Import Password:
MAC verified OK
Enter PEM pass phrase:

In this step you need to again enter the backup password. When asked for the PEM pass phrase choose a
secure password. If you want to use your key without having to type in the pass phrase every time, you can
remove it by executing the following command.

[root] # openssl rsa -in userkey.pem -out userkey.pem
Enter pass phrase for userkey.pem:
writing RSA key

Now change the file permissions to make the key only readable by you and the certificate world readable
and only writable by you.

[root] # chmod 400 userkey.pem
[root] # chmod 644 usercert.pem

Host Certificate
To request a host certificate for your server host, follow again the instructions of your CA.

The conversion to hostcert.pem and hostkey.pem works analogous to the user certificate. For the
hostkey you have to remove the pass phrase. How to do this is also explained in the previous section. Finally
copy the host*.pem files to /etc/grid-security/ as root and change the file permissions in
favour of the user running the grid application.
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VOMS Proxy Certificate
For very large groups of people, it is often more convenient to authorise people based on their membership
of some group. To identify that they are a member of some group, the certificate owner can create a new
short-lived X.509 certificate that includes their membership of various groups. This short-lived certificate
is called a proxy-certificate and, if the membership information comes from a VOMS server, it is often
referred to as a VOMS-proxy.

[root] # cd /etc/yum.repos.d/
[root] # wget http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/glite-UI.repo
[root] # yum install glite-security-voms-clients

Creating a VOMS proxy

To create a VOMS proxy for your user certificate you need to execute the voms-proxy-init as a user.

Example:

[user] $ export PATH=/opt/glite/bin/:$PATH
[user] $ voms-proxy-init
Enter GRID pass phrase:
Your identity: /C=DE/O=GermanGrid/OU=DESY/CN=John Doe

Creating proxy ........................................................................Done
Your proxy is valid until Mon Mar  7 22:06:15 2011

Certifying your membership of a VO

You can certify your membership of a VO by using the command voms-proxy-init -voms <yourVO>.
This is useful as in dCache authorization can be done by VO (see the section called “Authorizing a VO”).
To be able to use the extension -voms <yourVO> you need to be able to access VOMS servers. To this
end you need the the VOMS server’s and the CA’s DN. Create a file /etc/grid-security/voms-
dir/<VO>/<hostname>.lsc per VOMS server containing on the 1st line the VOMS server’s DN and
on the 2nd line, the corresponding CA’s DN. The name of this file should be the fully qualified hostname fol-
lowed by an .lsc extension and the file must appear in a subdirectory /etc/grid-security/voms-
dir/<VO> for each VO that is supported by that VOMS server and by the site.

At http://operations-portal.egi.eu/vo you can search for a VO and find this information.

Example:

For example, the file /etc/grid-security/vomsdir/desy/grid-voms.desy.de.lsc contains:

/C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de
/C=DE/O=GermanGrid/CN=GridKa-CA

where the first entry is the DN of the DESY VOMS server and the second entry is the DN of the CA
which signed the DESY VOMS server’s certificate.

In addition, you need to have a file /opt/glite/etc/vomses containing your VO’s VOMS server.

Example:

http://operations-portal.egi.eu/vo
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For DESY the file /opt/glite/etc/vomses should contain the entry

"desy" "grid-voms.desy.de" "15104" "/C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de" "desy"
 "24"

The first entry “desy” is the real name or a nickname of your VO. “grid-voms.desy.de” is the hostname
of the VOMS server. The number “15104” is the port number the server is listening on. The forth entry
is the DN of the server’s VOMS certificate. The fifth entry, “desy”, is the VO name and the last entry
is the globus version number which is not used anymore and can be omitted.

Example:

Use the command voms-proxy-init -voms to create a VOMS proxy with VO “desy”.

[user] $ voms-proxy-init -voms desy
Enter GRID pass phrase:
Your identity: /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
Creating temporary proxy ....................................................... Done
Contacting  grid-voms.desy.de:15104 [/C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de] "desy"
 Done
Creating proxy .................................... Done
Your proxy is valid until Mon Mar  7 23:52:13 2011

View the information about your VOMS proxy with voms-proxy-info

[user] $ voms-proxy-info
subject   : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe/CN=proxy
issuer    : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
identity  : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
type      : proxy
strength  : 1024 bits
path      : /tmp/x509up_u500
timeleft  : 11:28:02

The last line tells you how much longer your proxy will be valid.

If your proxy is expired you will get

[user] $ voms-proxy-info
subject   : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe/CN=proxy
issuer    : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
identity  : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
type      : proxy
strength  : 1024 bits
path      : /tmp/x509up_u500
timeleft  : 0:00:00

The command voms-proxy-info -all gives you information about the proxy and about the VO.

[user] $ voms-proxy-info -all
subject   : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe/CN=proxy
issuer    : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
identity  : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
type      : proxy
strength  : 1024 bits
path      : /tmp/x509up_u500
timeleft  : 11:24:57
=== VO desy extension information ===
VO        : desy
subject   : /C=DE/O=GermanGrid/OU=DESY/CN=John Doe
issuer    : /C=DE/O=GermanGrid/OU=DESY/CN=host/grid-voms.desy.de
attribute : /desy/Role=NULL/Capability=NULL
attribute : /desy/test/Role=NULL/Capability=NULL
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timeleft  : 11:24:57
uri       : grid-voms.desy.de:15104

Use the command voms-proxy-destroy to destroy your VOMS proxy.

[user] $ voms-proxy-destroy
[user] $ voms-proxy-info

Couldn't find a valid proxy.

Configuration files
In this section we explain the format of the the storage-authzdb, kpwd and vorolemap files. They
are used by the authzdb plug-in, vorolemap plug-in,and kpwd plug-in.

storage-authzdb

In gPlazma, except for the kpwd plug-in, authorization is a two-step process. First, a username is obtained
from a mapping of the user’s DN or his DN and role, then a mapping of username to UID and GID with
optional additional session parameters like the root path is performed. For the second mapping usually the
file called storage-authzdb is used.

Preparing storage-authzdb

The default location of the storage-authzdb is /etc/grid-security. Before the mapping entries
there has to be a line specifying the version of the used file format.

Example:

version 2.1

dCache supports versions 2.1 and to some extend 2.2.

Except for empty lines and comments (lines start with #) the configuration lines have the following format:

 authorize <username> (read-only|read-write) <UID> <GID>[,<GID>]* <homedir> <rootdir> 

For legacy reasons there may be a third path entry which is ignored by dCache. The username here has to
be the name the user has been mapped to in the first step (e.g., by his DN).

Example:

authorize john read-write 1001 100 / /data/experiments /

In this example user <john> will be mapped to UID 1001 and GID 100 with read access on the directory
/data/experiments. You may choose to set the user’s root directory to /.

Example:

authorize adm read-write 1000 100 / / /
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In this case the user <adm> will be granted read/write access in any path, given that the file system
permissions in Chimera also allow the transfer.

The first path is nearly always left as “/”, but it may be used as a home directory in interactive session, as a
subdirectory of the root path. Upon login, the second path is used as the user’s root, and a “cd” is performed
to the first path. The first path is always defined as being relative to the second path.

Multiple GIDs can be assigned by using comma-separated values for the GID file, as in

Example:

authorize john read-write 1001 100,101,200 / / /

The lines of the storage-authzdb file are similar to the “login” lines of the dcache.kpwd file. If you
already have a dcache.kwpd file, you can easily create storage-authzdb by taking the lines from
your dcache.kpwd file that start with the word login, for example,

Example:

login john read-write 1001 100 / /data/experiments /

and replace the word login with authorize. The following line does this for you.

[root] # sed "s/^ *login/authorize/" dcache.kpwd|grep "^authorize" > storage-authzdb 

The gplazmalite-vorole-mapping plug-in
The second is the storage-authzdb used in other plug-ins. See the above documentation on stor-
age-authdb for how to create the file.

Preparing grid-vorolemap

The file is similar in format to the grid-mapfile, however there is an additional field following the DN
(Certificate Subject), containing the FQAN (Fully Qualified Attribute Name).

"/C=DE/O=GermanGrid/OU=DESY/CN=John Doe" "/some-vo" doegroup
"/C=DE/DC=GermanGrid/O=DESY/CN=John Doe" "/some-vo/Role=NULL" doegroup
"/C=DE/DC=GermanGrid/O=DESY/CN=John Doe" "/some-vo/Role=NULL/Capability=NULL" doegroup 

Therefore each line has three fields: the user’s DN, the user’s FQAN, and the username that the DN and
FQAN combination are to be mapped to.

The FQAN is sometimes semantically referred to as the “role”. The same user can be mapped to different
usernames depending on what their FQAN is. The FQAN is determined by how the user creates their proxy,
for example, using voms-proxy-init . The FQAN contains the user’s Group, Role (optional), and Capability
(optional). The latter two may be set to the string “NULL”, in which case they will be ignored by the plug-
in. Therefore the three lines in the example above are equivalent.

Example:

If a user is authorized in multiple roles, for example
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"/DC=org/DC=doegrids/OU=People/CN=John Doe" "/some-vo/sub-grp" vo_sub_grp_user
"/DC=org/DC=doegrids/OU=People/CN=John Doe" "/some-vo/sub-grp/Role=user" vouser
"/DC=org/DC=doegrids/OU=People/CN=John Doe" "/some-vo/sub-grp/Role=admin" voadmin
"/DC=org/DC=doegrids/OU=People/CN=John Doe" "/some-vo/sub-grp/Role=prod" voprod

he will get the username corresponding to the FQAN found in the proxy that the user creates for use by
the client software. If the user actually creates several roles in his proxy, authorization (and subsequent
check of path and file system permissions) will be attempted for each role in the order that they are
found in the proxy.

In a GridFTP URL, the user may also explicitly request a username.

gsiftp://doeprod@ftp-door.example.org:2811/testfile1

in which case other roles will be disregarded.

Authorizing a VO
Instead of individual DNs, it is allowed to use * or "*" as the first field, such as

Example:

"*" "/desy/Role=production/" desyprod 

In that case, any DN with the corresponding role will match. It should be noted that a match is first
attempted with the explicit DN. Therefore if both DN and "*" matches can be made, the DN match
will take precedence. This is true for the revocation matches as well (see below).

Thus a user with subject /C=DE/O=GermanGrid/OU=DESY/CN=John Doe and role /desy/
Role=production will be mapped to username desyprod via the above storage-authzdb
line with "*" for the DN, except if there is also a line such as

"/C=DE/O=GermanGrid/OU=DESY/CN=John Doe" "/desy/Role=production" desyprod2

in which case the username will be desyprod2.

Revocation Entries

To create a revocation entry, add a line with a dash (-) as the username, such as

"/C=DE/O=GermanGrid/OU=DESY/CN=John Doe" "/desy/production" -

or modify the username of the entry if it already exists. The behaviour is undefined if there are two entries
which differ only by username.

Since DN is matched first, if a user would be authorized by his VO membership through a "*" entry, but
is matched according to his DN to a revocation entry, authorization would be denied. Likewise if a whole
VO were denied in a revocation entry, but some user in that VO could be mapped to a username through
his DN, then authorization would be granted.

More Examples

Example:
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Suppose that there are users in production roles that are expected to write into the storage system data
which will be read by other users. In that case, to protect the data the non-production users would be
given read-only access. Here in /etc/grid-security/grid-vorolemap the production role
maps to username cmsprod, and the role which reads the data maps to cmsuser.

"*" "/cms/uscms/Role=cmsprod" cmsprod "*" "/cms/uscms/Role=cmsuser" cmsuser

The read-write privilege is controlled by the third field in the lines of /etc/grid-securi-
ty/storage-authzdb

authorize cmsprod  read-write  9811 5063 / /data /
authorize cmsuser  read-only  10001 6800 / /data /

Example:

Another use case is when users are to have their own directories within the storage system. This can
be arranged within the gPlazma configuration files by mapping each user’s DN to a unique username
and then mapping each username to a unique root path. As an example, lines from /etc/grid-se-
curity/grid-vorolemap would therefore be written

"/DC=org/DC=doegrids/OU=People/CN=Selby Booth" "/cms" cms821
"/DC=org/DC=doegrids/OU=People/CN=Kenja Kassi" "/cms" cms822
"/DC=org/DC=doegrids/OU=People/CN=Ameil Fauss" "/cms" cms823

and the corresponding lines from /etc/grid-security/storage-authzdb would be

authorize cms821 read-write 10821 7000 / /data/cms821 /
authorize cms822 read-write 10822 7000 / /data/cms822 /
authorize cms823 read-write 10823 7000 / /data/cms823 /

The kpwd plug-in
The section in the gPlazma policy file for the kpwd plug-in specifies the location of the dcache.kpwd
file, for example

Example:

# dcache.kpwd
kpwdPath="/etc/dcache/dcache.kpwd"

To maintain only one such file, make sure that this is the same location as defined in /usr/share/
dcache/defaults/dcache.properties.

Use /usr/share/dcache/examples/gplazma/dcache.kpwd to create this file.

To be able to alter entries in the dcache.kpwd file conveniantly the dcache script offers support for doing
this.

Example:

[user] $dcache kpwd dcuseradd testuser -u 12345 -g 1000 -h / -r / -f / -w read-write -p password

adds this to the kpwd file:
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passwd testuser ae39aec3 read-write 12345 1000 / /

There are many more commands for altering the kpwd-file, see the dcache-script help for further commands
available.

The gridmap plug-in
Two file locations are defined in the policy file for this plug-in:

# grid-mapfile
gridMapFilePath="/etc/grid-security/grid-mapfile"
storageAuthzPath="/etc/grid-security/storage-authzdb"

Preparing the grid-mapfile

The grid-mapfile is the same as that used in other applications. It can be created in various ways, either
by connecting directly to VOMS or GUMS servers, or by hand.

Each line contains two fields: a DN (Certificate Subject) in quotes, and the username it is to be mapped to.

Example:

"/C=DE/O=GermanGrid/OU=DESY/CN=John Doe" johndoe

When using the gridmap plug-in, the storage-authzdb file must also be configured. See the section
called “storage-authzdb” for details.

gPlazma specific dCache configuration
dCache has many parameters that can be used to configure the systems behaviour. You can find all these
parameters well documented and together with their default values in the properties files in /usr/share/
dcache/defaults/. To use non-default values, you have to set the new values in /etc/dcache/
dcache.conf or in the layout file. Do not change the defaults in the properties files! After changing a
parameter you have to restart the concerned cells.

Refer to the file gplazma.properties for a full list of properties for gPlazma One commonly used
property is gplazma.cell.limits.threads, which is used to set the maximum number of concur-
rent requests to gPlazma. The default value is 30.

Setting the value for gplazma.cell.limits.threads too high may result in large spikes of CPU
activity and the potential to run out of memory. Setting the number too low results in potentially slow login
activity.

Enabling Username/Password Access for WebDAV
This section describes how to activate the Username/Password access for WebDAV. It uses dcache.kwpd
file as an example format for storing Username/Password information. First make sure gPlazma2 is en-
abled in the /etc/dcache/dcache.conf or in the layout file.
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Example:

Check your WebDAV settings: enable the HTTP access, disallow the anonymous access, disable request-
ing and requiring the client authentication and activate basic authentication.

webdav.authn.protocol=http
webdav.authz.anonymous-operations=NONE
webdav.authn.accept-client-cert=false
webdav.authn.require-client-cert=false
webdav.authn.basic=true

Adjust the /etc/dcache/gplazma.conf to use the kpwd plug-in (for more information see also
the section called “Plug-ins”).

It will look something like this:

auth optional kpwd
map requisite kpwd
session requisite kpwd

The /etc/dcache/dcache.kpwd file is the place where you can specify the username/password
record. It should contain the username and the password hash, as well as UID, GID, access mode and
the home, root and fsroot directories:

# set passwd
passwd tanja 6a4cd089 read-write 500 100 / / /

The passwd-record could be automatically generated by the dCache kpwd-utility, for example:

[root] # dcache kpwd dcuseradd -u 500 -g 100 -h / -r / -f / -w read-write -p dickerelch tanja

Some file access examples:

curl -u tanja:dickerelch http://webdav-door.example.org:2880/pnfs/

wget --user=tanja --password=dickerelch http://webdav-door.example.org:2880/pnfs/

gPlazma config example to work with authenticated
webadmin
This section describes how to configure gplazma to enable the webadmin servlet in authenticated mode
with a grid certificate as well as with a username/password and how to give a user administrator access.

Example:

In this example for the /etc/dcache/gplazma.conf file the X.509 plug-in plugin is used for the
authentication step with the grid certificate and the kpwd plug-in plugin is used for the authentication
step with username/password.

auth optional x509
auth optional kpwd
map requisite kpwd
session requisite kpwd

The following example will show how to set up the /etc/dcache/dcache.kpwd file:
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version 2.1

mapping "/C=DE/O=ExampleOrganisation/OU=EXAMPLE/CN=John Doe" john
# the following are the user auth records
login john read-write 1700 1000 / / /
/C=DE/O=ExampleOrganisation/OU=EXAMPLE/CN=John Doe

# set pwd
passwd john 8402480 read-write 1700 1000 / / /

This maps the DN of a grid certificate subject=/C=DE/O=ExampleOrganisation/
OU=EXAMPLE/CN=John Doe to the user john and the entry

login john read-write 1700 1000 / / /
  /C=DE/O=GermanGrid/OU=DESY/CN=John Doe

applies unix-like values to john, most important is the 1000, because it is the assigned GID. This must
match the value of the httpd.authz.admin-gid configured in your webadmin. This is sufficient
for login using a certificate. The entry:

passwd john 8402480 read-write 1700 1000 / / /

enables username/password login, such as a valid login would be user john with some password. The
password is encrypted with the kpwd-algorithm (also see the section called “The kpwd plug-in”) and
then stored in the file. Again the 1000 here is the assigned GID.
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Chapter 11. dCache as xRootd-Server
This chapter explains how to configure dCache in order to access it via the xrootd protocol, allowing
xrootd-Clients like ROOT’s TXNetfile and xrdcp to do file operations against a dCache instance in a
transparent manner. dCache implements version 2.1.6 of xrootd protocol.

Setting up
To allow file transfers in and out of dCache using xrootd, a new xrootd door must be started. This door
acts then as the entry point to all xrootd requests. Compared to the native xrootd server-implementation
(produced by SLAC), the xrootd door corresponds to the redirector node.

To enable the xrootd door, you have to change the layout file corresponding to your dCache-instance.
Enable the xrootd-service within the domain that you want to run it by adding the following line

..
[<domainName>/xrootd]
..

Example:

You can just add the following lines to the layout file:

..
[xrootd-${host.name}Domain]
[xrootd-${host.name}Domain/xrootd]
..

After a restart of the domain running the xrootd door, done e.g. by executing

[root] # ${dCacheHome}/bin/dcache restart xrootd-babelfishDomain
Stopping xrootd-babelfishDomain (pid=30246) 0 1 2 3 4 5 6 7 done
Starting xrootd-babelfishDomain done

the xrootd door should be running. A few minutes later it should appear at the web monitoring interface
under "Cell Services" (see the section called “The Web Interface for Monitoring dCache”).

Parameters
The default port the xrootd door is listening on is 1094. This can be changed two ways:

1. Per door: Edit your instance’s layout file, for example /etc/dcache/layouts/example.conf
and add the desired port for the xrootd door in a separate line (a restart of the domain(s) running
the xrootd door is required):

..
[xrootd-${host.name}Domain]
[xrootd-${host.name}Domain/xrootd]
    port = 1095
..

2. Globally: Edit /etc/dcache/dcache.conf and add the variable xrootd.net.port with the
desired value (a restart of the domain(s) running the xrootd door is required):
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..
xrootd.net.port=1095
..

For controlling the TCP-portrange within which xrootd-movers will start listening in
the <pool>Domain, you can add the properties dcache.net.lan.port.min and
dcache.net.lan.port.max to /etc/dcache/dcache.conf and adapt them accord-
ing to your preferences. The default values can be viewed in /usr/share/dcache/de-
faults/dcache.properties.

..
dcache.net.lan.port.min=30100
dcache.net.lan.port.max=30200
..

Quick tests
The subsequent paragraphs describe a quick guide on how to test xrootd using the xrdcp and ROOT
clients.

Copying files with xrdcp
A simple way to get files in and out of dCache via xrootd is the command xrdcp. It is included in every
xrootd and ROOT distribution.

To transfer a single file in and out of dCache, just issue

[user] $ xrdcp /bin/sh root://<xrootd-door.example.org>/pnfs/<example.org>/data/xrd_test
[user] $ xrdcp root://<xrootd-door.example.org>/pnfs/<example.org>/data/xrd_test /dev/null

Accessing files from within ROOT
This simple ROOT example shows how to write a randomly filled histogram to a file in dCache:

root [0] TH1F h("testhisto", "test", 100, -4, 4);
root [1] h->FillRandom("gaus", 10000);
root [2] TFile *f = new TXNetFile("root://<door_hostname>//pnfs/<example.org>/data/test.root","new");
061024 12:03:52 001 Xrd: Create: (C) 2004 SLAC INFN XrdClient 0.3
root [3] h->Write();
root [4] f->Write();
root [5] f->Close();
root [6] 061101 15:57:42 14991 Xrd: XrdClientSock::RecvRaw: Error reading from socket: Success
061101 15:57:42 14991 Xrd: XrdClientMessage::ReadRaw: Error reading header (8 bytes)

Closing remote xrootd files that live in dCache produces this warning, but has absolutely no effect on
subsequent ROOT commands. It happens because dCache closes all TCP connections after finishing a file
transfer, while xrootd expects to keep them open for later reuse.

To read it back into ROOT from dCache:

root [7] TFile *reopen = TXNetFile ("root://<door_hostname>//pnfs/<example.org>/data/
test.root","read");
root [8] reopen->ls();
TXNetFile**             //pnfs/<example.org>/data/test.root
 TXNetFile*             //pnfs/<example.org>/data/test.root
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  KEY: TH1F     testhisto;1     test

xrootd security

Read-Write access
Per default dCache xrootd is restricted to read-only, because plain xrootd is completely unauthenticated.
A typical error message on the clientside if the server is read-only looks like:

 [user] $ xrdcp -d 1 /bin/sh root://ford.desy.de//pnfs/desy.de/data/xrd_test2
Setting debug level 1
061024 18:43:05 001 Xrd: main: (C) 2004 SLAC INFN xrdcp 0.2 beta
061024 18:43:05 001 Xrd: Create: (C) 2004 SLAC INFN XrdClient kXR_ver002+kXR_asyncap
061024 18:43:05 001 Xrd: ShowUrls: The converted URLs count is 1
061024 18:43:05 001 Xrd: ShowUrls: URL n.1: root://ford.desy.de:1094//pnfs/desy.de/data/asdfas.
061024 18:43:05 001 Xrd: Open: Access to server granted.
061024 18:43:05 001 Xrd: Open: Opening the remote file /pnfs/desy.de/data/asdfas
061024 18:43:05 001 Xrd: XrdClient::TryOpen: doitparallel=1
061024 18:43:05 001 Xrd: Open: File open in progress.
061024 18:43:06 5819 Xrd: SendGenCommand: Server declared: Permission denied. Access is read only.
(error code: 3003)
061024 18:43:06 001 Xrd: Close: File not opened.
Error accessing path/file for root://ford//pnfs/desy.de/data/asdfas

To enable read-write access, add the following line to ${dCacheHome}/etc/dcache.conf

..
xrootdIsReadOnly=false
..

and restart any domain(s) running a xrootd door.

Please note that due to the unauthenticated nature of this access mode, files can be written and read to/from
any subdirectory in the pnfs namespace (including the automatic creation of parent directories). If there is
no user information at the time of request, new files/subdirectories generated through xrootd will inherit
UID/GID from its parent directory. The user used for this can be configured via the xrootd.authz.user
property.

Permitting read/write access on selected directories
To overcome the security issue of uncontrolled xrootd read and write access mentioned in the previous
section, it is possible to restrict read and write access on a per-directory basis (including subdirectories).

To activate this feature, a colon-seperated list containing the full paths of authorized directories must be
added to /etc/dcache/dcache.conf. You will need to specify the read and write permissions sep-
arately.

..
xrootd.authz.read-paths=/pnfs/<example.org>/rpath1:/pnfs/<example.org>/rpath2
xrootd.authz.write-paths=/pnfs/<example.org>/wpath1:/pnfs/<example.org>/wpath2
..

A restart of the xrootd door is required to make the changes take effect. As soon as any of the above
properties are set, all read or write requests to directories not matching the allowed path lists will be refused.
Symlinks are however not restricted to these prefixes.
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Token-based authorization

The xrootd dCache implementation includes a generic mechanism to plug in different authorization
handlers. The only plugin available so far implements token-based authorization as suggested in http://
people.web.psi.ch/feichtinger/doc/authz.pdf.

The first thing to do is to setup the keystore. The keystore file basically specifies all RSA-keypairs used
within the authorization process and has exactly the same syntax as in the native xrootd tokenauthorization
implementation. In this file, each line beginning with the keyword KEY corresponds to a certain Virtual
Organisation (VO) and specifies the remote public (owned by the file catalogue) and the local private key
belonging to that VO. A line containing the statement "KEY VO:*" defines a default keypair that is used
as a fallback solution if no VO is specified in token-enhanced xrootd requests. Lines not starting with the
KEY keyword are ignored. A template can be found in /usr/share/dcache/examples/xrootd/
keystore.

The keys itself have to be converted into a certain format in order to be loaded into the authorization plugin.
dCache expects both keys to be binary DER-encoded (Distinguished Encoding Rules for ASN.1). Further-
more the private key must be PKCS #8-compliant and the public key must follow the X.509-standard.

The following example demonstrates how to create and convert a keypair using OpenSSL:

Generate new RSA private key
[root] # openssl genrsa -rand 12938467 -out key.pem 1024

Create certificate request
[root] # openssl req -new -inform PEM -key key.pem -outform PEM -out certreq.pem

Create certificate by self-signing certificate request
[root] # openssl x509 -days 3650 -signkey key.pem -in certreq.pem -req -out cert.pem

Extract public key from certificate
[root] # openssl x509 -pubkey -in cert.pem -out pkey.pem
[root] # openssl pkcs8 -in key.pem -topk8 -nocrypt -outform DER -out <new_private_key>
[root] # openssl enc -base64 -d -in pkey.pem -out <new_public_key>

Only the last two lines are performing the actual conversion, therefore you can skip the previous lines in
case you already have a keypair. Make sure that your keystore file correctly points to the converted keys.

To enable the plugin, it is necessary to add the following two lines to the file /etc/dcache/
dcache.conf, so that it looks like

..
 xrootdAuthzPlugin=org.dcache.xrootd.security.plugins.tokenauthz.TokenAuthorizationFactory
 xrootdAuthzKeystore=<Path_to_your_Keystore>
 ..

After doing a restart of dCache, any requests without an appropriate token should result in an error saying
"authorization check failed: No authorization token found in open request,
access denied.(error code: 3010)".

If both tokenbased authorization and read-only access are activated, the read-only restriction will dominate
(local settings have precedence over remote file catalogue permissions).

http://people.web.psi.ch/feichtinger/doc/authz.pdf
http://people.web.psi.ch/feichtinger/doc/authz.pdf
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Strong authentication
The xrootd-implementation in dCache includes a pluggable authentication framework. To control which
authentication mechanism is used by xrootd, add the xrootdAuthNPlugin option to your dCache
configuration and set it to the desired value.

Example:

For instance, to enable GSI authentication in xrootd, add the following line to /etc/dcache/
dcache.conf:

..
xrootdAuthNPlugin=gsi
..

When using GSI authentication, depending on your setup, you may or may not want dCache to fail
if the host certificate chain can not be verified against trusted certificate authorities. Whether dCache
performs this check can be controlled by setting the option dcache.authn.hostcert.verify:

..
dcache.authn.hostcert.verify=true
..

Authorization of the user information obtained by strong authentication is performed by contacting the
gPlazma service. Please refer to Chapter 10, Authorization in dCache for instructions about how to con-
figure gPlazma.

Security consideration

In general GSI on xrootd is not secure. It does not provide confidentiality and integrity guarantees
and hence does not protect against man-in-the-middle attacks.

Precedence of security mechanisms
The previously explained methods to restrict access via xrootd can also be used together. The precedence
applied in that case is as following:

Note

The xrootd-door can be configured to use either token authorization or strong authentication with
gPlazma authorization. A combination of both is currently not possible.

The permission check executed by the authorization plugin (if one is installed) is given the lowest priority,
because it can controlled by a remote party. E.g. in the case of token based authorization, access control is
determined by the file catalogue (global namespace).

The same argument holds for many strong authentication mechanisms - for example, both the GSI protocol
as well as the Kerberos protocols require trust in remote authorities. However, this only affects user
authentication, while authorization decisions can be adjusted by local site administrators by adapting the
gPlazma configuration.



dCache as xRootd-Server

119

To allow local site’s administrators to override remote security settings, write access can be further restricted
to few directories (based on the local namespace, the pnfs). Setting xrootd access to read-only has the
highest priority, overriding all other settings.

Other configuration options
The xrootd-door has several other configuration properties. You can configure various timeout parame-
ters, the thread pool sizes on pools, queue buffer sizes on pools, the xrootd root path, the xrootd user and
the xrootd IO queue. Full descriptions on the effect of those can be found in /usr/share/dcache/
defaults/xrootd.properties.
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Chapter 12. dCache as NFSv4.1 Server
This chapter explains how to configure dCache in order to access it via the NFSv4.1 protocol, allowing
clients to mount dCache and perform POSIX IO using standard NFSv4.1 clients.

Important

The pNFS mentioned in this chapter is the protocol NFSv4.1/pNFS and not the namespace pnfs.

Setting up
To allow file transfers in and out of dCache using NFSv4.1/pNFS, a new NFSv4.1 door must be
started. This door acts then as the mount point for NFS clients.

To enable the NFSv4.1 door, you have to change the layout file corresponding to your dCache-instance.
Enable the nfs within the domain that you want to run it by adding the following line

..
[<domainName>/nfs]
nfs.version = 4.1
..

Example:

You can just add the following lines to the layout file:

..
[nfs-${host.name}Domain]
[nfs-${host.name}Domain/nfs]
nfs.version = 4.1
..

In addition to run an NFSv4.1 door you need to add exports to the /etc/exports file. The format of
/etc/exports is similar to the one which is provided by Linux:

#
<path> [host [(options)]]

Where <options> is a comma separated combination of:

ro
matching clients can access this export only in read-only mode

rw
matching clients can access this export only in read-write mode

sec=krb5
matching clients must access NFS using RPCSEC_GSS authentication. The Quality of Protection (QOP)
is NONE, e.g., the data is neither encrypted nor signed when sent over the network. Nevertheless the
RPC packets header still protected by checksum.

sec=krb5i
matching clients have to access NFS using RPCSEC_GSS authentication. The Quality of Protection
(QOP) is INTEGRITY. The RPC requests and response are protected by checksum.
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sec=krb5p
matching clients have to access NFS using RPCSEC_GSS authentication. The Quality of Protection
(QOP) is PRIVACY. The RPC requests and response are protected by encryption.

For example:

Example:

#
/pnfs/dcache.org/data *.dcache.org (rw,sec=krb5i)

Notice, that security flavour used at mount time will be used for client - pool comminication as well.

Configuring NFSv4.1 door with GSS-API
support
Adding sec=krb5 into /etc/exports is not sufficient to get kerberos authentication to work.

All clients, pool nodes and node running NFSv4.1 door must have a valid kerberos configuration. Each
clients, pool node and node running NFSv4.1 door must have a /etc/krb5.keytab with nfs service
principal:

nfs/host.domain@<YOUR.REALM>

The /etc/dcache/dcache.conf on pool nodes and node running NFSv4.1 door must enable
kerberos and RPCSEC_GSS:

nfs.rpcsec_gss=true
dcache.authn.kerberos.realm=<YOUR.REALM>
dcache.authn.jaas.config=/etc/dcache/gss.conf
dcache.authn.kerberos.key-distribution-center-list=your.kdc.server

The /etc/dcache/gss.conf on pool nodes and node running NFSv4.1 door must configure Java’s
security module:

com.sun.security.jgss.accept {
com.sun.security.auth.module.Krb5LoginModule required
doNotPrompt=true
useKeyTab=true
keyTab="${/}etc${/}krb5.keytab"
debug=false
storeKey=true
principal="nfs/host.domain@<YOUR.REALM>";
};

Now your NFS client can securely access dCache.

Configuring principal-id mapping for NFS
access
The NFSv4.1 uses utf8 based strings to represent user and group names. This is the case even for non-
kerberos based accesses. Nevertheless UNIX based clients as well as dCache internally use numbers to
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represent uid and gids. A special service, called idmapd, takes care for principal-id mapping. On the client
nodes the file /etc/idmapd.conf is usually responsible for consistent mapping on the client side. On
the server side, in case of dCache mapping done through gplazma2. The identity type of plug-in required
by id-mapping service. Please refer to Chapter 10, Authorization in dCache for instructions about how to
configure gPlazma.

Note, that nfs4 domain on clients must match nfs.domain value in dcache.conf.

To avoid big latencies and avoiding multiple queries for the same information, like ownership of a files
in a big directory, the results from gPlazma are cached within NFSv4.1 door. The default values for
cache size and life time are good enough for typical installation. Nevertheless they can be overriden in
dcache.conf or layoutfile:

..
# maximal number of entries in the cache
nfs.idmap.cache.size = 512

# cache entry maximal lifetime
nfs.idmap.cache.timeout = 30

# time unit used for timeout. Valid values are:
# SECONDS, MINUTES, HOURS and DAYS
nfs.idmap.cache.timeout.unit = SECONDS
..
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Chapter 13. dCache Storage Resource
Manager

Introduction
Storage Resource Managers (SRMs) are middleware components whose function is to provide dynamic
space allocation and file management on shared storage components on the Grid. SRMs support protocol
negotiation and a reliable replication mechanism. The SRM specification [https://sdm.lbl.gov/srm-wg/doc/
SRM.v2.2.html] standardizes the interface, thus allowing for a uniform access to heterogeneous storage
elements.

The SRM utilizes the Grid Security Infrastructure (GSI) for authentication. The SRM is a Web Service im-
plementing a published WSDL document. Please visit the  SRM Working Group Page [http://sdm.lbl.gov/
srm-wg/] to see the SRM Version 1.1 and SRM Version 2.2 protocol specification documents.

The SRM protocol uses HTTP over GSI as a transport. The dCache SRM implementation added HTTPS as
a transport layer option. The main benefits of using HTTPS rather than HTTP over GSI is that HTTPS is a
standard protocol and has support for sessions, improving latency in case a client needs to connect to the same
server multiple times. The current implementation does not offer a delegation service. Hence srmCopy will
not work with SRM over HTTPS. A separate delegation service will be added in a later release.

Configuring the srm service
The Basic Setup
Like other services, the srm service can be enabled in the layout file /etc/dcache/layouts/<my-
layout> of your dCache installation. For an overview of the layout file format, please see the section
called “Defining domains and services”.

Example:

To enable SRM in a separate <srm-${host.name}Domain> in dCache, add the following lines to
your layout file:

[<srm-${host.name}Domain>]
[<srm-${host.name}Domain>/srm]

The use of the srm service requires an authentication setup, see Chapter 10, Authorization in dCache for
a general description or the section called “Authentication and Authorization in dCache” for an example
setup with X.509 certificates.

You can now copy a file into your dCache using the SRM,

Note

Please make sure to use latest srmcp client otherwise you will need to specify -2 in order to use
the right version.

https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
http://sdm.lbl.gov/srm-wg/
http://sdm.lbl.gov/srm-wg/
http://sdm.lbl.gov/srm-wg/
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[user] $ srmcp file:////bin/sh srm://<dcache.example.org>:<8443>/data/world-writable/srm-test-file

copy it back

[user] $ srmcp srm://<dcache.example.org>:<8443>/data/world-writable/srm-test-file file:////tmp/
srmtestfile.tmp

and delete it

[user] $ srmrm srm://<dcache.example.org>:<8443>/data/world-writable/srm-test-file

Important srm configuration options
The defaults for the following configuration parameters can be found in the .properties files in the
directory /usr/share/dcache/defaults.

If you want to modify parameters, copy them to /etc/dcache/dcache.conf or to your layout file /
etc/dcache/layouts/<mylayout> and update their value.

Example:

Change the value for srm.db.host in the layout file.

[<srm-${host.name}Domain>]
[<srm-${host.name}Domain>/srm]
srm.db.host=hostname

The property srm.request.copy.threads controls number of copy requests in the
running state. Copy requests are 3-rd party srm transfers and therefore the property
transfermanagers.limits.external-transfers is best to be set to the same value as shown
below.

srm.request.copy.threads=250
transfermanagers.limits.external-transfers=${srm.request.copy.threads}

The common value should be the roughly equal to the maximum number of the SRM - to -SRM copies your
system can sustain.

Example:

So if you think about 3 gridftp transfers per pool and you have 30 pools then the number should be
3x30=90.

srm.request.copy.threads=90
transfermanagers.limits.external-transfers=90

Example:

US-CMS T1 has:

srm.request.copy.threads=2000
transfermanagers.limits.external-transfers=2000
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Note

SRM might produce a lot of log entries, especially if it runs in debug mode. It is recommended to
make sure that logs are redirected into a file on a large disk.

Utilization of Space Reservations for Data
Storage
SRM version 2.2 introduced a concept of space reservation. Space reservation guarantees that the requested
amount of storage space of a specified type is made available by the storage system for a specified amount
of time.

Users can create space reservations using an appropriate SRM client, although it is more common for the
dCache administrator to make space reservations for VOs (see the section called “SpaceManager con-
figuration”. Each space reservation has an associated ID (or space token). VOs then can copy directly into
space tokens assigned to them by the dCache administrator.

When a file is about to be transferred to a storage system, the space available in the space reservation is
checked if it can accomodate the entire file. If yes, this chunk of space is marked as allocated, so that it
can not be taken by another, concurrently transferred file. If the file is transferred successfully the allocated
space becomes used space within the space reservation, else the allocated space is released back to the space
reservation as free space.

SRM space reservation can be assigned a non-unique description which can be used to query the system for
space reservations with a given description.

dCache only manages write space, i.e. space on disk can be reserved only for write operations. Once files
are migrated to tape, and if no copy is required on disk, space used by these files is returned back into space
reservation. When files are read back from tape and cached on disk, they are not counted as part of any space.

Properties of Space Reservation
A space reservation has a retention policy and an access latency.

Retention policy describes the quality of the storage service that will be provided for the data (files) stored
in the space reservation and access latency describes the availability of this data. The SRM specification
requires that if a space reservation is given on upload, then the specified retention policy and access latency
must match those of the space reservation.

The default values for the retention policy and access latency can be changed in the file /etc/dcache/
dcache.conf.

Retention policy
The values of retention policy supported by dCache are REPLICA and CUSTODIAL.

• REPLICA corresponds to the lowest quality of the service, usually associated with storing a single
copy of each file on the disk.
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• CUSTODIAL is the highest quality service, usually interpreted as storage of the data on tape.

Once a file is written into a given space reservation, it inherits the reservation’s retention policy.

If the space reservation request does not specify a retention policy, we will assign a value given by
spacemanager.default-retention-policy. The default value is CUSTODIAL.

Edit the file /etc/dcache/dcache.conf to change the default value.

Example:

Change the default value to REPLICA.

spacemanager.default-retention-policy=REPLICA

Note

spacemanager.default-retention-policy merely specifies to value to use while
allocating space reservations when no value was given by the client or dCache admin. It is not
to be confused with pnfsmanager.default-retention-policy which specifies the
default retention policy of files uploaded outside of any space reservation.

Access latency
The two values allowed for access latency are NEARLINE and ONLINE.

• NEARLINE means that data stored in this reservation is allowed to migrate to permanent media.
Retrieving these data may result in delays associated with preparatory steps that the storage system has
to perform to make these data available for the user I/O (e.g., staging data from tape to a disk cache).

• ONLINE means that data is readily available allowing for faster access.

In case of dCache ONLINE means that there will always be a copy of the file on disk, while NEARLINE
does not provide such guarantee. As with retention policy, once a file is written into a given space
reservation, it inherits the reservation’s access latency.

If a space reservation request does not specify an access latency, we will assign a value given by
spacemanager.default-access-latency. The default value is NEARLINE.

Edit the file /etc/dcache/dcache.conf to change the default value.

Example:

Change the default value to ONLINE.

spacemanager.default-access-latency=ONLINE

Note

spacemanager.default-access-latency merely specifies to value to use while al-
locating space reservations when no value was given by the client or dCache admin. It is not
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to be confused with pnfsmanager.default-access-latency which specifies the de-
fault retention policy of files uploaded outside of any space reservation.

Important

Please make sure to use capital letters for REPLICA, CUSTODIAL, ONLINE and NEARLINE oth-
erwise you will receive an error message.

dCache specific concepts

Activating SRM SpaceManager
In order to enable the SRM SpaceManager you need to add the spacemanager service to your layout file

[<dCacheDomain>]
[<dCacheDomain>/spacemanager]

and add the following definition in the file /etc/dcache/dcache.conf

dcache.enable.space-reservation=true

Unless you have reason not to, we recommend placing the spacemanager service in the same domain
as the poolmanager service.

Explicit and Implicit Space Reservations for Data
Storage in dCache

Explicit Space Reservations

Each SRM space reservation is made against the total available disk space of a particular link group. If dCache
is configured correctly each byte of disk space, that can be reserved, belongs to one and only one link group.
See the section called “SpaceManager configuration” for a detailed description.

Important

Make sure that no pool belongs to more than one pool group, no pool group belongs to more than
one link and no link belongs to more than one link group.

If a space reservation is specified during upload, the file will be stored in it.

Files written into a space made within a particular link group will end up on one of the pools belonging to
this link group. The difference between the link group’s free space and the sum of all its space reservation’s
unused space is the available space of the link group. The available space of a link group is the space that
can be allocated for new space reservations.

The total space in dCache that can be reserved is the sum of the available spaces of all link groups. Note
however that a space reservation can never span more than a single link group.
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Implicit Space Reservations

dCache can perform implicit space reservations for non-SRM transfers, SRM Version 1 transfers and for
SRM Version 2.2 data transfers that are not given the space token explicitly. The parameter that enables this
behavior is srm.enable.space-reservation.implicit, which is described in the section called
“SRM configuration for experts”. If no implicit space reservation can be made, the transfer will fail.

Implicit space reservation means that the srm will create a space reservation for a single upload while
negotiating the transfer parameters with the client. The space reservation will be created in a link group for
which the user is authorized to create space reservations, which has enough available space, and which is
able to hold the type of file being uploaded. The space reservation will be short lived. Once it expires, it will
be released and the file it held will live on outside any space reservation, but still within the link group to
which it was uploaded. Implicit space reservations are thus a technical means to upload files to link groups
without using explicit space reservations.

The reason dCache cannot just allow the file to be uploaded to the link group without any space reservation at
all is, that we have to guarantee, that space already allocated for other reservations isn’t used by the file being
uploaded. The best way to guarantee that there is enough space for the file is to make a space reservation
to which to upload it.

In case of SRM version 1.1 data transfers, where the access latency and retention policy cannot be specified,
and in case of SRM V2.2 clients, when the access latency and retention policy are not specified, default
values will be used. First SRM will attempt to use the values of access latency and retention policy tags from
the directory to which a file is being written. If the tags are not present, then the access latency and reten-
tion policy will be set on basis of pnfsmanager defaults controlled by pnfsmanager.default-re-
tention-policy and pnfsmanager.default-access-latency variables in /etc/dcache/
dcache.conf.

You can check if the AccessLatency and RetentionPolicy tags are present by using the following
command:

[root] # /usr/bin/chimera lstag /path/to/directory
Total: numberOfTags
tag1
tag2
..
AccessLatency
RetentionPolicy

If the output contains the lines AccessLatency and RetentionPolicy then the tags are already
present and you can get the actual values of these tags by executing the following commands, which are
shown together with example outputs:

Example:

[root] # /usr/bin/chimera readtag /data/experiment-a AccessLatency
ONLINE
[root] # /usr/bin/chimera readtag /data/experiment-a RetentionPolicy
CUSTODIAL

The valid AccessLatency values are ONLINE and NEARLINE, valid RetentionPolicy values are
REPLICA and CUSTODIAL.
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To create/change the values of the tags, please execute :

[root] # /usr/bin/chimera writetag /path/to/directory AccessLatency "<New AccessLatency>"
[root] # /usr/bin/chimera writetag /path/to/directory RetentionPolicy "<New RetentionPolicy>"

Note

Some clients also have default values, which are used when not explicitly specified by the user. In
this case server side defaults will have no effect.

Note

If the implicit space reservation is not enabled, pools in link groups will be excluded from consid-
eration and only the remaining pools will be considered for storing the incoming data, and classical
pool selection mechanism will be used.

SpaceManager configuration

SRM SpaceManager and Link Groups
SpaceManager is making reservations against free space available in  link groups. The total free space in
the given link group is the sum of available spaces in all links. The available space in each link is the sum of
all sizes of available space in all pools assinged to a given link. Therefore for the space reservation to work
correctly it is essential that each pool belongs to one and only one link, and each link belongs to only one
link group. Link groups are assigned several parameters that determine what kind of space the link group
corresponds to and who can make reservations against this space.

Making a Space Reservation
Now that the SRM SpaceManager is activated you can make a space reservation. As mentioned above
you need link groups to make a space reservation.

Prerequisites for Space Reservations

Login to the admin interface and cd to the cell SrmSpaceManager.

[user] $ ssh -p 22224 -l admin admin.example.org
(local) admin > cd SrmSpaceManager

Type ls link groups to get information about link groups.

(SrmSpaceManager) admin > ls link groups

The lack of output tells you that there are no link groups. As there are no link groups, no space can be
reserved.

The Link Groups

For a general introduction about link groups see the section called “Link Groups”.

Example:
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In this example we will create a link group for the VO desy. In order to do so we need to have a pool, a
pool group and a link. Moreover, we define unit groups named any-store, world-net and any-
protocol. (See the section called “Types of Units”.)

Define a pool in your layout file, add it to your pool directory and restart the poolDomain.

[poolDomain]
[poolDomain/pool]
path=/srv/dcache/spacemanager-pool
name=spacemanager-pool

[root] # mkdir -p /srv/dcache/spacemanager-pool
[root] # /usr/bin/dcache restart

In the admin interface, cd to the PoolManager and create a pool group, a link and a link group.

(SrmSpaceManager) admin > ..
(local) admin > cd PoolManager
(PoolManager) admin > psu create pgroup spacemanager_poolGroup
(PoolManager) admin > psu addto pgroup spacemanager_poolGroup spacemanager-pool
(PoolManager) admin > psu removefrom pgroup default spacemanager-pool
(PoolManager) admin > psu create link spacemanager_WriteLink any-store world-net any-protocol
(PoolManager) admin > psu set link spacemanager_WriteLink -readpref=10 -writepref=10 -cachepref=0
 -p2ppref=-1
(PoolManager) admin > psu add link spacemanager_WriteLink  spacemanager_poolGroup
(PoolManager) admin > psu create linkGroup spacemanager_WriteLinkGroup
(PoolManager) admin > psu set linkGroup custodialAllowed spacemanager_WriteLinkGroup true
(PoolManager) admin > psu set linkGroup replicaAllowed spacemanager_WriteLinkGroup true
(PoolManager) admin > psu set linkGroup nearlineAllowed spacemanager_WriteLinkGroup true
(PoolManager) admin > psu set linkGroup onlineAllowed spacemanager_WriteLinkGroup true
(PoolManager) admin > psu addto linkGroup spacemanager_WriteLinkGroup spacemanager_WriteLink
(PoolManager) admin > save
(PoolManager) admin > ..
 

Check whether the link group is available. Note that this can take several minutes to propagate to
spacemanager.

(local) admin > cd SrmSpaceManager
(SrmSpaceManager) admin > ls link groups
FLAGS CNT RESVD        AVAIL         FREE             UPDATED NAME
--rc:no 0     0 + 7278624768 = 7278624768 2011-11-28 12:12:51 spacemanager_WriteLinkGroup
    

The link group spacemanager_WriteLinkGroup was created. Here the flags indicate first the
status (- indicates that neither the expired [e] nor the released flags [r] are set), followed by the type of
reservations allowed in the link group (here replica [r], custodial [c], nearline [n] and online [o] files;
output [o] files are not allowed - see help ls link groups for details on the format). No space reservations
have been created, as indicated by the count field. Since no space reservation has been created, no space
in the link group is reserved.

The SpaceManagerLinkGroupAuthorizationFile

Now you need to edit the LinkGroupAuthorization.conf file. This file contains a list of the link
groups and all the VOs and the VO Roles that are permitted to make reservations in a given link group.

Specify the location of the LinkGroupAuthorization.conf file in the /etc/dcache/
dcache.conf file.

spacemanager.authz.link-group-file-name=/path/to/LinkGroupAuthorization.conf
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The file LinkGroupAuthorization.conf has following syntax:

LinkGroup <NameOfLinkGroup> followed by the list of the Fully Qualified Attribute Names (FQANs).
Each FQAN is on a separate line, followed by an empty line, which is used as a record separator, or by
the end of the file.

FQAN is usually a string of the form <VO>/Role=<VORole>. Both <VO> and <VORole> can be set to
*, in this case all VOs or VO Roles will be allowed to make reservations in this link group. Any line that
starts with # is a comment and may appear anywhere.

Rather than an FQAN, a mapped user name can be used. This allows clients or protocols that do not provide
VOMS attributes to make use of space reservations.

#SpaceManagerLinkGroupAuthorizationFile

LinkGroup <NameOfLinkGroup>
/<VO>/Role=<VORole>

Note

You do not need to restart the srm or dCache after changing the
LinkGroupAuthorization.conf file. The changes will be applied automatically after a few
minutes.

Use update link groups to be sure that the LinkGroupAuthorization.conf file and the
link groups have been updated.

(SrmSpaceManager) admin > update link groups
Update started.

Example:

In the example above you created the link group spacemanager_WriteLinkGroup. Now you
want to allow members of the VO desy with the role production to make a space reservation in
this link group.

#SpaceManagerLinkGroupAuthorizationFile
# this is comment and is ignored

LinkGroup spacemanager_WriteLinkGroup
#
/desy/Role=production

Example:

In this more general example for a SpaceManagerLinkGroupAuthorizationFile members
of the VO desy with role test are authorized to make a space reservation in a link group called desy-
test-LinkGroup. Moreover, all members of the VO desy are authorized to make a reservation in
the link group called desy-anyone-LinkGroup and anyone is authorized to make a space reserva-
tion in the link group called default-LinkGroup.

#SpaceManagerLinkGroupAuthorizationFile
# this is a comment and is ignored

LinkGroup desy-test-LinkGroup
/desy/Role=test
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LinkGroup desy-anyone-LinkGroup
/desy/Role=*

LinkGroup default-LinkGroup
# allow anyone :-)
*/Role=*

Making and Releasing a Space Reservation as dCache Admin-
istrator

Making a Space Reservation

Example:

Now you can make a space reservation for the VO desy.

(SrmSpaceManager) admin > reserve space -owner=/desy/Role=production -desc=DESY_TEST -
lifetime=10000 -lg=spacemanager_WriteLinkGroup 5MB
110000 voGroup:/desy voRole:production retentionPolicy:CUSTODIAL accessLatency:NEARLINE
 linkGroupId:0 size:5000000 created:Fri Dec 09 12:43:48 CET 2011 lifetime:10000000ms
 expiration:Fri Dec 09 15:30:28 CET 2011 description:DESY_TEST state:RESERVED used:0 allocated:0

The space token of the reservation is 110000.

Check the status of the reservation by

(SrmSpaceManager) admin > ls spaces -e -h
 TOKEN RETENTION LATENCY FILES ALLO   USED   FREE   SIZE             EXPIRES DESCRIPTION
110000 CUSTODIAL NEARLINE    0   0B +   0B + 5.0M = 5.0M 2011-12-09 12:43:48 DESY_TEST

(SrmSpaceManager) admin > ls link groups -h
FLAGS CNT RESVD   AVAIL   FREE             UPDATED NAME
--rc:no 1  5.0M +  7.3G = 7.3G 2011-11-28 12:12:51 spacemanager_WriteLinkGroup

Here the -h option indicates that approximate, but human readable, byte sizes are to be used, and -
e indicates that ephemeral (time limited) reservations should be displayed too (by default time limited
reservations are not displayed as they are often implicit reservations). As can be seen, 5 MB are now
reserved in the link group, although with approximate byte sizes, 5 MB do not make a visible difference
in the 7.3 GB total size.

You can now copy a file into that space token.

[user] $ srmcp file:////bin/sh srm://<dcache.example.org>:8443/data/world-writable/space-token-
test-file -space_token=110000

Now you can check via the Webadmin Interface or the Web Interface that the file has been copied to
the pool spacemanager-pool.

There are several parameters to be specified for a space reservation.

(SrmSpaceManager) admin > reserve space [-al=online|nearline] [-desc=<string>] -lg=<name>
[-lifetime=<seconds>] [-owner=<user>|<fqan>] [-rp=output|replica|custodial] <size>

[-owner=<user>|<fqan>]
The owner of the space is identified by either mapped user name or FQAN. The owner must be authorized
to reserve space in the link group in which the space is to be created. Besides the dCache admin, only



dCache Storage Resource Manager

133

the owner can release the space. Anybody can however write into the space (although the link group
may only allow certain storage groups and thus restrict which file system paths can be written to space
reservation, which in turn limits who can upload files to it).

[-al=<AccessLatency>]
AccessLatency needs to match one of the access latencies allowed for the link group.

[-rp=<RetentionPolicy>]
RetentionPolicy needs to match one of the retention policies allowed for the link group.

[-desc=<Description>]
You can chose a value to describe your space reservation.

-lg=<LinkGroupName>
Which link group to create the reservation in.

<size>
The size of the space reservation should be specified in bytes, optionally using a byte unit suffix using
either SI or IEEE prefixes.

[-lifetime=<lifetime]>
The life time of the space reservation should be specified in seconds. If no life time is specified, the
space reservation will not expire automatically.

Releasing a Space Reservation

If a space reservation is not needed anymore it can be released with

(SrmSpaceManager) admin > release space <spaceTokenId>

Example:

(SrmSpaceManager) admin > reserve space -owner=/desy -desc=DESY_TEST -lifetime=600 5000000
110042 voGroup:/desy voRole:production retentionPolicy:CUSTODIAL accessLatency:NEARLINE
 linkGroupId:0 size:5000000 created:Thu Dec 15 12:00:35 CET 2011 lifetime:600000ms expiration:Thu
 Dec 15 12:10:35 CET 2011 description:DESY_TEST state:RESERVED used:0 allocated:0
(SrmSpaceManager) admin > release space 110042
110042 voGroup:/desy voRole:production retentionPolicy:CUSTODIAL accessLatency:NEARLINE
 linkGroupId:0 size:5000000 created:Thu Dec 15 12:00:35 CET 2011 lifetime:600000ms expiration:Thu
 Dec 15 12:10:35 CET 2011 description:DESY_TEST state:RELEASED used:0 allocated:0

You can see that the value for state has changed from RESERVED to RELEASED.

Making and Releasing a Space Reservation as a User

If so authorized, a user can make a space reservation through the SRM protocol. A user is authorized to do
so using the LinkGroupAuthorization.conf file.

VO based Authorization Prerequisites

In order to be able to take advantage of the virtual organization (VO) infrastructure and VO based autho-
rization and VO based access control to the space in dCache, certain things need to be in place:
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• User needs to be registered with the VO.

• User needs to use voms-proxy-init to create a VO proxy.

• dCache needs to use gPlazma with modules that extract VO attributes from the user’s proxy. (See Chap-
ter 10, Authorization in dCache, have a look at voms plugin and see the section called “Authentication
and Authorization in dCache” for an example with voms.

Only if these 3 conditions are satisfied the VO based authorization of the SpaceManager will work.

VO based Access Control Configuration

As mentioned above dCache space reservation functionality access control is currently performed at the
level of the link groups. Access to making reservations in each link group is controlled by the  SpaceM-
anagerLinkGroupAuthorizationFile.

This file contains a list of the link groups and all the VOs and the VO Roles that are permitted to make
reservations in a given link group.

When a SRM Space Reservation request is executed, its parameters, such as reservation size, lifetime, ac-
cess latency and retention policy as well as user’s VO membership information is forwarded to the SRM
SpaceManager.

Once a space reservation is created, no access control is performed, any user can store the files in this space
reservation, provided he or she knows the exact space token.

Making and Releasing a Space Reservation

A user who is given the rights in the SpaceManagerLinkGroupAuthorizationFile can make a
space reservation by

[user] $ srm-reserve-space -retention_policy=<RetentionPolicy> -lifetime=<lifetimeInSecs> -
desired_size=<sizeInBytes> -guaranteed_size=<sizeInBytes>  srm://<example.org>:8443
Space token =SpaceTokenId

and release it by

[user] $ srm-release-space srm://<example.org>:8443 -space_token=SpaceTokenId

Note

Please note that it is obligatory to specify the retention policy while it is optional to specify the
access latency.

Example:

[user] $ srm-reserve-space -retention_policy=REPLICA -lifetime=300 -desired_size=5500000 -
guaranteed_size=5500000  srm://srm.example.org:8443
Space token =110044

The space reservation can be released by:

[user] $ srm-release-space srm://srm.example.org:8443 -space_token=110044



dCache Storage Resource Manager

135

Space Reservation without VOMS certificate

If a client uses a regular grid proxy, created with grid-proxy-init, and not a VO proxy, which is created
with the voms-proxy-init, when it is communicating with SRM server in dCache, then the VO attributes can
not be extracted from its credential. In this case the name of the user is extracted from the Distinguished
Name (DN) to use name mapping. For the purposes of the space reservation the name of the user as mapped
by gplazma is used as its VO Group name, and the VO Role is left empty. The entry in the SpaceMan-
agerLinkGroupAuthorizationFile should be:

#LinkGroupAuthorizationFile
#
<userName>

Space Reservation for non SRM Transfers

Edit the file /etc/dcache/dcache.conf to enable space reservation for non SRM transfers.

spacemanager.enable.reserve-space-for-non-srm-transfers=true

If the spacemanager is enabled, spacemanager.enable.reserve-space-for-non-srm-
transfers is set to true, and if the transfer request comes from a door, and there was no prior space
reservation made for this file, the SpaceManager will try to reserve space before satisfying the request.

Possible values are true or false and the default value is false.

This is analogous to implicit space reservations performed by the srm, except that these reservations are
created by the spacemanager itself. Since an SRM client uses a non-SRM protocol for the actual upload,
setting the above option to true while disabling implicit space reservations in the srm, will still allow files
to be uploaded to a link group even when no space token is provided. Such a configuration should however
be avoided: If the srm does not create the reservation itself, it has no way of communicating access latency,
retention policy, file size, nor lifetime to spacemanager.

SRM configuration for experts
There are a few parameters in /usr/share/dcache/defaults/*.properties that you might find
useful for nontrivial SRM deployment.

dcache.enable.space-reservation

dcache.enable.space-reservation tells if the space management is activated in SRM.

Possible values are true and false. Default is true.

Usage example:

dcache.enable.space-reservation=true

srm.enable.space-reservation.implicit

srm.enable.space-reservation.implicit tells if the space should be reserved for SRM Version
1 transfers and for SRM Version 2 transfers that have no space token specified.
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Possible values are true and false. This is enabled by default. It has no effect if
dcache.enable.space-reservation is set to true.

Usage example:

srm.enable.space-reservation.implicit=true

dcache.enable.overwrite

dcache.enable.overwrite tells SRM and GridFTP servers if the overwrite is allowed. If enabled
on the SRM node, should be enabled on all GridFTP nodes.

Possible values are true and false. Default is false.

Usage example:

dcache.enable.overwrite=true

srm.enable.overwrite-by-default

srm.enable.overwrite-by-default Set this to true if you want overwrite to be enabled for SRM
v1.1 interface as well as for SRM v2.2 interface when client does not specify desired overwrite mode. This
option will be considered only if dcache.enable.overwrite is set to true.

Possible values are true and false. Default is false.

Usage example:

srm.enable.overwrite-by-default=false 

srm.db.host

srm.db.host tells SRM which database host to connect to.

Default value is localhost.

Usage example:

srm.db.host=database-host.example.org

spaceManagerDatabaseHost

spaceManagerDatabaseHost tells SpaceManager which database host to connect to.

Default value is localhost.

Usage example:

spaceManagerDatabaseHost=database-host.example.org

pinmanager.db.host

pinmanager.db.host tells PinManager which database host to connect to.
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Default value is localhost.

Usage example:

pinmanager.db.host=database-host.example.org

srm.db.name

srm.db.name tells SRM which database to connect to.

Default value is dcache.

Usage example:

srm.db.name=dcache

srm.db.user

srm.db.user tells SRM which database user name to use when connecting to database. Do not change
unless you know what you are doing.

Default value is srmdcache.

Usage example:

srm.db.user=srmdcache

srm.db.password

srm.db.password tells SRM which database password to use when connecting to database. The default
value is srmdcache.

Usage example:

srm.db.password=NotVerySecret

srm.db.password.file

srm.db.password.file tells SRM which database password file to use when connecting to database.
Do not change unless you know what you are doing. It is recommended that MD5 authentication method
is used. To learn about file format please see http://www.postgresql.org/docs/8.1/static/libpq-pgpass.html.
To learn more about authentication methods please visit http://www.postgresql.org/docs/8.1/static/encryp-
tion-options.html, Please read "Encrypting Passwords Across A Network" section.

This option is not set by default.

Usage example:

srm.db.password.file=/root/.pgpass

srm.request.enable.history-database

srm.request.enable.history-database enables logging of the transition history of the SRM re-
quest in the database. The request transitions can be examined through the command line interface. Activa-

http://www.postgresql.org/docs/8.1/static/libpq-pgpass.html
http://www.postgresql.org/docs/8.1/static/encryption-options.html
http://www.postgresql.org/docs/8.1/static/encryption-options.html
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tion of this option might lead to the increase of the database activity, so if the PostgreSQL load generated
by SRM is excessive, disable it.

Possible values are true and false. Default is false.

Usage example:

srm.request.enable.history-database=true

transfermanagers.enable.log-to-database

transfermanagers.enable.log-to-database tells SRM to store the information about the re-
mote (copy, srmCopy) transfer details in the database. Activation of this option might lead to the increase
of the database activity, so if the PostgreSQL load generated by SRM is excessive, disable it.

Possible values are true and false. Default is false.

Usage example:

transfermanagers.enable.log-to-database=false

srmVersion

srmVersion is not used by SRM; it was mentioned that this value is used by some publishing scripts.

Default is version1.

srm.root

srm.root tells SRM what the root of all SRM paths is in pnfs. SRM will prepend path to all the local SURL
paths passed to it by SRM client. So if the srm.root is set to /pnfs/fnal.gov/THISISTHEPN-
FSSRMPATH and someone requests the read of srm://srm.example.org:8443/file1, SRM will
translate the SURL path /file1 into /pnfs/fnal.gov/THISISTHEPNFSSRMPATH/file1. Set-
ting this variable to something different from / is equivalent of performing Unix chroot for all SRM oper-
ations.

Default value is /.

Usage example:

srm.root="/pnfs/fnal.gov/data/experiment"

srm.limits.parallel-streams

srm.limits.parallel-streams specifies the number of the parallel streams that SRM will use when
performing third party transfers between this system and remote GSI-FTP servers, in response to SRM v1.1
copy or SRM V2.2 srmCopy function. This will have no effect on srmPrepareToPut and srmPrepareToGet
command results and parameters of GridFTP transfers driven by the SRM clients.

Default value is 10.

Usage example:

srm.limits.parallel-streams=20
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srm.limits.transfer-buffer.size

srm.limits.transfer-buffer.size specifies the number of bytes to use for the in memory
buffers for performing third party transfers between this system and remote GSI-FTP servers, in response
to SRM v1.1 copy or SRM V2.2 srmCopy function. This will have no effect on srmPrepareToPut and srm-
PrepareToGet command results and parameters of GridFTP transfers driven by the SRM clients.

Default value is 1048576.

Usage example:

srm.limits.transfer-buffer.size=1048576

srm.limits.transfer-tcp-buffer.size

srm.limits.transfer-tcp-buffer.size specifies the number of bytes to use for the tcp buffers
for performing third party transfers between this system and remote GSI-FTP servers, in response to SRM
v1.1 copy or SRM V2.2 srmCopy function. This will have no effect on srmPrepareToPut and srmPrepare-
ToGet command results and parameters of GridFTP transfers driven by the SRM clients.

Default value is 1048576.

Usage example:

srm.limits.transfer-tcp-buffer.size=1048576

srm.service.gplazma.cache.timeout

srm.service.gplazma.cache.timeout specifies the duration that authorizations will be cached.
Caching decreases the volume of messages to the gPlazma cell or other authorization mechanism. To turn
off caching, set the value to 0.

Default value is 120.

Usage example:

srm.service.gplazma.cache.timeout=60

srm.limits.request.bring-online.lifetime,
srm.limits.request.put.lifetime and
srm.limits.request.copy.lifetime

srm.limits.request.bring-online.lifetime,
srm.limits.request.put.lifetime and srm.limits.request.copy.lifetime specify
the lifetimes of the srmPrepareToGet (srmBringOnline) srmPrepareToPut and srmCopy requests lifetimes
in millisecond. If the system is unable to fulfill the requests before the request lifetimes expire, the requests
are automatically garbage collected.

Default value is 14400000 (4 hours)

Usage example:
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srm.limits.request.bring-online.lifetime=14400000
srm.limits.request.put.lifetime=14400000
srm.limits.request.copy.lifetime=14400000

srm.limits.request.scheduler.ready.max,
srm.limits.request.put.scheduler.ready.max,
srm.limits.request.scheduler.ready-queue.size and
srm.limits.request.put.scheduler.ready-queue.size

srm.limits.request.scheduler.ready.max and
srm.limits.request.put.scheduler.ready.max specify the maximum number of the
files for which the transfer URLs will be computed and given to the users in response
to SRM get (srmPrepareToGet) and put (srmPrepareToPut) requests. The rest of the files
that are ready to be transfered are put on the Ready queues, the maximum length of
these queues are controlled by srm.limits.request.scheduler.ready-queue.size and
srm.limits.request.put.scheduler.ready-queue.size parameters. These parameters
should be set according to the capacity of the system, and are usually greater than the maximum number of
the GridFTP transfers that this dCache instance GridFTP doors can sustain.

Usage example:

srm.limits.request.scheduler.ready-queue.size=10000
srm.limits.request.scheduler.ready.max=2000
srm.limits.request.put.scheduler.ready-queue.size=10000
srm.limits.request.put.scheduler.ready.max=1000

srm.limits.request.copy.scheduler.thread.pool.size and
transfermanagers.limits.external-transfers

srm.limits.request.copy.scheduler.thread.pool.size and
transfermanagers.limits.external-transfers.
srm.limits.request.copy.scheduler.thread.pool.size is used to specify how many
parallel srmCopy file copies to execute simultaneously. Once the SRM contacted the remote SRM sys-
tem, and obtained a Transfer URL (usually GSI-FTP URL), it contacts a Copy Manager module (usu-
ally RemoteGSIFTPTransferManager), and asks it to perform a GridFTP transfer between the
remote GridFTP server and a dCache pool. The maximum number of simultaneous transfers that
RemoteGSIFTPTransferManager will support is transfermanagers.limits.external-
transfers, therefore it is important that transfermanagers.limits.external-transfers
is greater than or equal to srm.limits.request.copy.scheduler.thread.pool.size.

Usage example:

srm.limits.request.copy.scheduler.thread.pool.size=250
transfermanagers.limits.external-transfers=260

srm.enable.custom-get-host-by-address

srm.enable.custom-get-host-by-address srm.enable.custom-get-host-by-ad-
dress enables using the BNL developed procedure for host by IP resolution if standard InetAddress method
failed.
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Usage example:

srm.enable.custom-get-host-by-address=true

srm.enable.recursive-directory-creation

srm.enable.recursive-directory-creation allows or disallows automatic creation of direc-
tories via SRM. Set this to true or false.

Automatic directory creation is allowed by default.

Usage example:

srm.enable.recursive-directory-creation=true

hostCertificateRefreshPeriod

This option allows you to control how often the SRM door will reload the server’s host certificate from the
filesystem. For the specified period, the host certificate will be kept in memory. This speeds up the rate at
which the door can handle requests, but also causes it to be unaware of changes to the host certificate (for
instance in the case of renewal).

By changing this parameter you can control how long the host certificate is cached by the door and conse-
quently how fast the door will be able to detect and reload a renewed host certificate.

Please note that the value of this parameter has to be specified in seconds.

Usage example:

hostCertificateRefreshPeriod=86400

trustAnchorRefreshPeriod

The trustAnchorRefreshPeriod option is similar to hostCertificateRefreshPeriod. It
applies to the set of CA certificates trusted by the SRM door for signing end-entity certificates (along with
some metadata, these form so called trust anchors). The trust anchors are needed to make a decision about
the trustworthiness of a certificate in X.509 client authentication. The GSI security protocol used by SRM
builds upon X.509 client authentication.

By changing this parameter you can control how long the set of trust anchors remains cached by the door.
Conversely, it also influences how often the door reloads the set of trusted certificates.

Please note that the value of this parameter has to be specified in seconds.

Tip

Trust-anchors usually change more often than the host certificate. Thus, it might be sensible to set
the refresh period of the trust anchors lower than the refresh period of the host certificate.

Usage example:

trustAnchorRefreshPeriod=3600
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Configuring the PostgreSQL Database
We highly recommend to make sure that PostgreSQL database files are stored on a separate disk that is not
used for anything else (not even PostgreSQL logging). BNL Atlas Tier 1 observed a great improvement in
srm-database communication performance after they deployed PostgreSQL on a separate dedicated machine.

SRM or srm monitoring on a separate node
If SRM or srm monitoring is going to be installed on a separate node, you need to add an entry in the file /
var/lib/pgsql/data/pg_hba.conf for this node as well:

host    all         all       <monitoring node>    trust
host    all         all       <srm node>    trust

The file postgresql.conf should contain the following:

#to enable network connection on the default port
max_connections = 100
port = 5432
...
shared_buffers = 114688
...
work_mem = 10240
...
#to enable autovacuuming
stats_row_level = on
autovacuum = on
autovacuum_vacuum_threshold = 500  # min # of tuple updates before
                                   # vacuum
autovacuum_analyze_threshold = 250      # min # of tuple updates before
                                        # analyze
autovacuum_vacuum_scale_factor = 0.2    # fraction of rel size before
                                        # vacuum
autovacuum_analyze_scale_factor = 0.1   # fraction of rel size before
#
# setting vacuum_cost_delay might be useful to avoid
# autovacuum penalize general performance
# it is not set in US-CMS T1 at Fermilab
#
# In IN2P3 add_missing_from = on
# In Fermilab it is commented out

# - Free Space Map -
max_fsm_pages = 500000

# - Planner Cost Constants -
effective_cache_size = 16384            # typically 8KB each

General SRM Concepts (for developers)

The SRM service
dCache SRM is implemented as a Web Service running in a Jetty servlet container and an Axis Web Services
engine. The Jetty server is executed as a cell, embedded in dCache and started automatically by the SRM ser-
vice. Other cells started automatically by SRM are SpaceManager, PinManager and RemoteGSIFTP-
TransferManager. Of these services only SRM and SpaceManager require special configuration.

The SRM consists of the five categories of functions:
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• Space Management Functions

• Data Transfer Functions

• Request Status Functions

• Directory Functions

• Permission Functions

Space Management Functions
SRM version 2.2 introduces a concept of space reservation. Space reservation guarantees that the requested
amount of storage space of a specified type is made available by the storage system for a specified amount
of time.

We use three functions for space management:

• srmReserveSpace

• SrmGetSpaceMetadata

• srmReleaseSpace

Space reservation is made using the srmReserveSpace function. In case of successful reservation, a
unique name, called space token is assigned to the reservation. A space token can be used during the trans-
fer operations to tell the system to put the files being manipulated or transferred into an associated space
reservation. A storage system ensures that the reserved amount of the disk space is indeed available, thus
providing a guarantee that a client does not run out of space until all space promised by the reservation has
been used. When files are deleted, the space is returned to the space reservation.

dCache only manages write space, i.e. space on disk can be reserved only for write operations. Once files
are migrated to tape, and if no copy is required on disk, space used by these files is returned back into space
reservation. When files are read back from tape and cached on disk, they are not counted as part of any
space. SRM space reservation can be assigned a non-unique description that can be used to query the system
for space reservations with a given description.

Properties of the SRM space reservations can be discovered using the SrmGetSpaceMetadata function.

Space Reservations might be released with the function srmReleaseSpace.

For a complete description of the available space management functions please see the SRM Version 2.2
Specification [http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html#_Toc241633085].

Data Transfer Functions

SURLs and TURLs

SRM defines a protocol named SRM, and introduces a way to address the files stored in the SRM man-
aged storage by site URL (SURL of the format srm://<host>:<port>/[<web service path>?
SFN=]<path>.

http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html#_Toc241633085
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html#_Toc241633085
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html#_Toc241633085
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Example:

Examples of the SURLs a.k.a. SRM URLs are:

srm://fapl110.fnal.gov:8443/srm/managerv2?SFN=//pnfs/fnal.gov/data/test/file1
srm://fapl110.fnal.gov:8443/srm/managerv1?SFN=/pnfs/fnal.gov/data/test/file2
srm://srm.cern.ch:8443/castor/cern.ch/cms/store/cmsfile23

A transfer URL (TURL) encodes the file transport protocol in the URL.

Example:

gsiftp://gridftpdoor.fnal.gov:2811/data/test/file1

SRM version 2.2 provides three functions for performing data transfers:

• srmPrepareToGet

• srmPrepareToPut

• srmCopy

(in SRM version 1.1 these functions were called get, put and copy).

All three functions accept lists of SURLs as parameters. All data transfer functions perform file/directory
access verification and srmPrepareToPut and srmCopy check if the receiving storage element has
sufficient space to store the files.

srmPrepareToGet prepares files for read. These files are specified as a list of source SURLs, which are
stored in an SRM managed storage element. srmPrepareToGet is used to bring source files online and
assigns transfer URLs (TURLs) that are used for actual data transfer.

srmPrepareToPut prepares an SRM managed storage element to receive data into the list of destination
SURLs. It prepares a list of TURLs where the client can write data into.

Both functions support transfer protocol negotiation. A client supplies a list of transfer protocols and the
SRM server computes the TURL using the first protocol from the list that it supports. Function invocation
on the Storage Element depends on implementation and may range from simple SURL to TURL translation
to stage from tape to disk cache and dynamic selection of transfer host and transfer protocol depending on
the protocol availability and current load on each of the transfer server load.

The function srmCopy is used to copy files between SRM managed storage elements. If both source and
target are local to the SRM, it performes a local copy. There are two modes of remote copies:

• PULL mode : The target SRM initiates an srmCopy request. Upon the client\u0411\u2500\u2265s srm-
Copy request, the target SRM makes a space at the target storage, executes srmPrepareToGet on the
source SRM. When the TURL is ready at the source SRM, the target SRM transfers the file from the source
TURL into the prepared target storage. After the file transfer completes, srmReleaseFiles is issued
to the source SRM.

• PUSH mode : The source SRM initiates an srmCopy request. Upon the client\u0411\u2500\u2265s srm-
Copy request, the source SRM prepares a file to be transferred out to the target SRM, executes srmPre-



dCache Storage Resource Manager

145

pareToPut on the target SRM. When the TURL is ready at the target SRM, the source SRM transfers
the file from the prepared source into the prepared target TURL. After the file transfer completes, srm-
PutDone is issued to the target SRM.

When a specified target space token is provided, the files will be located in the space associated with the
space token.

SRM Version 2.2 srmPrepareToPut and srmCopy PULL mode transfers allow the user to specify a
space reservation token or a retention policy and access latency. Any of these parameters are optional, and
it is up to the implementation to decide what to do, if these properties are not specified. The specification
requires that if a space reservation is given, then the specified access latency or retention policy must match
those of the space reservation.

The Data Transfer Functions are asynchronous, an initial SRM call starts a request execution on the server side
and returns a request status that contains a unique request token. The status of request is polled periodically
by SRM get request status functions. Once a request is completed and the client receives the TURLs the
data transfers are initiated. When the transfers are completed the client notifies the SRM server by executing
srmReleaseFiles in case of srmPrepareToGet or srmPutDone in case of srmPrepareToPut.
In case of srmCopy, the system knows when the transfers are completed and resources can be released, so
it requires no special function at the end.

Clients are free to cancel the requests at any time by execution of srmAbortFiles or srmAbortRe-
quest.

Request Status Functions
The functions for checking the request status are:

• srmStatusOfReserveSpaceRequest

• srmStatusOfUpdateSpaceRequest

• srmStatusOfChangeSpaceForFilesRequest

• srmStatusOfChangeSpaceForFilesRequest

• srmStatusOfBringOnlineRequest

• srmStatusOfPutRequest

• srmStatusOfCopyRequest

Directory Functions
SRM Version 2.2, interface provides a complete set of directory management functions. These are

• srmLs, srmRm

• srmMkDir, srmRmDir

• srmMv
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Permission functions
SRM Version 2.2 supports the following three file permission functions:

• srmGetPermission

• srmCheckPermission and

• srmSetPermission

dCache contains an implementation of these functions that allows setting and checking of Unix file permis-
sions.
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Chapter 14. The statistics Service
The statistics service collects information on the amount of data stored on all pools and the total data
flow including streams from and to tertiary storage systems.

Once per hour an ASCII file is produced, containing a table with information on the amount of used disk
space and the data transferred starting midnight up to this point in time. Data is sorted per pool and storage
class.

In addition to the hourly statistics, files are produced reporting on the daily, monthly and yearly dCache
activities. An HTML tree is produced and updated once per hour allowing to navigate through the collected
statistics information.

The Basic Setup
Define the statistics service in the domain, where the httpd is running.

[httpdDomain]
[httpdDomain/httpd]
...
[httpdDomain/statistics]

The statistics service automatically creates a directory tree, structured according to years, months and
days.

Once per hour, a total.raw file is produced underneath the active year, month and day directories,
containing the sum over all pools and storage classes of the corresponding time interval. The day directory
contains detailed statistics per hour and for the whole day.

/var/lib/dcache/statistics/YYYY/total.raw
/var/lib/dcache/statistics/YYYY/MM/total.raw
/var/lib/dcache/statistics/YYYY/MM/DD/total.raw
/var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-day.raw
/var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-HH.raw

In the same directory tree the HTML files are created for each day, month and year.

/var/lib/dcache/statistics/YYYY/index.html
/var/lib/dcache/statistics/YYYY/MM/index.html
/var/lib/dcache/statistics/YYYY/MM/DD/index.html

By default the path for the statistics data is /var/lib/dcache/statistics. You can modify this path
by setting the property dcache.paths.statistics to a different value.

The Statistics Web Page
Point a web browser to your dCache webpage at http://<head-node.example.org>:2288/. On
the bottom you find the link to Statistics.

The statistics data needs to be collected for a day before it will appear on the web page.
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Note

You will get an error if you try to read the statistics web page right after you enabled the statis-
tics as the web page has not yet been created.

Create data and the web page by logging in to the admin interface and running the commands create
stat and create html.

(local) admin > cd PoolStatistics@<httpdDomain>
(PoolStatistics@)<httpdDomain> admin > create stat
Thread started for internal run
(PoolStatistics@)<httpdDomain> admin > create html
java.lang.NullPointerException

Now you can see a statistics web page.

Statistics is calculated once per hour at <HH>:55. The daily stuff is calculated at 23:55. Without manual
intervention, it takes two midnights before all HTML statistics pages are available. There is a way to get
this done after just one midnight. After the first midnight following the first startup of the statistics module,
log into the PoolStatistics cell and run the following commands in the given sequence. The specified
date has to be the Year/Month/Day of today.

(PoolStatistics@)<httpdDomain> admin > create html <YYYY> <MM> <DD>
done
(PoolStatistics@)<httpdDomain> admin > create html <YYYY> <MM>
done
(PoolStatistics@)<httpdDomain> admin > create html <YYYY>
done
(PoolStatistics@)<httpdDomain> admin > create html
done

You will see an empty statistics page at http://<head-node.example.org>:2288/statis-
tics/.

On the Statistics Help Page http://<head-node.example.org>:2288/docs/
statisticsHelp.html you find an explanation for the colors.

Explanation of the File Format of the
xxx.raw Files
The file formats of the /var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-HH.raw
and the /var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-day.raw files are sim-
ilar. The file /var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-HH.raw does not
contain columns 2 and 3 as these are related to the day and not to the hour.

Example:

The file format of the /var/lib/dcache/statistics/YYYY/MM/DD/YYYY-MM-DD-
day.raw files:

#
# timestamp=1361364900897
# date=Wed Feb 20 13:55:00 CET 2013
#
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pool1 StoreA:GroupB@osm 21307929 10155 2466935 10155 0 925 0  0   0   0   85362 0

Format of YYYY-MM-DD-day.raw files.

Column Number Column Description

0 Pool Name

1 Storage Class

2 Bytes stored on this pool for this storage class at beginning of day — green bar

3 Number of files stored on this pool for this storage class at beginning of day

4 Bytes stored on this pool for this storage
class at this hour or end of day — red bar

5 Number of files stored on this pool for
this storage class at this hour or end of day

6 Total Number of transfers (in and out, dCache-client)

7 Total Number of restores (HSM to dCache)

8 Total Number of stores (dCache to HSM)

9 Total Number errors

10 Total Number of bytes transferred from client into dCache — blue bar

11 Total Number of bytes transferred from dCache to clients — yellow bar

12 Total Number of bytes tranferred from HSM to dCache — pink bar

13 Total Number of bytes tranferred from dCache to HSM — orange bar

The YYYY/MM/DD/YYYY-MM-DD-HH.raw files do not contain line 2 and 3.
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Chapter 15. The billing Service
dCache has built-in monitoring capabilities which provide an overview of the activity and performance of
the installation’s doors and pools. There are two options for how this data can be represented and stored:

• a set of log files written to a known location

• a database (the billing database).

These options can be enabled simultaneously. If the database option is selected, the data in those tables will
also be displayed as a set of histogram plots on the installation’s web page.

The billing log files
If you installed dCache following the instructions in the Chapter Installing dCache you enabled the
billing in the domain where the httpd service is running (see the extract of the layout file).

...
[httpdDomain]
[httpdDomain/billing]
[httpdDomain/httpd]
[httpdDomain/loginbroker]
...

Use the property billing.text.dir to set the location of the log files and the property
billing.enable.text to control whether the plain-text log files are generated.

By default the log files are located in the directory /var/lib/dcache/billing. Under this directory
the log files are organized in a tree data structure based on date (YYYY/MM). A separate file is generated
for errors. The log file and the error file are tagged with the date.

Example:

log file: /var/lib/dcache/billing/2012/09/billing-2012.09.25

error file: /var/lib/dcache/billing/2012/09/billing-error-2012.09.25

The log files may contain information about the time, the pool, the pnfsID and size of the transferred file,
the storage class, the actual number of bytes transferred, the number of milliseconds the transfer took, the
protocol, the subject (identity of the user given as a collection of principals), the data transfer listen port, the
return status and a possible error message. The logged information depends on the protocol.

A log entry for a write operation has the default format:

<MM.dd> <HH:mm:ss> [pool:<pool-name>:transfer]
[<pnfsId>,<filesize>] [<path>]
<StoreName>:<StorageGroup>@<type-of-storage-system>
<transferred-bytes>  <connectionTime> <true/false> {<protocol>}
<initiator>  {<return-status>:"<error-message>"}

Example:

A typical logging entry would look like this for writing. In the log file each entry is in one line. For
readability we split it into separate lines in this documentation.:
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12.10 14:19:42 [pool:pool2@poolDomain-1:transfer]
[0000062774D07847475BA78AC99C60F2C2FC,10475] [Unknown]
<Unknown>:<Unknown>@osm 10475 40 true {GFtp-1.0 131.169.72.103 37850}
[door:WebDAV-example.org@webdavDomain:1355145582248-1355145582485] {0:""}

The formatting of the log messages can be customized by redefining the
<billing.format.someInfoMessage> properties in the layout configuration, where
<billing.format.someInfoMessage> can be replaced by

• billing.text.format.mover-info-message

• billing.text.format.remove-file-info-message

• billing.text.format.door-request-info-message

• billing.text.format.storage-info-message

A full explanation of the formatting is given in the /usr/share/dcache/de-
faults/billing.properties file. For syntax questions please consult StringTemplate v3 documen-
tation [ http://www.antlr.org/wiki/display/ST/StringTemplate+3+Documentation] or the cheat sheet [http://
www.antlr.org/wiki/display/ST/StringTemplate+cheat+sheet].

On the web page generated by the httpd service (default port 2288), there is a link to Action Log. The
table which appears there gives a summary overview extracted from the data contained in the billing log files.

The billing database
In order to enable the database, the following steps must be taken.

1. If the billing database does not already exist (see further below on migrating from an existing one), create
it (we assume PostgreSQL here):

[root] # createdb -O srmdcache -U postgres billing

If you are using a version of PostgreSQL prior to 8.4, you will also need to do:

[root] # createlang -U srmdcache plpgsql billing

No further manual preparation is needed, as the necessary tables, indices, functions and triggers will
automatically be generated when you (re)start the domain with the billing database logging turned on
(see below).

2. The property billing.enable.db controls whether the billing cell sends billing messages to the
database. By default the option is disabled. To activate, set the value to true and restart the domain in
which the httpd service is running.

Note

Please take care to define the billing service before the httpd service in your layout file. If
the billing service is defined in a separate domain, this domain should be defined before the
domain in which the httpd service is running.

Example:

http://www.antlr.org/wiki/display/ST/StringTemplate+3+Documentation
http://www.antlr.org/wiki/display/ST/StringTemplate+3+Documentation
http://www.antlr.org/wiki/display/ST/StringTemplate+3+Documentation
http://www.antlr.org/wiki/display/ST/StringTemplate+cheat+sheet
http://www.antlr.org/wiki/display/ST/StringTemplate+cheat+sheet
http://www.antlr.org/wiki/display/ST/StringTemplate+cheat+sheet
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Extract from the layout file:

[httpdDomain]
     billing.enable.db=true
[httpdDomain/billing]
[httpdDomain/httpd]
...

[root] # dcache restart httpdDomain
Stopping httpdDomain 0 1 done
Starting httpdDomain done

Customizing the database
In most cases, the billing service will be run out-of-the-box; nevertheless, the administrator does have con-
trol, if this is desired, over the database configuration.

• Database name, host, user, and password can be easily modified using the properties:

• billing.db.name

• billing.db.host

• billing.db.user

• billing.db.password

The current database values can be checked with the dcache database ls command.

Example:

# dcache database ls
DOMAIN          CELL        DATABASE HOST      USER      MANAGEABLE AUTO
namespaceDomain PnfsManager chimera  localhost chimera   Yes        Yes
namespaceDomain cleaner     chimera  localhost chimera   No         No
httpdDomain     billing     billing  localhost srmdcache Yes        Yes

• Database inserts are batched for performance. Since 2.8, improvements have been made to the way the
billing service handles these inserts. As a consequence, the older in-memory caching threshold properties
are now obsolete:

• billing.db.inserts.max-before-commit (defaults to 10000)

• billing.db.inserts.timeout-before-commit (defaults to 5)

Inserts can now be tuned by adjusting the queue sizes (there are four of them, each mapped to the four
main tables: billinginfo, storageinfo, doorinfo, hitinfo), and the maximum database batch size.

• billing.db.inserts.max-queue-size (defaults to 100000)

• billing.db.inserts.max-batch-size (defaults to 1000)

There is further the option as to whether to drop messages (default is true) or block when the queue
maximum is exceeded.
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• billing.db.inserts.drop-messages-at-limit (defaults to true)

The property which sets the delegate class is merely there for potentially future use; currently there is
only one option.

• billing.db.inserts.queue-delegate.type (defaults to
org.dcache.services.billing.db.impl.DirectQueueDelegate)

The default settings should usually be sufficient.

You can now obtain statistics (printed to the billing log and pinboard) via the dcache admin command:
display insert statistics <on/off> command. Activating this command logs the following once a minute:

Example:

            insert queue (last 0, current 0, change 0/minute)
            commits (last 0, current 0, change 0/minute)
            dropped (last 0, current 0, change 0/minute)
            total memory 505282560; free memory 482253512
        

"insert queue" refers to how many messages actually were put on the queue; "commits" are the number
of messages committed to the database; "dropped" are the number of lost messages. "last" refers to the
figures at the last iteration. For insert queue, this is the actual size of the queue; for commits and dropped,
these are cumulative totals.

You can also generate a Java thread dump by issuing the "dump threads" command.

• Should finer control over the DataNucleus layer (which talks to the database) be needed, then a new
datanucleus.properties file must be provided. The path to this file, which will override the in-
ternal settings, should be indicated using:

• billing.db.config.path (defaults to "")

Changing this configuration requires an understanding of DataNucleus [http://www.datanucleus.org] ,
and we expect it will be rather uncommon to utilize this option (it is suggested that the administrator in
this case consult with a member of the dCache team).

• Changing the database type (which defaults to PostgreSQL) to something else would entail the above-
mentioned necessary modification of the datanucleus.properties as well as changing the
billing.db.driver and billing.db.url properties appropriately. This is not a recommended
procedure, though in certain exceptional circumstances, it may be desirable or necessary. Once again,
consultation with the dCache team is suggested in this case.

Generating and Displaying Billing Plots
If you have selected to store billing messages to the database, it is also possible to generate and dis-
play a set of histograms from the data in these tables. To turn on plot generation, set the property
httpd.enable.plots.billing to true and restart the domain in which the httpd is running.

http://www.datanucleus.org
http://www.datanucleus.org
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Example:

Extract from the layout file:

[httpdDomain]
     billing.enable.db=true
     httpd.enable.plots.billing=true
[httpdDomain/httpd]
[httpdDomain/billing]
...

The the frequency of plot refreshing and the type of plot produced can be controlled by:

• billingPlotsTimeoutInMins (defaults to 30)

• httpd.plots.billing.type (defaults to png and can be set to gif)

The plots provide aggregate views of the data for 24-hour, 7-day, 30-day and 365-day periods.

The plot types are:

• (Giga)bytes read and written for both dCache and HSM backend (if any)

• Number of transactions/transfers for both dCache and HSM backend (if any)

• Maximum, minimum and average connection time

• Cache hits and misses

Note

The data for this last histogram is not automatically sent, since it contributes significantly to mes-
sage traffic between the pool manager and the billing service. To store this data (and thus generate
the relevant plots), the poolmanager.enable.cache-hit-message property must be
set either in dcache.conf or in the layout file for the domain where the poolmanager runs:

poolmanager.enable.cache-hit-message=true

Each individual plot can be magnified by clicking on it.

Upgrading a Previous Installation
Because it is possible that the newer version may be deployed over an existing installation which already
uses the billing database, the Liquibase change-set has been written in such a way as to look for existing
tables and to modify them only as necessary.

If you start the domain containing the billing service over a pre-existing installation of the billing data-
base, depending on what was already there, you may observe some messages like the following in the do-
main log having to do with the logic governing table initialization.

Example:

INFO 8/23/12 10:35 AM:liquibase: Successfully acquired change log lock
INFO 8/23/12 10:35 AM:liquibase: Reading from databasechangelog
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INFO 8/23/12 10:35 AM:liquibase: Reading from databasechangelog
INFO 8/23/12 10:35 AM:liquibase: Successfully released change log lock
INFO 8/23/12 10:35 AM:liquibase: Successfully released change log lock
INFO 8/23/12 10:35 AM:liquibase: Successfully acquired change log lock
INFO 8/23/12 10:35 AM:liquibase: Reading from databasechangelog
INFO 8/23/12 10:35 AM:liquibase: Reading from databasechangelog
INFO 8/23/12 10:35 AM:liquibase: ChangeSet org/dcache/services/billing/
   db/sql/billing.changelog-1.9.13.xml::4.1.7::arossi ran successfully in 264ms
INFO 8/23/12 10:35 AM:liquibase: Marking ChangeSet: org/dcache/services/
   billing/db/sql/billing.changelog-1.9.13.xml::4.1.8::arossi::(Checksum:
   3:faff07731c4ac867864824ca31e8ae81) ran despite precondition failure due
   to onFail='MARK_RAN': classpath:org/dcache/services/billing/db/sql/
   billing.changelog-master.xml : SQL Precondition failed. Expected '0' got '1'
INFO 8/23/12 10:35 AM:liquibase: ChangeSet org/dcache/services/billing/db/sql/
   billing.changelog-1.9.13.xml::4.1.9::arossi ran successfully in 14ms
INFO 8/23/12 10:35 AM:liquibase: Successfully released change log lock
INFO 8/23/12 10:35 AM:liquibase: Successfully released change log lock

Anything logged at a level lower than ERROR is usually entirely normal. Liquibase regularly reports when
the preconditions determining whether it needs to do something are not met. All this means is that the update
step was not necessary and it will be skipped in the future.

If, on the other hand, there is an ERROR logged by Liquibase, it is possible there may be some other conflict
resulting from the upgrade (this should be rare). Such an error will block the domain from starting. One
remedy which often works in this case is to do a clean re-initialization by dropping the Liquibase tables
from the database:

[root] # psql -U srmdcache billing

billing=> drop table databasechangelog
billing=> drop table databasechangeloglock
billing-> \q
[root] #

and then restarting the domain.

Note

If the billing database already exists, but contains tables other than the following:

[root] # psql -U srmdcache billing
billing=> \dt
                     List of relations
 Schema |         Name          | Type  |   Owner
 -------+-----------------------+-------+-----------
 public | billinginfo           | table | srmdcache
 public | billinginfo_rd_daily  | table | srmdcache
 public | billinginfo_tm_daily  | table | srmdcache
 public | billinginfo_wr_daily  | table | srmdcache
 public | databasechangelog     | table | srmdcache
 public | databasechangeloglock | table | srmdcache
 public | doorinfo              | table | srmdcache
 public | hitinfo               | table | srmdcache
 public | hitinfo_daily         | table | srmdcache
 public | storageinfo           | table | srmdcache
 public | storageinfo_rd_daily  | table | srmdcache
 public | storageinfo_wr_daily  | table | srmdcache

billing-> \q
[root] #

that is, if it has been previously modified by hand or out-of-band to include custom tables not used
directly by dCache, the existence of such extraneous tables should not impede dCache from working
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correctly, provided those other tables are READ-accessible by the database user for billing, which
by default is srmdcache. This is a requirement imposed by the use of Liquibase. You thus may
need explicitly to grant READ privileges to the billing database user on any such tables if they are
owned by another database user.
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Chapter 16. The alarms Service
dCache has an alarms service which allows any logging event to be marked as an alarm. This capability
allows administrators to be directly notified of problems which need immediate attention and rectification.
The alarms data can be stored in an XML file or in a database. In the basic configuration the data will be
stored in an XML file.

The webadmin servlet running inside the httpd service has a special page for querying, displaying and
tracking these alarms.

The Basic Setup
It is advisable to run the alarms service in a separate domain and list this domain first in the layout file.
That way the alarms service gets booted first and can catch startup errors reported by the other domains.
Since both the httpd service and the alarms service will access the storage file generated at /var/lib/
dcache/alarms/alarms.xml the alarms service should be defined on the same host as the httpd
service. You can modify where this file is placed by setting the property httpd.alarms.db.xml.path
to a different location.

Add a domain for the alarms service to the layout file where the httpd service is defined.

[alarmserverDomain]
[alarmserverDomain/alarms]
...

[httpdDomain]

If all of the dCache domains run on the same host, then the default setting (localhost) will work.

Configure where the alarms service is Running
In general your dCache will not be configured to run on one node. In this case each node needs to know
on which node the alarms service is running. The alarms service and the httpd will run on one of the
nodes. On all the other nodes you need to modify the /etc/dcache/dcache.conf file or the layout
file to set the alarms.server.host property to the host on which the alarms service is running and
restart dCache.

Example:

Look at an example of a dCache which consists of a head node, some door nodes and some pool nodes.
Assume that the httpd service and the alarms service are running on the head node. Then you would
need to set the property alarms.server.host on the pool nodes and on the door nodes to the host
on which the alarms service is running.

alarms.server.host=<head-node>

The Defined Alarms
The alarms defined are listed below. There are four different levels of severity, CRITICAL, HIGH, MOD-
ERATE and LOW.
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CRITICAL

• SERVICE_CREATION_FAILURE

• DB_OUT_OF_CONNECTIONS

• DB_UNAVAILABLE

• JVM_OUT_OF_MEMORY

• OUT_OF_FILE_DESCRIPTORS

The affected dCache can’t work (is down).

HIGH

• IO_ERROR

• HSM_READ_FAILURE

• HSM_WRITE_FAILURE

• LOCATION_MANAGER_UNAVAILABLE

• POOL_MANAGER_UNAVAILABLE

These functions are affected and not working or not working properly, even though the dCache domain
may be running.

MODERATE

• POOL_DISABLED

• CHECKSUM

There is an issue which should be taken care of in the interest of performance or usability, but which is
not impeding the functioning of the system as a whole.

LOW
This issue might be worth investigating if it occurs, but is not urgent.

Given that an alarm has been triggered, you will find an entry in the file /var/lib/dcache/alarms/
alarms.xml.

As it is not very convenient to read an XML file, the Alarms Web Page can be used to inspect and manage
the generated warnings.

Using the Alarms Web Page
The Alarms Web Page is an admin page and thus requires authentication. You must enable HTTPS and you
can give a gid (by default the gid is 1000):
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Note

For the authenticated mode you need to have a host certificate for your server host and place the
hostcert.p12 in the directory /etc/dcache.

[httpdDomain]
    httpd.enable.authn=true
    httpd.authz.admin-gid=<1234>
[httpdDomain/httpd]

A. The QUERY FILTER form can be used to limit the display of alarms in the table. The top three rows
control an actual query to the database based on after date, before date, severity and alarm
type name. (The date is the last update of the alarm, not the first arrival.) Each click of the Refresh
button will reload the data from the database based on these three settings. The default behavior is ALL
(unspecified properties). Placing a single date in the Beginning box will give you all alarms from that
date up to today (inclusive); a single date in the Ending box will give all alarms up to that date (inclusive).

B. The Match Expression filters in memory by appending all fields to a single string and doing a search.
If the Regular Expression box is checked, the expression given is considered a regex (Java-style).

C. The header to the table contains two checkboxes which allow you to check or uncheck the respective
columns for all displayed items. Checking Delete and then clicking Refresh will actually eliminate
the entry from persistent store.

D. Closed is a way of marking the alarm as having been dealt with while maintaining a record of it. The
Show Closed Alarms checkbox allows you to display them (turned off by default).

E. All column titles appearing in white can be clicked to sort the table by that column.

F. Notes is an editable field to be used for any special remarks.

When Refresh is clicked, any updates to Closed and Notes are first saved, then any Deletes are
processed, and finally, the table is repopulated using the current query filter. The entire form is set to au-
to-refresh every 60 seconds.

An additional feature of the alarms infrastructure is automatic cleanup of processed alarms. An internal
thread runs every so often, and purges all alarms marked as closed with a timestamp earlier than the
given window. This daemon can be configured using the properties httpd.enable.alarm-clean-
er, httpd.alarm-cleaner.timeout and httpd.alarm-cleaner.delete-entries-be-
fore.

Alarms Database
It might be useful to have a history of alarms. The XML file that is (in the default setup) used to store the
alarms is cleaned on a regular basis as it would grow too big otherwise. You can configure to use a database
instead of the XML file to obtain a history. Another advantage of the use of a database is that it is easier to
search through a database than through a series of log files.

To use a database instead of the XML file you need to modify the /etc/dcache/dcache.conf file.
Set the property httpd.alarms.db.type to rdbms. Moreover, as you want to maintain a history you
should disable the httpd.enable.alarm-cleaner.
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Create the alarms database.

[root] #
      createdb -U srmdcache alarms

Modify the /etc/dcache/dcache.conf file

httpd.alarms.db.type=rdbms
httpd.enable.alarm-cleaner=false

and restart dCache.

[root] # dcache restart

Advanced

Email on Alarm
To configure to send an email on alarm you need to modify the /etc/dcachelogback.xml file.

<appender name="ALARM_MAIL" class="ch.qos.logback.classic.net.SMTPAppender">
        <!-- this filter ensures that only events sent marked as ALARM
             are received by this appender -->
        <filter class="org.dcache.alarms.logback.AlarmMarkerFilter"/>
        <smtpHost></smtpHost>
        <to></to>
        <to></to>
        <from></from>
        <subject>dCache Alarm</subject>
        <layout class="ch.qos.logback.classic.PatternLayout">
            <pattern>%d{dd MMM yyyy HH:mm:ss} \(%X{cells.cell}\) [%X{org.dcache.ndc}] %m%n</pattern>
        </layout>
        <cyclicBufferTracker class="ch.qos.logback.core.spi.CyclicBufferTrackerImpl">
            <!-- send just one log entry per email -->
            <bufferSize>1</bufferSize>
        </cyclicBufferTracker>
    </appender>

Defining an Alarm
The file logback.xml found in the /etc/dcache directory adds an
org.dcache.alarms.logback.AlarmDefinitionAppender to the root logger. This alarm
appender embeds a child SocketAppender set to send events on the port specified by the property
alarms.server.port to a host specified by the property alarms.server.host.

The alarms defined are listed in the the section called “The Defined Alarms”.

Define additional alarms simply by including other <alarmType> elements in the <filter> element.

Example:

Extract of the definition of the SERVICE_CREATION_FAILURE and the CHECKSUM alarms in the
/etc/dcache/logback.xml file.
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            <alarmType>
                regex:"(.+) from ac_create",
                type:SERVICE_CREATION_FAILURE,
                level:ERROR,
                severity:CRITICAL,
                include-in-key:group1 type host domain service
            </alarmType>
            .
            .
            .
            <alarmType>
                logger:org.dcache.pool.classic.ChecksumScanner,
                regex:"Checksum mismatch detected for (.+) - marking as BROKEN",
                type:CHECKSUM,
                level:ERROR,
                severity:MODERATE,
                include-in-key:group1 type host service domain
            </alarmType>

The text of the <alarmType> element must be formed as a JSON [http://www.json.org] string but without
the beginning and ending braces ( ’{’, ’}’ ); this means, in essence, a comma-delimited list of NAME:VALUE
pairs, with arbitrary whitespace between the pairs. The set of properties and their possible values is as fol-
lows:

Property Possible values Required

logger name of the logger (see example above) at least one of logger, regex

regex A pattern to match the message with.

Note
It is advisable to place the regex pattern in double quotes, so
that the JSON parser will accept the special characters used in
regular expressions: e.g., "[=].[\w]*"

at least one of logger, regex

match-exception False, True NO

depth Integer ≥ 0 NO

type An arbitrary name which will serve as the alarm’s marker. YES

level TRACE, DEBUG, INFO, WARN, ERROR YES

severity INDETERMINATE (default), LOW, MODERATE, HIGH, CRITICAL NO

regex-flags A string representation of the (Java) regex flags options, joined by the
'or' pipe symbol: e.g., CASE_INSENSITIVE | DOTALL. For fuller
explanation, see the Java Tutorials on Regular Expressions [http://
docs.oracle.com/javase/tutorial/essential/regex].

NO

thread Thread name (restricts this alarm type only to this particular thread). NO

include-in-key Concatenation of key field names (see below) YES

The Properties match-exception and depth

The property match-exception is False by default. If set to True, it applies the regex pattern to all
embedded exception messages, recursively, until a match is found.

The property depth is to be used with the property match-exception. The default is undefined (null),
meaning unbounded. Setting depth to an integer > 0 indicates the level to which the match will be applied
(in terms of nested messages). Setting it to 0 is equivalent to setting match-exception to false.

Example:

http://www.json.org
http://www.json.org
http://docs.oracle.com/javase/tutorial/essential/regex
http://docs.oracle.com/javase/tutorial/essential/regex
http://docs.oracle.com/javase/tutorial/essential/regex
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Have a look at the extract of the definition of the DB_UNAVAILABLE alarm in the /etc/dcache/
logback.xml file.

            <alarmType>
                regex:"Unable to open a test connection to the given database|Connections could
 not be acquired from the underlying database",
                match-exception:true,
                depth:1,
                type:DB_UNAVAILABLE,
                level:ERROR,
                severity:CRITICAL,
                include-in-key:type host
            </alarmType>

The property include-in-key

The alarm key (the property include-in-key) is the set of properties whose values uniquely identify
the alarm instance. For example, the checksum alarm defined above does not include the timestamp in its
key, as all reports of this kind of error for a given file (PNFS id is given in the message body) are to be
considered as duplicates of the first such alarm. The key field names which can be used to constitute the key
are those which all alarms have in common:

groupN, timestamp, message, logger, type, domain, service, host and thread.

These property names should be delimited by (an arbitrary number of) whitespace characters. Note that
logger, timestamp and message derive from the logging event, host is determined by static lookup,
and domain and service correspond to the cells.domain and cells.cell properties in the
event’s MDC map.

The key field name groupN, where N is an integer, means that the Nth substring (specified by parentheses)
will be included. For N=0, group0 is identical to message, which means that the whole message string
should be included as an identifier.

Example:

Matching on Regex Groups.  Have a look at the extract of the definition of the CHECKSUM alarm
in the /etc/dcache/logback.xml file.

            <alarmType>
                logger:org.dcache.pool.classic.ChecksumScanner,
                regex:"Checksum mismatch detected for (.+) - marking as BROKEN",
                type:CHECKSUM,
                level:ERROR,
                severity:MODERATE,
                include-in-key:group1 type host service domain
            </alarmType>

Here the tag group1 in the include-in-key extracts the PNFS-ID from the message and includes
only that portion of the message string as an identifier. As usual, group0 is the same as the entire message.

When the appender applies this alarm definition filter, it relies on an implicit matching function: (logger,
level, regex, thread) ⇒ type; hence a given alarm can be generated by more than one logger, and a logger
in turn can send multiple types of alarms if these are mapped to different logging levels, thread names and/
or regex patterns for the message body.
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Run the Logback Server Independently from
dCache
In most cases, running the alarm server as a dCache service will be adequate. Nevertheless, it is always
possible to run the logback server entirely independently from dCache. In that case, you must be sure that
the classpath carries the necessary dCache dependencies to provide the alarm appending functionality. Here
is a bash snippet which will sufficiently define the classpath based on the dCache classes directory:

 #!/bin/sh
case $# in
    0)
        PORT=60001
 ;;
    1)
        PORT=${1}
        ;;
    *)
        echo "Usage: $(basename $0) [PORT]" >&2
 exit 1
 ;;
esac
DC=/etc/dcache
CL=/usr/share/dcache/classes

CP=.
CP=${CP}:`find ${CL} -name "activation-*.jar"`
CP=${CP}:`find ${CL} -name "datanucleus-api-jdo-*.jar"`
CP=${CP}:`find ${CL} -name "datanucleus-cache*.jar"`
CP=${CP}:`find ${CL} -name "datanucleus-core*.jar"`
CP=${CP}:`find ${CL} -name "datanucleus-xml*.jar"`
CP=${CP}:`find ${CL} -name "dcache-core*.jar"`
CP=${CP}:`find ${CL} -name "guava-*.jar"`
CP=${CP}:`find ${CL} -name "jargs-*.jar"`
CP=${CP}:`find ${CL} -name "jaxb-*.jar" | tr '\n' ':'`
CP=${CP}:`find ${CL} -name "jaxrpc-*.jar" | tr '\n' ':'`
CP=${CP}:`find ${CL} -name "jdo-api-*.jar"`
CP=${CP}:`find ${CL} -name "json-*.jar"`
CP=${CP}:`find ${CL} -name "log4j-over-slf4j-*.jar"`
CP=${CP}:`find ${CL} -name "logback-classic-*.jar"`
CP=${CP}:`find ${CL} -name "logback-core-*.jar"`
CP=${CP}:`find ${CL} -name "mail-*.jar"`
CP=${CP}:`find ${CL} -name "slf4j-api-*.jar"`

java -cp ${CP} ch.qos.logback.classic.net.SimpleSocketServer ${PORT} /var/lib/dcache/alarms/logback-
server.xml &

Properties of the alarms Service
This is a set of properties you might want to modify. Check the files /usr/share/dcache/
alarms.properties and /usr/share/dcache/httpd.properties for the complete list.

alarms.dir
Default: /var/lib/dcache/alarms

The main alarms area.

alarms.server.port
Default: 60001

The port on which the alarm server will listen.
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alarms.server.host
Default: localhost

The host on which the alarms service is running.

alarms.log.config.path
Default: ${alarms.dir}/logback-server.xml

The logback configuration for the alarm server.

httpd.alarms.db.type
Default: xml

Defines what kind of database (either XML or PostgreSQL). Set httpd.alarms.db.type=rdbms
to use PostgreSQL.

httpd.alarms.db.xml.path
Default: ${alarms.dir}/alarms.xml

The path of the alarms.xml. Used if httpd.alarms.db.type=xml.

alarms.db.rdbms.type
Default: postgresql

If this value is changed from its default the httpd.alarms.db.driver property must also be
changed.

httpd.alarms.db.driver
Default: org.postgresql.Driver

This property should give the correct namespace for the RDBMS set by the property
alarms.db.rdbms.type.

alarms.db.host
Default: localhost

RDBMS/JDBC Database host name.

httpd.alarms.db.user
Default:

RDBMS/JDBC Database user name.

httpd.alarms.db.password
Default: no password

RDBMS/JDBC Database user password.

httpd.alarms.db.config.path
Default: ${alarms.dir}/datanucleus.properties

Path for overriding the internally set DAO (DataNucleus) properties for alarm storage, for instance, to
configure an RDBMS database; will be used only if the URL does not point to the XML default.
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httpd.enable.alarm-cleaner
Default: true

If set to true a thread which automatically removes closed alarms older than a given threshold will run.

httpd.alarm-cleaner.timeout
Default: 168 (24 x 7 hours)

Wait interval between successive sweeps of the cleanup daemon.

httpd.alarm-cleaner.delete-entries-before
Default: 336 (24 X 14 hours)

Closed alarms will be deleted after this time.
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Chapter 17. dCache Webadmin
Interface
This part describes how to configure the webadmin service which runs inside the httpdDomain and
offers additional features to admins like sending admin-commands equal to those of admin interface (CLI)
to chosen cells or displaying billing plots.

For authentication and authorisation it offers usage of username/password (currently the kpwd-Plugin) or
grid certificate talking to gPlazma2. It also offers a non-authenticated read-only mode.

If you are logged in as admin it is possible to send a command to multiple pools or a whole poolgroup in
one go. It is even possible to send a command to any dCache cell. Also, there is information like their size,
their id and used space on linkgroups and spacetokens available.

From the technical point of view the webadmin service uses a Jetty-Server which is embedded in an or-
dinary httpd cell. It is using apache-wicket (a webfrontend-framework) and YAML (a CSS-Template
Framework).

Installation
For the authenticated mode a configured gPlazma is required (see also the section called “gPlazma config
example to work with authenticated webadmin”). The user may either authenticate by presenting his grid
certificate or by entering a valid username/password combination. This way it is possible to login even if
the user does not have a grid certificate. For a non-authenticated webadmin service you just need to start
the httpd service.

For the authenticated mode using a grid certificate the host certificate has to be imported into the dCache-
keystore. In the grid world host certificates are usually signed by national Grid-CAs. Refer to the documen-
tation provided by the Grid-CA to find out how to request a certificate. To import them into the dCache-
keystore use this command:

[root] # dcache import hostcert

Now you have to initialise your truststore (this is the certificate-store used for the SSL connections) by using
this command:

[root] # dcache import cacerts

The webadmin service uses the same truststore as webdav service, so you can skip this step if you have
webdav configured with SSL.

The default instance name is the name of the host which runs the httpdDomain and the default http port
number is 2288 (this is the default port number of the httpd service). Now you should be able to have a
read-only access to the webpage http://example.com:2288/webadmin.

In the following example we will enable the authenticated mode.

Example:
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[httpdDomain]
      authenticated=true

The most important value is httpd.authz.admin-gid, because it configures who is allowed to alter
dCache behaviour, which certainly should not be everyone:

# # When a user has this GID he can become an admin for the webadmin interface #
httpd.authz.admin-gid=0

To see all webadmin specific property values have a look at /usr/share/dcache/de-
faults/httpd.properties.

For information on gPlazma configuration have a look at Chapter 10, Authorization in dCache and for a
special example the section called “gPlazma config example to work with authenticated webadmin”.
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Chapter 18.  ACLs in dCache
dCache includes support for Access Control Lists (ACLs). This support is conforming to the NFS version 4
Protocol specification [http://www.nfsv4-editor.org/draft-25/draft-ietf-nfsv4-minorversion1-25.html].

This chapter provides some background information and details on configuring dCache to use ACLs and
how to administer the resulting system.

ACLs and pnfs

ACLs are only supported with the Chimera name space backend. Versions before 1.9.12 had partial
support for ACLs with the pnfs backend, however due to the limitations of that implementation
ACLs were practically useless with pnfs.

Introduction
dCache allows control over namespace operations (e.g., creating new files and directories, deleting items,
renaming items) and data operations (reading data, writing data) using the standard Unix permission model.
In this model, files and directories have both owner and group-owner attributes and a set of permissions
that apply to the owner, permissions for users that are members of the group-owner group and permissions
for other users.

Although Unix permission model is flexible enough for many deployment scenarios there are configurations
that either cannot configured easily or are impossible. To satisfy these more complex permission handling
dCache has support for ACL-based permission handling.

An Access Control List (ACL) is a set of rules for determining whether an end-user is allowed to undertake
some specific operation. Each ACL is tied to a specific namespace entry: a file or directory. When an end-
user wishes to undertake some operation then the ACL for that namespace entry is checked to see if that
user is authorised. If the operation is to create a new file or directory then the ACL of the parent directory
is checked.

File- and directory- ACLs

Each ACL is associated with a specific file or directory in dCache. Although the general form is
the same whether the ACL is associated with a file or directory, some aspects of an ACL may
change. Because of this, we introduce the terms file-ACL and directory-ACL when taking about
ACLs associated with a file or a directory respectively. If the term ACL is used then it refers to both
file-ACLs and directory-ACLs.

Each ACL contains a list of one or more Access Control Entries (ACEs). The ACEs describe how dCache
determines whether an end-user is authorised. Each ACE contains information about which group of end
users it applies to and describes whether this group is authorised for some subset of possible operations.

The order of the ACEs within an ACL is significant. When checking whether an end-user is authorised each
ACE is checked in turn to see if it applies to the end-user and the requested operation. If it does then that
ACE determines whether that end-user is authorised. If not then the next ACE is checked. Thus an ACL can
have several ACEs and the first matched ACE “wins”.

http://www.nfsv4-editor.org/draft-25/draft-ietf-nfsv4-minorversion1-25.html
http://www.nfsv4-editor.org/draft-25/draft-ietf-nfsv4-minorversion1-25.html
http://www.nfsv4-editor.org/draft-25/draft-ietf-nfsv4-minorversion1-25.html
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One of the problems with traditional Unix-based permission model is its inflexible handling of newly created
files and directories. With transitional filesystems, the permissions that are set are under the control of the
user-process creating the file. The sysadmin has no direct control over the permissions that newly files or
directories will have. The ACL permission model solves this problem by allowing explicit configuration
using inheritance.

ACL inheritance is when a new file or directory is created with an ACL containing a set of ACEs from
the parent directory’s ACL. The inherited ACEs are specially marked so that only those that are intended
will be inherited.

Inheritance only happens when a new file or directory is created. After creation, the ACL of the new file or
directory is completely decoupled from the parent directory’s ACL: the ACL of the parent directory may be
altered without affecting the ACL of the new file or directory and visa versa.

Inheritance is optional. Within a directory’s ACL some ACEs may be inherited whilst others are not. New
files or directories will receive only those ACEs that are configured; the remaining ACEs will not be copied.

Database configuration
ACL support requires database tables to store ACL and ACE information. These tables are part of the
Chimera name space backend and for a new installation no additional steps are needed to prepare the data-
base.

Early versions of Chimera (before dCache 1.9.3) did not create the ACL table during installation. If the
database is lacking the extra table then it has to be created before enabling ACL support. This is achieved
by applying two SQL files:

[root] # psql chimera < /usr/share/dcache/chimera/sql/addACLtoChimeraDB.sql
[root] # psql chimera < /usr/share/dcache/chimera/sql/pgsql-procedures.sql

Configuring ACL support
The dcache.conf and layout files contain a number of settings that may be adjusted to configure dCache’s
permission settings. These settings are are described in this section.

Enabling ACL support
To enable ACL support set pnfsmanager.enable.acl=true in the layout file.

..
[<domainName>/pnfsmanager]
pnfsmanager.enable.acl=true
..

Administrating ACLs
Altering dCache ACL behaviour is achieved by connecting to the PnfsManager well-known cell using
the administrator interface. For further details about how to use the administrator interface, see the section
called “The Admin Interface”.

The info and help commands are available within PnfsManager and fulfil their usual functions.



ACLs in dCache

170

How to set ACLs
The setfacl command is used to set a new ACL. This command accepts arguments with the following form:

setfacl <ID> <ACE> [<ACE>...]

The <ID> argument is either a pnfs-ID or the absolute path of some file or directory in dCache. The setfacl
command requires one or more <ACE> arguments seperated by spaces.

The setfacl command creates a new ACL for the file or directory represented by <ID>. This new ACL
replaces any existing ACEs for <ID>.

An ACL has one or more ACEs. Each ACE defines permissions to access this resource for some Subject.
The ACEs are space-separated and the ordering is significant. The format and description of these ACE
values are described below.

Description of the ACE structure

The <ACE> arguments to the setfacl command have a specific format. This format is described below in
Extended Backus-Naur Form (EBNF).
[1] ACE::= Subject ':' Access |

Subject ':' Access ':' Inheritance
 

[2] Subject::= 'USER:' UserID |
'GROUP:' GroupID |
'OWNER@' |
'GROUP@' |
'EVERYONE@' |
'ANONYMOUS@' |
'AUTHENTICATED@'

 

[3] Access::= '+' Mask |
'-' Mask

 

[4] Mask::=Mask MaskItem |
MaskItem

 

[5] MaskItem::= 'r' | 'l' | 'w' | 'f' | 's' | 'a' | 'n' | 'N' | 'x' | 'd' | 'D' | 't' | 'T' | 'c' | 'C' | 'o' 
[6] Inheritance::= Inheritance Flag |

Flag
 

[7] Flag::= 'f' | 'd' | 'o'  
[8] UserID::= INTEGER  
[9] GroupID::= INTEGER  

The various options are described below.

The Subject

The Subject defines to which user or group of users the ACE will apply. It acts as a filter so that only those
users that match the Subject will have their access rights affected.

As indicated by the EBNF above, the Subject of an ACE can take one of several forms. These are described
below:
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USER:<id>
The USER: prefix indicates that the ACE applies only to the specific end-user: the dCache user with ID
<id>. For example, USER:0:+w is an ACE that allows user 0 to write over a file’s existing data.

GROUP:<id>
The GROUP: prefix indicates that the ACE applies only to those end-users who are a member of the
specific group: the dCache group with ID <id>. For example, GROUP:20:+a is an ACE that allows
any user who is a member of group 20 to append data to the end of a file.

OWNER@
The OWNER@ subject indicates that the ACE applies only to whichever end-user owns the file or direc-
tory. For example, OWNER@:+d is an ACE that allows the file’s or directory’s owner to delete it.

GROUP@
The GROUP@ subject indicates that the ACE applies only to all users that are members of the group-
owner of the file or directory. For example, GROUP@:+l is an ACE that allows any user that is in a
directory’s group-owner to list the directory’s contents.

EVERYONE@
The EVERYONE@ subject indicates that the ACE applies to all users. For example, EVERYONE@:+r
is an ACE that makes a file world-readable.

ANONYMOUS@
The ANONYMOUS@ Subject indicates that the ACE applies to all users who have not authenticated them-
selves. For example, ANONYMOUS@:-l is an ACE that prevents unauthenticated users from listing the
contents of a directory.

AUTHENTICATED@
The AUTHENTICATED@ Subject indicates that an ACE applies to all authenticated users. For example,
AUTHENTICATED@:+r is an ACE that allows any authenticated user to read a file’s contents.

Authenticated or anonymous

An end user of dCache is either authenticated or is unauthenticated, but never both. Because of this,
an end user operation will either match ACEs with ANONYMOUS@ Subjects or AUTHENTICATED@
Subjects but the request will never match both at the same time.

Access mask

Access (defined in the ACE EBNF above) describes what kind of operations are being described by the ACE
and whether the ACE is granting permission or denying it.

An individual ACE can either grant permissions or deny them, but never both. However, an ACL may
be composed of any mixture of authorising- and denying- ACEs. The first character of Access describes
whether the ACE is authorising or denying.

If Access begins with a plus symbol (+) then the ACE authorises the Subject some operations. The ACE
EVERYONE@:+r authorises all users to read a file since the Access begins with a +.

If the Access begins with a minus symbol (-) then the ACE denies the Subject some operations. The ACE
EVERYONE@:-r prevents any user from reading a file since the Access begins with a -.
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The first character of Access must be + or -, no other possibility is allowed. The initial + or - of Access is
followed by one or more operation letters. These letters form the ACE’s access mask (Mask in ACE EBNF
above).

The access mask describes which operations may be allowed or denied by the ACE. Each type of operation
has a corresponding letter; for example, obtaining a directory listing has a corresponding letter l. If a user
attempts an operation of a type corresponding to a letter present in the access mask then the ACE may affect
whether the operation is authorised. If the corresponding letter is absent from the access mask then the ACE
will be ignored for this operation.

The following table describes the access mask letters and the corresponding operations:

File- and directory- specific operations

Some operations and, correspondingly, some access mask letters only make sense for ACLs attached
to certain types of items. Some operations only apply to directories, some operations are only for
files and some operations apply to both files and directories.

When configuring an ACL, if an ACE has an operation letter in the access mask that is not applicable
to whatever the ACL is associated with then the letter is converted to an equivalent. For example,
if l (list directory) is in the access mask of an ACE that is part of a file-ACL then it is converted
to r. These mappings are described in the following table.

r
reading data from a file. Specifying r in an ACE’s access mask controls whether end-users are allowed
to read a file’s contents. If the ACE is part of a directory-ACL then the letter is converted to l.

l
listing the contents of a directory. Specifying l in an ACE’s access mask controls whether end-users are
allowed to list a directory’s contents. If the ACE is part of a file-ACL then the letter is converted to r.

w
overwriting a file’s existing contents. Specifying w in an ACE’s access mask controls whether end-users
are allowed to write data anywhere within the file’s current offset range. This includes the ability to
write to any arbitrary offset and, as a result, to grow the file. If the ACE is part of a directory-ACL then
the letter is converted to f.

f
creating a new file within a directory. Specifying f in an ACE’s access mask controls whether end-users
are allowed to create a new file. If the ACE is part of an file-ACL then then the letter is converted to w.

s
creating a subdirectory within a directory. Specifying s in an ACE’s access mask controls whether
end-users are allowed to create new subdirectories. If the ACE is part of a file-ACL then the letter is
converted to a.

a
appending data to the end of a file. Specifying a in an ACE’s access mask controls whether end-users
are allowed to add data to the end of a file. If the ACE is part of a directory-ACL then the letter is
converted to s.
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n
reading attributes. Specifying n in an ACE’s access mask controls whether end-users are allowed to
read attributes. This letter may be specified in ACEs that are part of a file-ACL and those that are part
of a directory-ACL.

N
write attributes. Specifying N in an ACE’s access mask controls whether end-users are allowed to write
attributes. This letter may be specified in ACEs that are part of a file-ACL and those that are part of
a directory-ACL.

x
executing a file or entering a directory. x may be specified in an ACE that is part of a file-ACL or a
directory-ACL; however, the operation that is authorised will be different.

Specifying x in an ACEs access mask that is part of a file-ACL will control whether end users matching
the ACE Subject are allowed to execute that file.

Specifying x in an ACEs access mask that is part of a directory-ACL will control whether end users
matching ACE Subject are allowed to search a directory for a named file or subdirectory. This operation
is needed for end users to change their current working directory.

d
deleting a namespace entry. Specifying d in an ACE’s access mask controls whether end-users are
allowed to delete the file or directory the ACL is attached. The end user must be also authorised for
the parent directory (see D).

D
deleting a child of a directory. Specifying D in the access mask of an ACE that is part of a directory-ACL
controls whether end-users are allowed to delete items within that directory. The end user must be also
authorised for the existing item (see d).

t
reading basic attributes. Specifying t in the access mask of an ACE controls whether end users are
allowed to read basic (i.e., non-ACL) attributes of that item.

T
altering basic attributes. Specifying T in an ACE’s access mask controls whether end users are allowed
to alter timestamps of the item the ACE’s ACL is attached.

c
reading ACL information. Specifying c in an ACE’s access mask controls whether end users are allowed
to read the ACL information of the item to which the ACE’s ACL is attached.

C
writing ACL information. Specifying C in an ACE’s access mask controls whether end users are allowed
to update ACL information of the item to which the ACE’s ACL is attached.

o
altering owner and owner-group information. Specifying o controls whether end users are allowed to
change ownership information of the item to which the ACE’s ACL is attached.
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ACL inheritance

To enable ACL inheritance, the optional inheritance flags must be defined. The flag is a list of letters. There
are three possible letters that may be included and the order doesn’t matter.

ACE Inheritance Flags

f
This inheritance flag only affects those ACEs that form part of an directory-ACL. If the ACE is part of
a file-ACL then specifying f has no effect.

If a file is created in a directory with an ACE with f in inheritance flags then the ACE is copied to the
newly created file’s ACL. This ACE copy will not have the f inheritance flag.

Specifying f in an ACE’s inheritance flags does not affect whether this ACE is inherited by a newly
created subdirectory. See d for more details.

d
This inheritance flag only affect those ACEs that form part of an directory-ACL. If the ACE is part of
a file-ACL then specifying d has no effect.

Specifying d in an ACE’s inheritance flags does not affect whether this ACE is inherited by a newly
created file. See f for more details.

If a subdirectory is created in a directory with an ACE with d in the ACE’s inheritance flag then the
ACE is copied to the newly created subdirectory’s ACL. This ACE copy will have the d inheritance
flag specified. If the f inheritance flag is specified then this, too, will be copied.

o
The o flag may only be used when the ACE also has the f, d or both f and d inheritance flags.

Specifying o in the inheritance flag will suppress the ACE. No user operations will be authorised or
denied as a result of such an ACE.

When a file or directory inherits from an ACE with o in the inheritance flags then the o is not present
in the newly created file or directory’s ACE. Since the newly created file or directory will not have the
o in it’s inheritance flags the ACE will take effect.

An o in the inheritance flag allows child files or directories to inherit authorisation behaviour that is
different from the parent directory.

Examples

This section gives some specific examples of how to set ACLs to achieve some specific behaviour.



ACLs in dCache

175

Example 18.1. ACL allowing specific user to delete files in a directory

This example demonstrates how to configure a directory-ACL so user 3750 can delete any file within the
directory /pnfs/example.org/data/exampleDir.

(PnfsManager) admin > setfacl /pnfs/example.org/data/exampleDir EVERYONE@:+l USER:3750:D
    (...line continues...)   USER:3750:+d:of
(PnfsManager) admin > setfacl /pnfs/example.org/data/exampleDir/existingFile1
    (...line continues...)   USER:3750:+d:f
(PnfsManager) admin > setfacl /pnfs/example.org/data/exampleDir/existingFile2
    (...line continues...)   USER:3750:+d:f

The first command creates an ACL for the directory. This ACL has three ACEs. The first ACE allows anyone
to list the contents of the directory. The second ACE allows user 3750 to delete content within the directory
in general. The third ACE is inherited by all newly created files and specifies that user 3750 is authorised
to delete the file independent of that file’s ownership.

The second and third commands creates an ACL for files that already exists within the directory. Since
ACL inheritance only applies to newly created files or directories, any existing files must have an ACL
explicitly set.

Example 18.2. ACL to deny a group

The following example demonstrates authorising all end users to list a directory. Members of group 1000
can also create subdirectories. However, any member of group 2000 can do neither.

(PnfsManager) admin > setfacl /pnfs/example.org/data/exampleDir GROUP:2000:-sl
    (...line continues...)    EVERYONE@:+l GROUP:1000:+s

The first ACE denies any member of group 2000 the ability to create subdirectories or list the directory
contents. As this ACE is first, it takes precedence over other ACEs.

The second ACE allows everyone to list the directory’s content. If an end user who is a member of group
2000 attempts to list a directory then their request will match the first ACE so will be denied. End users
attempting to list a directory that are not a member of group 2000 will not match the first ACE but will
match the second ACE and will be authorised.

The final ACE authorises members of group 1000 to create subdirectories. If an end user who is a member
of group 1000 and group 2000 attempts to create a subdirectory then their request will match the first ACE
and be denied.
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Example 18.3. ACL to allow a user to delete all files and subdirectories

This example is an extension to Example 18.1, “ACL allowing specific user to delete files in a directory”. The
previous example allowed deletion of the contents of a directory but not the contents of any subdirectories.
This example allows user 3750 to delete all files and subdirectories within the directory.

(PnfsManager) admin > setfacl /pnfs/example.org/data/exampleDir USER:3750:+D:d
    (...line continues...)    USER:3750:+d:odf

The first ACE is USER:3750:+D:d. This authorises user 3750 to delete any contents of directory /pn-
fs/example.org/data/exampleDir that has an ACL authorising them with d operation.

The first ACE also contains the inheritance flag d so newly created subdirectories will inherit this ACE.
Since the inherited ACE will also contain the d inheritance flag, this ACE will be copied to all subdirectories
when they are created.

The second ACE is USER:3750:+d:odf. The ACE authorises user 3750 to delete whichever item the
ACL containing this ACE is associated with. However, since the ACE contains the o in the inheritance flags,
user 3750 is not authorised to delete the directory /pnfs/example.org/data/exampleDir

Since the second ACE has both the d and f inheritance flags, it will be inherited by all files and subdirectories
of /pnfs/example.org/data/exampleDir, but without the o flag. This authorises user 3750 to
delete these items.

Subdirectories (and files) will inherit the second ACE with both d and f inheritance flags. This implies that
all files and sub-subdirecties within a subdirectory of /pnfs/example.org/data/exampleDir will
also inherit this ACE, so will also be deletable by user 3750.

Viewing configured ACLs
The getfacl is used to obtain the current ACL for some item in dCache namespace. It takes the following
arguments.

getfacl [<pnfsId>] | [<globalPath>]

The getfacl command fetches the ACL information of a namespace item (a file or directory). The item may
be specified by its pnfs-ID or its absolute path.

Example 18.4. Obtain ACL information by absolute path

(PnfsManager) admin > getfacl /pnfs/example.org/data/exampleDir
ACL: rsId = 00004EEFE7E59A3441198E7EB744B0D8BA54, rsType = DIR
order = 0, type = A, accessMsk = lfsD, who = USER, whoID = 12457
order = 1, type = A, flags = f, accessMsk = lfd, who = USER, whoID = 87552
In extra format:
USER:12457:+lfsD
USER:87552:+lfd:f

The information is provided twice. The first part gives detailed information about the ACL. The second part,
after the In extra format: heading, provides a list of ACEs that may be used when updating the ACL
using the setfacl command.
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Chapter 19. GLUE Info Provider
The GLUE information provider supplied with dCache provides the information about the dCache instance
in a standard format called GLUE. This is necessary so that WLCG infrastructure (such as FTS) and clients
using WLCG tools can discover the dCache instance and use it correctly.

The process of configuring the info-provider is designed to have the minimum overhead so you can configure
it manually; however, you may prefer to use an automatic configuration tool, such as YAIM.

Note
Be sure you have at least v2.0.8 of glue-schema RPM installed on the node running the info-provider.

This chapter describes how to enable and test the dCache-internal collection of information needed by the
info-provider. It also describes how to configure the info-provider and verify that it is working correctly.
Finally, it describes how to publish this information within BDII, verify that this is working and troubleshoot
any problems.

Warning

Please be aware that changing information provider may result in a brief interruption to published
information. This may have an adverse affect on client software that make use of this information.

Internal collection of information
The info-provider takes as much information as possible from dCache. To achieve this, it needs the internal
information-collecting service, info, to be running and a means to collect that information: httpd. Make
sure that both the httpd and info services are running within your dCache instance. By default, the info
service is started on the admin-node; but it is possible to configure dCache so it runs on a different node.
You should run only one info service per dCache instance.

The traditional (pre-1.9.7) allocation of services to domains has the info cell running in the infoDomain
domain. A dCache system that has been migrated from this old configuration will have the following frag-
ment in the node’s layout file:

[infoDomain]
[infoDomain/info]

It is also possible to run the info service inside a domain that runs other services. The following example
show the information domain that hosts the admin, httpd, topo and info services.

[information]
[information/admin]
[information/httpd]
[information/topo]
[information/info]

For more information on configuring dCache layout files, see the section called “Defining domains and
services”.

Use the dcache services command to see if a particular node is configured to run the info service. The
following shows the output if the node has an information domain that is configured to run the info
cell.
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[root] # dcache services | grep info
information info        info               /var/log/dCache/information.log

If a node has no domain configured to host the info service then the above dcache services command
will give no output:

[root] # dcache services | grep info

If no running domain within any node of your dCache instance is running the info service then you must
add the service to a domain and restart that domain.

Example:

In this example, the info service is added to the example domain. Note that the specific choice of
domain (example) is just to give a concrete example; the same process may be applied to a different
domain.

The layouts file for this node includes the following definition for the example domain:

[example]
[example/admin]
[example/httpd]
[example/topo]

By adding the extra line [example/info] to the layouts file, in future, the example domain will
host the info service.

[example]
[example/admin]
[example/httpd]
[example/topo]
[example/info]

To actually start the info cell, the example domain must be restarted.

[root] # dcache restart example
Stopping example (pid=30471) 0 done
Starting example done

With the example domain restarted, the info service is now running.

You can also verify both the httpd and info services are running using the wget command. The specific
command assumes that you are logged into the node that has the httpd service (by default, the admin
node). You may run the command on any node by replacing localhost with the hostname of the node
running the httpd service.

The following example shows the output from the wget when the info service is running correctly:

[root] # wget -O/dev/null http://localhost:2288/info
--17:57:38--  http://localhost:2288/info
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:2288... connected.
HTTP request sent, awaiting response... 200 Document follows
Length: 372962 (364K) [application/xml]
Saving to: `/dev/null'

100%[===========================================================================
===>] 372,962     --.-K/s   in 0.001s
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17:57:38 (346 MB/s) - `/dev/null' saved [372962/372962]

If the httpd service isn’t running then the command will generate the following output:

[root] # wget -O/dev/null http://localhost:2288/info
  --10:05:35--  http://localhost:2288/info
             => `/dev/null'
  Resolving localhost... 127.0.0.1
  Connecting to localhost|127.0.0.1|:2288... failed: Connection refused.

To fix the problem, ensure that the httpd service is running within your dCache instance. This is the service
that provides the web server monitoring within dCache. To enable the service, follow the same procedure
for enabling the info cell, but add the httpd service within one of the domains in dCache.

If running the wget command gives an error message with Unable to contact the info cell.
Please ensure the info cell is running:

[root] # wget -O/dev/null http://localhost:2288/info
  --10:03:13--  http://localhost:2288/info
             => `/dev/null'
  Resolving localhost... 127.0.0.1
  Connecting to localhost|127.0.0.1|:2288... connected.
  HTTP request sent, awaiting response... 503 Unable to contact the info cell.  Pl
ease ensure the info cell is running.
  10:03:13 ERROR 503: Unable to contact the info cell.  Please ensure the info cel
l is running..

This means that the info service is not running. Follow the instructions for starting the info service given
above.

Configuring the info provider
In the directory /etc/dcache you will find the file info-provider.xml. This file is where you
configure the info-provider. It provides information that is difficult or impossible to obtain from the running
dCache directly.

You must edit the info-provider.xml to customise its content to match your dCache instance. In some
places, the file contains place-holder values. These place-holder values must be changed to the correct values
for your dCache instance.

Careful with < and & charaters

Take care when editing the info-provider.xml file! After changing the contents, the file must
remain valid, well-formed XML. In particular, be very careful when writing a less-than symbol (<)
or an ampersand symbol (&).

• Only use an ampersand symbol (&) if it is part of an entity reference. An entity reference is
a sequence that starts with an ampersand symbol and is terminated with a semi-colon (;), for
example &gt; and &apos; are entity markups.

If you want to include an ampersand character in the text then you must use the &amp; entity;
for example, to include the text “me & you” the XML file would include me &amp; you.

• Only use a less-than symbol (<) when starting an XML element; for example, <constant
id="TEST">A test value</constant>.
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If you want to include a less-than character in the text then you must use the &lt; entity; for
example, to include the text “1 < 2” the XML file would include 1 &lt; 2.

Example:

The following example shows the SE-NAME constant (which provides a human-readable de-
scription of the dCache instance) from a well-formed info-provider.xml configuration
file:

<constant id="SE-NAME">Simple &amp; small dCache instance for small VOs
(typically &lt; 20 users)</constant>

The SE-NAME constant is configured to have the value “Simple & small dCache instance for
small VOs (typically < 20 users)”. This illustrates how to include ampersand and less-than char-
acters in an XML file.

When editing the info-provider.xml file, you should only edit text between two elements or add more
elements (for lists and mappings). You should never alter the text inside double-quote marks.

Example:

This example shows how to edit the SITE-UNIQUE-ID constant. This constant has a default value
EXAMPLESITE-ID, which is a place-holder value and must be edited.

<constant id="SITE-UNIQUE-ID">EXAMPLESITE-ID</constant>

To edit the constant’s value, you must change the text between the start- and end-element tags: EXAM-
PLESITE-ID. You should not edit the text SITE-UNIQUE-ID as it is in double-quote marks. After
editing, the file may read:

<constant id="SITE-UNIQUE-ID">DESY-HH</constant>

The info-provider.xml contains detailed descriptions of all the properties that are editable. You
should refer to this documentation when editing the info-provider.xml.

Testing the info provider
Once you have configured info-provider.xml to reflect your site’s configuration, you may test that
the info provider produces meaningful results.

Running the info-provider script should produce GLUE information in LDIF format; for example:

[root] # dcache-info-provider | head -20
#
#  LDIF generated by Xylophone v0.2
#
#  XSLT processing using SAXON 6.5.5 from Michael Kay 1 (http://saxon.sf.ne
 t/)
#   at: 2011-05-11T14:08:45+02:00
#

dn: GlueSEUniqueID=dcache-host.example.org,mds-vo-name=resource,o=grid
objectClass: GlueSETop
objectClass: GlueSE
objectClass: GlueKey
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objectClass: GlueSchemaVersion
GlueSEStatus: Production
GlueSEUniqueID: dcache-host.example.org
GlueSEImplementationName: dCache
GlueSEArchitecture: multidisk
GlueSEImplementationVersion: 2.9.0 (ns=Chimera)
GlueSESizeTotal: 86

The actual values you see will be site-specific and depend on the contents of the info-provider.xml
file and your dCache configuration.

To verify that there are no problems, redirect standard-out to /dev/null to show only the error messages:

[root] # dcache-info-provider >/dev/null

If you see error messages (which may be repeated several times) of the form:

[root] # dcache-info-provider >/dev/null
Recoverable error
Failure reading http://localhost:2288/info: no more input

then it is likely that either the httpd or info service has not been started. Use the above wget test to check
that both services are running. You can also see which services are available by running the dcache services
and dcache status commands.

Decommissioning the old info provider
Sites that were using the old (pre-1.9.5) info provider should ensure that there are no remnants of this old
info-provider on their machine. Although the old info-provider has been removed from dCache, it relied on
static LDIF files, which might still exist. If so, then BDII will obtain some information from the current
info-provider and some out-of-date information from the static LDIF files. BDII will then attempt to merge
the two sources of information. The merged information may provide a confusing description of your dCache
instance, which may prevent clients from working correctly.

The old info provider had two static LDIF files and a symbolic link for BDII. These are:

• The file lcg-info-static-SE.ldif,

• The file: lcg-info-static-dSE.ldif,

• The symbolic link /opt/glite/etc/gip/plugin, which points to /opt/d-cache/jobs/in-
foDynamicSE-plugin-dcache.

The two files (lcg-info-static-SE.ldif and lcg-info-static-dSE.ldif) appear in the
/opt/lcg/var/gip/ldif directory; however, it is possible to alter the location BDII will use.
In BDII v4, the directory is controlled by the static_dir variable (see /opt/glite/etc/gip/
glite-info-generic.conf or /opt/lcg/etc/lcg-info-generic.conf). For BDII v5, the
BDII_LDIF_DIR variable (defined in /opt/bdii/etc/bdii.conf) controls this behaviour.

You must delete the above three entries: lcg-info-static-SE.ldif, lcg-info-stat-
ic-dSE.ldif and the plugin symbolic link.

The directory with the static LDIF, /opt/lcg/var/gip/ldif or /opt/glite/etc/gip/ldif by
default, may contain other static LDIF entries that are relics of previous info-providers. These may have
filenames like static-file-SE.ldif.
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Delete any static LDIF file that contain information about dCache. With the info-provider, all LDIF infor-
mation comes from the info-provider; there should be no static LDIF files. Be careful not to delete any static
LDIF files that come as part of BDII; for example, the default.ldif file, if present.

Publishing dCache information
BDII obtains information by querying different sources. One such source of information is by running an
info-provider command and taking the resulting LDIF output. To allow BDII to obtain dCache information,
you must allow BDII to run the dCache info-provider. This is achieved by symbolically linking the dcache-
info-provider script into the BDII plugins directory:

[root] # ln -s /usr/sbin/dcache-info-provider
/opt/glite/etc/gip/provider/

If the BDII daemons are running, then you will see the information appear in BDII after a short delay; by
default this is (at most) 60 seconds.

You can verify that information is present in BDII by querying BDII using the ldapsearch command. Here
is an example that queries for GLUE v1.3 objects:

[root] # ldapsearch -LLL -x -H ldap://<dcache-host>:2170 -b o=grid \
'(objectClass=GlueSE)'
dn: GlueSEUniqueID=dcache-host.example.org,Mds-Vo-name=resource,o=grid
GlueSEStatus: Production
objectClass: GlueSETop
objectClass: GlueSE
objectClass: GlueKey
objectClass: GlueSchemaVersion
GlueSETotalNearlineSize: 0
GlueSEArchitecture: multidisk
GlueSchemaVersionMinor: 3
GlueSEUsedNearlineSize: 0
GlueChunkKey: GlueSEUniqueID=dcache-host.example.org
GlueForeignKey: GlueSiteUniqueID=example.org
GlueSchemaVersionMajor: 1
GlueSEImplementationName: dCache
GlueSEUniqueID: dcache-host.example.org
GlueSEImplementationVersion: 2.9-3 (ns=Chimera)
GlueSESizeFree: 84
GlueSEUsedOnlineSize: 2
GlueSETotalOnlineSize: 86
GlueSESizeTotal: 86

Careful with the hostname

You must replace <dcache-host> in the URI ldap://<dcache-host>:2170/ with the
actual hostname of your node.

It’s tempting to use localhost in the URI when executing the ldapsearch command; however,
BDII binds to the ethernet device (e.g., eth0). Typically, localhost is associated with the loop-
back device (lo), so querying BDII with the URI ldap://localhost:2170/ will fail.

The LDAP query uses the o=grid object as the base; all reported objects are descendant objects of this
base object. The o=grid base selects only the GLUE v1.3 objects. To see GLUE v2.0 objects, the base
object must be o=glue.

The above ldapsearch command queries BDII using the (objectClass=GlueSE) filter. This filter
selects only objects that provide the highest-level summary information about a storage-element. Since each
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storage-element has only one such object and this BDII instance only describes a single dCache instance,
the command returns only the single LDAP object.

To see all GLUE v1.3 objects in BDII, repeat the above ldapsearch command but omit the
(objectClass=GlueSE) filter: ldapsearch -LLL -x -H ldap://<dcache-host>:2170
-b o=grid. This command will output all GLUE v1.3 LDAP objects, which includes all the GLUE v1.3
objects from the info-provider.

Searching for all GLUE v2.0 objects in BDII is achieved by repeating the above ldapsearch command but
omitting the (objectClass=GlueSE) filter and changing the search base to o=glue: ldapsearch
-LLL -x -H ldap://<dcache-host>:2170 -b o=glue. This command returns a completely
different set of objects from the GLUE v1.3 queries.

You should be able to compare this output with the output from running the info-provider script manually:
BDII should contain all the objects that the dCache info-provider is supplying. Unfortunately, the order in
which the objects are returned and the order of an object’s properties is not guaranteed; therefore a direct
comparison of the output isn’t possible. However, it is possible to calculate the number of objects in GLUE
v1.3 and GLUE v2.0.

First, calculate the number of GLUE v1.3 objects in BDII and compare that to the number of GLUE v1.3
objects that the info-provider supplies.

[root] # ldapsearch -LLL -x -H ldap://<dcache-host>:2170 -b o=grid \
'(objectClass=GlueSchemaVersion)' | grep ^dn | wc -l
10
[root] # dcache-info-provider | \
grep -i "objectClass: GlueSchemaVersion" | wc -l
10

Now calculate the number of GLUE v2.0 objects in BDII describing your dCache instance and compare that
to the number provided by the info-provider:

[root] # ldapsearch -LLL -x -H ldap://<dcache-host>:2170 -b o=glue | perl -p00e 's/\n //g' | \
grep dn.*GLUE2ServiceID | wc -l
27
[root] # dcache-info-provider | perl -p00e 's/\n //g' | \
grep ^dn.*GLUE2ServiceID | wc -l
27

If there is a discrepancy in the pair of numbers obtains in the above commands then BDII has rejecting some
of the objects. This is likely due to malformed LDAP objects from the info-provider.

Troubleshooting BDII problems
The BDII log file should explain why objects are not accepted; for example, due to a badly formatted at-
tribute. The default location of the log file is /var/log/bdii/bdii-update.log, but the location is
configured by the BDII_LOG_FILE option in the /opt/bdii/etc/bdii.conf file.

The BDII log files may show entries like:

2011-05-11 04:04:58,711: [WARNING] dn: o=shadow
2011-05-11 04:04:58,711: [WARNING] ldapadd: Invalid syntax (21)
2011-05-11 04:04:58,711: [WARNING] additional info: objectclass: value #1 invalid per syntax

This problem comes when BDII is attempting to inject new information. Unfortunately, the information
isn’t detailed enough for further investigation. To obtain more detailed information from BDII, switch the
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BDII_LOG_LEVEL option in /opt/bdii/etc/bdii.conf to DEBUG. This will provide more infor-
mation in the BDII log file.

Logging at DEBUG level has another effect; BDII no longer deletes some temporary files. These temporary
files are located in the directory controlled by the BDII_VAR_DIR option. This is /var/run/bdii by
default.

There are several temporary files located in the /var/run/bdii directory. When BDII decides which
objects to add, modify and remove, it creates LDIF instructions inside temporary files add.ldif,
modify.ldif and delete.ldif respectively. Any problems in the attempt to add, modify and delete
LDAP objects are logged to corresponding error files: errors with add.ldif are logged to add.err,
modify.ldif to modify.err and so on.

Once information in BDII has stablised, the only new, incoming objects for BDII come from those objects
that it was unable to add previously. This means that add.ldif will contain these badly formatted objects
and add.err will contain the corresponding errors.

Updating information
The information contained within the info service may take a short time to achieve a complete overview of
dCache’s state. For certain gathered information it may take a few minutes before the information stabilis-
es. This delay is intentional and prevents the gathering of information from adversely affecting dCache’s
performance.

The information presented by the LDAP server is updated periodically by BDII requesting fresh information
from the info-provider. The info-provider obtains this information by requesting dCache’s current status
from info service. By default, BDII will query the info-provider every 60 seconds. This will introduce an
additional delay between a change in dCache’s state and that information propagating.

Some information is hard-coded within the info-provider.xml file; that is, you will need to edit this
file before the published value(s) will change. These values are ones that typically a site-admin must choose
independently of dCache’s current operations.
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Chapter 20.  Stage Protection
Irina Kozlova

A dCache system administrator may specify a list of DNs/FQANs which are allowed to trigger tape restores
for files not being available on disk. Users, requesting tape-only files, and not being on that white list, will
receive a permission error and no tape operation is launched. Stage protection can be enhanced to allow
authorization specific to a dCache storage group. The additional configuration parameter is optional allowing
the stage protection to be backwards compatible when stage authorization is not specific to a storage group.

Configuration of Stage Protection
Stage protection can optionally be configured in the poolmanager rather than on the doors and the pin-
manager. Thus the white list needs to be present on a single node only. To enable this, define the following
parameter in /etc/dcache/dcache.conf:

dcache.authz.staging.pep=PoolManager

The file name of the white list must be configured by setting the dcache.authz.staging parameter
in /etc/dcache/dcache.conf:

dcache.authz.staging=/etc/dcache/StageConfiguration.conf

The parameter needs to be defined on all nodes which enforce the stage protection, i.e., either on the doors
and the pinmanager, or in the poolmanager depending on the stage policy enforcement point.

Definition of the White List
The Stage Configuration File will contain a white list. Each line of the white list may contain up to three
regular expressions enclosed in double quotes. The regular expressions match the DN, FQAN, and the Stor-
age Group written in the following format:

"<DN>" ["<FQAN>" ["<StorageGroup>"] ]

Lines starting with a hash symbol # are discarded as comments.

The regular expression syntax follows the syntax defined for the  Java Pattern class  [http://java.sun.com/
javase/6/docs/api/java/util/regex/Pattern.html].

Example:

Here are some examples of the White List Records:

".*" "/atlas/Role=production"
"/C=DE/O=DESY/CN=Kermit the frog"
"/C=DE/O=DESY/CN=Beaker" "/desy"
"/O=GermanGrid/.*" "/desy/Role=.*"

This example authorizes a number of different groups of users:

• Any user with the FQAN /atlas/Role=production.

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
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• The user with the DN /C=DE/O=DESY/CN=Kermit the frog, irrespective of which VOMS
groups he belongs to.

• The user with the DN /C=DE/O=DESY/CN=Beaker but only if he is also identified as a member
of VO desy (FQAN /desy)

• Any user with DN and FQAN that match /O=GermanGrid/.* and /desy/Role=.* respec-
tively.

If a storage group is specified all three parameters must be provided. The regular expression ".*" may be
used to authorize any DN or any FQAN. Consider the following example:

Example:

".*" "/atlas/Role=production" "h1:raw@osm"
"/C=DE/O=DESY/CN=Scooter" ".*" "sql:chimera@osm"

In the example above:

• Any user with FQAN /atlas/Role=production is allowed to stage files located in the storage
group h1:raw@osm.

• The user /C=DE/O=DESY/CN=Scooter, irrespective of which VOMS groups he belongs to, is
allowed to stage files located in the storage group sql:chimera@osm.

With the plain dCap protocol the DN and FQAN are not known for any users.

Example:

In order to allow all dCap users to stage files the white list should contain the following record:

"" ""

In case this line is commented or not present in the white list, all dCap users will be disallowed to
stage files.

It is possible to allow all dCap users to stage files located in a certain storage group.

Example:

In this example, all dCap users are allowed to stage files located in the storage group h1:raw@osm:

"" "" "h1:raw@osm"
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Chapter 21.  Using Space Reservations
without SRM
If you are using space reservations, i.e. you set

dcache.enable.space-reservation=true

in your configuration file and all of your pools are in link groups, then you can only write into dCache if
a link group is available for your transfer. Using the SRM you can specify the link group to write into. If
you want to use another protocol like curl or xrootd you cannot specify a link group. In this case you
need to use the WriteToken directory tag.

The Space Reservation
Before you can create a WriteToken tag you need to have a space reservation.

Space reservations are made for link groups. The file  LinkGroupAuthorization.conf needs to
contain the link groups that can be used for space reservations. You need to specify the location of the file
in the /etc/dcache/dcache.conf file.

spacemanager.authz.link-group-file-name=/etc/dcache/LinkGroupAuthorization.conf

Example:

In this example we will create the link group WriteTokenLinkGroup. Login to the admin interface,
cd to the SrmSpaceManager and list the current space reservations.

(local) admin > cd SrmSpaceManager
(SrmSpaceManager) admin > ls
Reservations:
total number of reservations: 0
total number of bytes reserved: 0

LinkGroups:
total number of linkGroups: 0
total number of bytes reservable: 0
total number of bytes reserved  : 0
last time all link groups were updated: Wed Aug 07 15:20:48 CEST 2013(1375881648312)

Currently there are no space reservations and no link groups. We create the link group WriteToken-
LinkGroup.

(SrmSpaceManager) admin > ..
(local) admin > cd PoolManager
(PoolManager) admin > psu create pgroup WriteToken_poolGroup
(PoolManager) admin > psu addto pgroup WriteToken_poolGroup pool1
(PoolManager) admin > psu removefrom pgroup default pool1
(PoolManager) admin > psu create link WriteToken_Link any-store world-net any-protocol
(PoolManager) admin > psu set link WriteToken_Link -readpref=10 -writepref=10 -cachepref=0 -
p2ppref=-1
(PoolManager) admin > psu add link WriteToken_Link WriteToken_poolGroup
(PoolManager) admin > psu create linkGroup WriteToken_LinkGroup
(PoolManager) admin > psu set linkGroup custodialAllowed WriteToken_LinkGroup true
(PoolManager) admin > psu set linkGroup replicaAllowed WriteToken_LinkGroup true
(PoolManager) admin > psu set linkGroup nearlineAllowed WriteToken_LinkGroup true
(PoolManager) admin > psu set linkGroup onlineAllowed WriteToken_LinkGroup true
(PoolManager) admin > psu addto linkGroup WriteToken_LinkGroup WriteToken_Link
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(PoolManager) admin > save
(PoolManager) admin > ..
(local) admin >

(local) admin >cd SrmSpaceManager
(SrmSpaceManager) admin > ls
Reservations:
total number of reservations: 0
total number of bytes reserved: 0

LinkGroups:
0 Name:WriteToken_LinkGroup FreeSpace:6917935104 ReservedSpace:0 AvailableSpace:6917935104
 VOs: onlineAllowed:true nearlineAllowed:true replicaAllowed:true custodialAllowed:true
 outputAllowed:true UpdateTime:Wed Aug 07 15:42:03 CEST 2013(1375882923234)
total number of linkGroups: 1
total number of bytes reservable: 6917935104
total number of bytes reserved  : 0
last time all link groups were updated: Wed Aug 07 15:42:03 CEST 2013(1375882923234)

A space reservation can only be made, when there is a link group in the
LinkGroupAuthorization.conf that can be used for the space reservation. There-
fore, we configure the LinkGroupAuthorization.conf such that the link group
WriteToken_LinkGroup can be used.

#SpaceManagerLinkGroupAuthorizationFile
# this is comment and is ignored

LinkGroup WriteToken_LinkGroup
*/Role=*

Now we can make a space reservation for that link group.

(SrmSpaceManager) admin > reserve -desc=WriteToken 6000000 10000
10000 voGroup:null voRole:null retentionPolicy:CUSTODIAL accessLatency:ONLINE linkGroupId:0
 size:6000000 created:Fri Aug 09 12:28:18 CEST 2013 lifetime:10000000ms expiration:Fri Aug 09
 15:14:58 CEST 2013 description:WriteToken state:RESERVED used:0 allocated:0 

(SrmSpaceManager) admin > ls
Reservations:
10000 voGroup:null voRole:null retentionPolicy:CUSTODIAL accessLatency:ONLINE linkGroupId:0
 size:6000000 created:Fri Aug 09 12:26:26 CEST 2013 lifetime:10000000ms expiration:Fri Aug 09
 15:13:06 CEST 2013 description:WriteToken state:RESERVED used:0 allocated:0 
total number of reservations: 1
total number of bytes reserved: 6000000

LinkGroups:
0 Name:WriteToken_LinkGroup FreeSpace:6917849088 ReservedSpace:6000000 AvailableSpace:6911849088
 VOs:{*:*} onlineAllowed:true nearlineAllowed:true replicaAllowed:true custodialAllowed:true
 outputAllowed:true UpdateTime:Fri Aug 09 12:25:57 CEST 2013(1376043957179)
total number of linkGroups: 1
total number of bytes reservable: 6911849088
total number of bytes reserved  : 6000000
(SrmSpaceManager) admin >

The WriteToken tag
The WriteToken tag is a directory tag. Create the WriteToken tag with

[root] # /usr/bin/chimera writetag <directory> WriteToken [<IdOfSpaceReservation>]

Example:
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In the beginning of the Book we created the directory /data and the subdirectory /data/world-
writable.

[root] # /usr/bin/chimera ls /data/
total 3
drwxr-xr-x  3 0 0 512 Jul 23 14:59 .
drwxrwxrwx  3 0 0 512 Jul 24 14:33 ..
drwxrwxrwx 12 0 0 512 Jul 24 14:41 world-writable

Now, we create the directory data/write-token into which we want to write

[root] # /usr/bin/chimera mkdir /data/write-token
[root] # /usr/bin/chimera 777 chmod /data/write-token
[root] # /usr/bin/chimera ls /data/
total 4
drwxr-xr-x  4 0 0 512 Aug 09 12:48 .
drwxrwxrwx  3 0 0 512 Jul 24 14:33 ..
drwxrwxrwx 12 0 0 512 Jul 24 14:41 world-writable
drwxrwxrwx  2 0 0 512 Aug 09 12:48 write-token

and echo the space reservation into the WriteToken tag.

[root] # /usr/bin/chimera writetag /data/write-token WriteToken [10000]

Copy a File into the WriteToken
Given that you have a WriteToken tag which contains the id of a valid space reseravtion, you can copy a
file into a space reservation even if you are using a protocol that does not support space reservation.

Example:

In the above example we echoed the id of a space reservation into the WriteToken tag. We can now
copy a file into this space reservation.

[root] # curl -T test.txt http://webdav-door.example.org:2880/data/write-token/curl-test.txt
[root] #
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Chapter 22. dCache Clients.

Owen Synge

There are many client tools for dCache. These can most easily be classified by communication protocol.

GSI-FTP
dCache provides a GSI-FTP door, which is in effect a GSI authenticated FTP access point to dCache

Listing a directory
To list the content of a dCache directory, the GSI-FTP protocol can be used;

[user] $ edg-gridftp-ls gsiftp://gridftp-door.example.org/pnfs/example.org/data/dteam/

Checking a file exists
To check the existence of a file with GSI-FTP.

[user] $ edg-gridftp-exists gsiftp://gridftp-door.example.org/pnfs/example.org/data/dteam/
filler_test20050819130209790873000
[user] $ echo $?
0
[user] $ edg-gridftp-exists gsiftp://gridftp-door.example.org/pnfs/example.org/data/dteam/
filler_test200508191302097908730002
error the server sent an error response: 451 451 /pnfs/example.org/data/dteam/
filler_test200508191302097908730002  not found
[user] $ echo $?
1

Use the return code

Please note the echo $? show the return code of the last run application. The error message
returned from the client this should not be scripted against as it is one of many possible errors.

Deleting files
To delete files with GSI-FTP use the edg-gridftp-rm command.

[user] $ edg-gridftp-rm gsiftp://gridftp-door.example.org/pnfs/example.org/data/dteam/
filler_test20050811160948926780000

This deletes the file filler_test20050811160948926780000 from the /pnfs/example.org/
data/dteam using the door running on the host gridftp-door.example.org within the dCache
cluster example.org

Copying files
globus-url-copy [[command line options]] [<srcUrl>] [<destinationUrl>] ...
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Copying file with globus-url-copy follows the syntax source, destination.

Example:

The following example copies the file /etc/group into dCache as the file /pnfs/example.org/
data/dteam/test_GlobusUrlCopy.clinton.504.22080.20071102160121.2

[user] $ globus-url-copy \
file://///etc/group \
gsiftp://gridftp-door.example.org/pnfs/example.org/data/dteam/
test_GlobusUrlCopy.clinton.504.22080.20071102160121.2

Please note that the five slashes are really needed.

dCap
When using dccp client or using the interposition library the errors Command failed! can be safely
ignored.

dccp
The following example shows dccp being used to copy the file /etc/group into dCache as the the file
/pnfs/example.org/data/dteam/test6. The dccp program will connect to dCache without au-
thenticating.

[user] $ /opt/d-cache/dcap/bin/dccp /etc/group dcap://dcap-door.example.org:22125/pnfs/example.org/
data/dteam/test6
Command failed!
Server error message for [1]: "path /pnfs/example.org/data/dteam/test6 not found" (errno 10001).
597 bytes in 0 seconds

The following example shows dccp being used to upload the file /etc/group. In this example, dccp will
authenticate with dCache using the GSI protocol.

[user] $ /opt/d-cache/dcap/bin/dccp /etc/group gsidcap://gsidcap-door.example.org:22128/pnfs/
example.org/data/dteam/test5
Command failed!
Server error message for [1]: "path /pnfs/example.org/data/dteam/test5 not found" (errno 10001).
597 bytes in 0 seconds

The following example shows dccp with the debugging enabled. The value 63 controls how much infor-
mation is displayed.

[user] $ /opt/d-cache/dcap/bin/dccp -d 63   /etc/group dcap://dcap-door.example.org:22128/pnfs/
example.org/data/dteam/test3
Dcap Version version-1-2-42 Jul 10 2007 19:56:02
Using system native stat64 for /etc/group.
Allocated message queues 0, used 0

Using environment variable as configuration
Allocated message queues 1, used 1

Creating a new control connection to dcap-door.example.org:22128.
Activating IO tunnel. Provider: [libgsiTunnel.so].
Added IO tunneling plugin libgsiTunnel.so for dcap-door.example.org:22128.
Setting IO timeout to 20 seconds.
Connected in 0.00s.
Removing IO timeout handler.
Sending control message: 0 0 client hello 0 0 2 42 -uid=501 -pid=32253 -gid=501
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Server reply: welcome.
dcap_pool:  POLLIN on control line [3] id=1
Connected to dcap-door.example.org:22128
Sending control message: 1 0 client stat "dcap://dcap-door.example.org:22128/pnfs/example.org/data/
dteam/test3" -uid=501
Command failed!
Server error message for [1]: "path //pnfs/example.org/data/dteam/test3 not found" (errno 10001).
[-1] unpluging node
Removing unneeded queue [1]
[-1] destroing node
Real file name: /etc/group.
Using system native open for /etc/group.
extra option:  -alloc-size=597
[Fri Sep  7 17:50:56 2007] Going to open file dcap://dcap-door.example.org:22128/pnfs/example.org/
data/dteam/test3 in cache.
Allocated message queues 2, used 1

Using environment variable as configuration
Activating IO tunnel. Provider: [libgsiTunnel.so].
Added IO tunneling plugin libgsiTunnel.so for dcap-door.example.org:22128.
Using existing control connection to dcap-door.example.org:22128.
Setting hostname to dcap-door.example.org.
Sending control message: 2 0 client open "dcap://dcap-door.example.org:22128/pnfs/example.org/data/
dteam/test3" w -mode=0644 -truncate dcap-door.example.org 33122 -timeout=-
1 -onerror=default  -alloc-size=597  -uid=501
Polling data for destination[6] queueID[2].
Got callback connection from dcap-door.example.org:35905 for session 2, myID 2.
cache_open -> OK
Enabling checksumming on write.
Cache open succeeded in 0.62s.
[7] Sending IOCMD_WRITE.
Entered sendDataMessage.
Polling data for destination[7] queueID[2].
[7] Got reply 4x12 bytes len.
[7] Reply: code[6] response[1] result[0].
get_reply: no special fields defined for that type of response.
[7] Got reply 4x12 bytes len.
[7] Reply: code[7] response[1] result[0].
get_reply: no special fields defined for that type of response.
[7] Expected position: 597 @ 597 bytes written.
Using system native close for [5].
[7] unpluging node
File checksum is: 460898156
Sending CLOSE for fd:7 ID:2.
Setting IO timeout to 300 seconds.
Entered sendDataMessage.
Polling data for destination[7] queueID[2].
[7] Got reply 4x12 bytes len.
[7] Reply: code[6] response[4] result[0].
get_reply: no special fields defined for that type of response.
Server reply: ok destination [2].
Removing IO timeout handler.
Removing unneeded queue [2]
[7] destroing node
597 bytes in 0 seconds
Debugging

Using the dCache client interposition library.

Finding the GSI tunnel.

When the LD_PRELOAD library libpdcap.so variable produces errors finding the GSI tunnel it
can be useful to specify the location of the GSI tunnel library directly using the following command:

[user] $ export
DCACHE_IO_TUNNEL=/opt/d-cache/dcap/lib/libgsiTunnel.so
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Please see http://www.dcache.org/manuals/experts_docs/tunnel-HOWTO.html for further details
on tunnel setup for the server.

dCap is a POSIX like interface for accessing dCache, allowing unmodified applications to access dCache
transparently. This access method uses a proprietary data transfer protocol, which can emulate POSIX access
across the LAN or WAN.

Unfortunately the client requires inbound connectivity and so it is not practical to use this protocol over the
WAN as most sites will not allow inbound connectivity to worker nodes.

To make non dCache aware applications access files within dCache through dCap all that is needed is set
the LD_PRELOAD environment variable to /opt/d-cache/dcap/lib/libpdcap.so.

[user] $ export LD_PRELOAD=/opt/d-cache/dcap/lib/libpdcap.so

Setting the LD_PRELOAD environment variable results in the library libpdcap.so overriding the oper-
ating system calls. After setting this environment variable, the standard shell command should work with
dCap and GSIdCap URLs.

Example:

The following session demonstrates copying a file into dCache, checking the file is present with the ls
command, reading the first 3 lines from dCache and finally deleting the file.

[user] $ cp /etc/group gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/data/dteam/
myFile
[user] $ ls gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/data/dteam/DirOrFile
[user] $ head -3 gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/data/dteam/myFile
root:x:0:
daemon:x:1:
bin:x:2:
[user] $ rm gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/data/dteam/MyFile

SRM
dCache provides a series of clients one of which is the SRM client which supports a large number operations,
but is just one Java application, the script name is sent to the Java applications command line to invoke
each operation.

This page just shows the scripts command line and not the invocation of the Java application directly.

Creating a new directory.
Usage:

srmmkdir [[command line options]] [<srmUrl>]

Example:

Example:

The following example creates the directory /pnfs/example.org/data/dteam/myDir.

http://www.dcache.org/manuals/experts_docs/tunnel-HOWTO.html
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[user] $ srmmkdir srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/myDir

Removing files from dCache
Usage:

srmrm [[command line options]] [<srmUrl> ...]

Example:

[user] $ srmrm srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/myDir/myFile

Removing empty directories from dCache
It is allowed to remove only empty directories as well as trees of empty directories.

Usage:

srmrmdir [command line options] [<srmUrl>]

Examples:

Example:

[user] $ srmrmdir srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/myDir

Example:

[user] $ srmrmdir -recursive=true srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/
myDir

srmcp for SRM v1
Usage:

srmcp [command line options] <source>... [<destination>]

or

srmcp [command line options] [-copyjobfile] <file>

Copying files to dCache

Example:

[user] $ srmcp -webservice_protocol=http \
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   file://///etc/group \
   srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/
test_Srm.clinton.501.32050.20070907153055.0

Copying files from dCache
[user] $ srmcp -webservice_protocol=http \
   srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/
test_Srm.clinton.501.32050.20070907153055.0 \
   file://///tmp/testfile1 -streams_num=1

srmcp for SRM v2.2

Getting the dCache Version

The srmping command will tell you the version of dCache. This only works for authorized users and not
just authenticated users.

[user] $ srmping -2 srm://srm-door.example.org:8443/pnfs
WARNING: SRM_PATH is defined, which might cause a wrong version of srm client to be executed
WARNING: SRM_PATH=/opt/d-cache/srm
VersionInfo : v2.2
backend_type:dCache
backend_version:production-1-9-1-11

Space Tokens

Space token support must be set up and reserving space with the admin interface this is also doc-
umented in the SRM section and in the dCache wiki [http://trac.dcache.org/projects/dcache/wiki/manu-
als/SRM_2.2_Setup].

Space Token Listing

Usage:

get-space-tokens [command line options] [<srmUrl>]

Example 22.1. surveying the space tokens available in a directory.

[user] $ srm-get-space-tokens srm://srm-door.example.org:8443/pnfs/example.org/data/dteam -
srm_protocol_version=2

A successful result:

return status code : SRM_SUCCESS
return status expl. : OK
Space Reservation Tokens:
148241
148311
148317
28839
148253
148227
148229
148289
148231
148352

http://trac.dcache.org/projects/dcache/wiki/manuals/SRM_2.2_Setup
http://trac.dcache.org/projects/dcache/wiki/manuals/SRM_2.2_Setup
http://trac.dcache.org/projects/dcache/wiki/manuals/SRM_2.2_Setup
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Example 22.2. Listing the space tokens for a SRM:
[user] $ srm-get-space-tokens srm://srm-door.example.org:8443
Space Reservation Tokens:
145614
145615
144248
144249
25099
145585
145607
28839
145589

Space Reservation

Usage:

srm-reserve-space [[command line options]] [<srmUrl>]

[user] $ srm-reserve-space  \
-desired_size 2000 \
-srm_protocol_version=2 \
-retention_policy=REPLICA \
-access_latency=ONLINE \
-guaranteed_size 1024 \
-lifetime 36000 \
srm://srm-door.example.org:8443/pnfs/example.org/data/dteam

A successful result:

Space token =144573

A typical failure

SRMClientV2 : srmStatusOfReserveSpaceRequest , contacting service httpg://srm-door.example.org:8443/
srm/managerv2
status: code=SRM_NO_FREE_SPACE explanantion= at Thu Nov 08 15:29:44 CET 2007 state Failed :  no space
 available
lifetime = null
access latency = ONLINE
retention policy = REPLICA
guaranteed size = null
total size = 34

Also you can get info for this space token 144573:

[user] $ srm-get-space-metadata srm://srm-door.example.org:8443/pnfs/example.org/data/dteam -
space_tokens=144573

Possible result:

Space Reservation with token=120047
                   owner:VoGroup=/dteam VoRole=NULL
               totalSize:1024
          guaranteedSize:1024
              unusedSize:1024
        lifetimeAssigned:36000
            lifetimeLeft:25071
           accessLatency:ONLINE
         retentionPolicy:REPLICA

Writing to a Space Token

Usage: srmcp [command line options] source(s) destination
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Examples:

[user] $ srmcp -protocols=gsiftp -space_token=144573 \
file://///home/user/path/to/myFile \
srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/myFile

[user] $ srmcp -protocols=gsiftp -space_token=144573 \
file://///home/user/path/to/myFile1 \
file://///home/user/path/to/myFile2 \
srm://srm-door.example.org:8443/pnfs/example.org/data/dteam

Space Metadata

Users can get the metadata available for the space, but the ability to query the metadata of a space reservation
may be restricted so that only certain users can obtain this information.

[user] $ srm-get-space-metadata srm://srm-door.example.org:8443/pnfs/example.org/data/dteam -
space_tokens=120049
WARNING: SRM_PATH is defined, which might cause a wrong version of srm client to be executed
WARNING: SRM_PATH=/opt/d-cache/srm
Space Reservation with token=120049
                   owner:VoGroup=/dteam VoRole=NULL
               totalSize:1024
          guaranteedSize:1024
              unusedSize:1024
        lifetimeAssigned:36000
            lifetimeLeft:30204
           accessLatency:ONLINE
         retentionPolicy:REPLICA

Space Token Release

Removes a space token from the SRM.

[user] $ srm-release-space srm://srm-door.example.org:8443 -space_token=15

Listing a file in SRM

SRM version 2.2 has a much richer set of file listing commands.

Usage:

srmls [command line options] <srmUrl>...

Example 22.3. Using srmls -l:

[user] $ srmls srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/testdir  -2
  0 /pnfs/example.org/data/dteam/testdir/
      31 /pnfs/example.org/data/dteam/testdir/testFile1
      31 /pnfs/example.org/data/dteam/testdir/testFile2
      31 /pnfs/example.org/data/dteam/testdir/testFile3
      31 /pnfs/example.org/data/dteam/testdir/testFile4
      31 /pnfs/example.org/data/dteam/testdir/testFile5

Note

The -l option results in srmls providing additional information. Collecting this additional infor-
mation may result in a dramatic increase in execution time.
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Example 22.4. Using srmls -l:

[user] $ srmls -l srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/testdir -2
  0 /pnfs/example.org/data/dteam/testdir/
  storage type:PERMANENT
  retention policy:CUSTODIAL
  access latency:NEARLINE
  locality:NEARLINE
 locality: null
   UserPermission: uid=18118 PermissionsRWX
   GroupPermission: gid=2688 PermissionsRWX
  WorldPermission: RX
 created at:2007/10/31 16:16:32
 modified at:2007/11/08 18:03:39
   - Assigned lifetime (in seconds):  -1
  - Lifetime left (in seconds):  -1
  - Original SURL:  /pnfs/example.org/data/dteam/testdir
 - Status:  null
 - Type:  DIRECTORY
      31 /pnfs/example.org/data/dteam/testdir/testFile1
      storage type:PERMANENT
      retention policy:CUSTODIAL
      access latency:NEARLINE
      locality:NEARLINE
      - Checksum value:  84d007af
      - Checksum type:  adler32
       UserPermission: uid=18118 PermissionsRW
       GroupPermission: gid=2688 PermissionsR
      WorldPermission: R
     created at:2007/11/08 15:47:13
     modified at:2007/11/08 15:47:13
       - Assigned lifetime (in seconds):  -1
      - Lifetime left (in seconds):  -1
      - Original SURL:  /pnfs/example.org/data/dteam/testdir/testFile1
 - Status:  null
 - Type:  FILE

If you have more than 1000 entries in your directory then dCache will return only the first 1000. To view
directories with more than 1000 entries, please use the following parameters:

srmls parameters

-count=<integer>
The number of entries to report.

-offset=<integer>



dCache Clients.

200

Example 22.5. Limited directory listing

The first command shows the output without specifying -count or -offset. Since the directory contains
less than 1000 entries, all entries are listed.

[user] $ srmls srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/dir1 \
srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/dir2
  0 /pnfs/example.org/data/dteam/dir1/
      31 /pnfs/example.org/data/dteam/dir1/myFile1
      28 /pnfs/example.org/data/dteam/dir1/myFile2
      47 /pnfs/example.org/data/dteam/dir1/myFile3
  0 /pnfs/example.org/data/dteam/dir2/
      25 /pnfs/example.org/data/dteam/dir2/fileA
      59 /pnfs/example.org/data/dteam/dir2/fileB

The following examples shows the result when using the -count option to listing the first three entries.

[user] $ srmls -count=3 srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/testdir  -
srm_protocol_version=2
0 /pnfs/example.org/data/dteam/testdir/
      31 /pnfs/example.org/data/dteam/testdir/testFile1
      31 /pnfs/example.org/data/dteam/testdir/testFile2
      31 /pnfs/example.org/data/dteam/testdir/testFile3

In the next command, the -offset option is used to view a different set of entries.

[user] $ srmls -count=3 -offset=1 srm://srm-door.example.org:8443/pnfs/example.org/data/dteam/testdir
  -srm_protocol_version=2
0 /pnfs/example.org/data/dteam/testdir/
      31 /pnfs/example.org/data/dteam/testdir/testFile2
      31 /pnfs/example.org/data/dteam/testdir/testFile3
      31 /pnfs/example.org/data/dteam/testdir/testFile4

ldap
dCache is commonly deployed with the BDII. The information provider within dCache publishes informa-
tion to BDII. To querying the dCache BDII is a matter of using the standard command ldapsearch. For grid
the standard ldap port is set to 2170 from the previous value of 2135.

[user] $ ldapsearch -x -H ldap://localhost:2170 -b mds-vo-name=resource,o=grid > /tmp/
ldap.output.ldif
[user] $ wc -l  /tmp/ldap.output.ldif
205 /tmp/ldap.output.ldif

As can be seen from above even a single node standard install of dCache returns a considerable number of
lines and for this reason we have not included the output, in this case 205 lines where written.

Using the LCG commands with dCache
The lcg_util RPM contains many small command line applications which interact with SRM implemen-
tations, these where developed independently from dCache and provided by the LCG grid computing effort.

Each command line application operates on a different method of the SRM interface. These applications
where not designed for normal use but to provide components upon which operations can be built.

lcg-gt queries the BDII information server. This adds an additional requirement that the BDII information
server can be found by lcg-gt, please only attempt to contact servers found on your user interface using.
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[user] $ lcg-infosites --vo dteam se

The lcg-gt Application
SRM provides a protocol negotiating interface, and returns a TURL (transfer URL). The protocol specified
by the client will be returned by the server if the server supports the requested protocol.

To read a file from dCache using lcg-gt you must specify two parameters the SURL (storage URL), and the
protcol (GSIdCap or GSI-FTP) you wish to use to access the file.

[user] $ lcg-gt srm://srm-door.example.org/pnfs/example.org/data/dteam/group gsidcap
gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/data/dteam/group
-2147365977
-2147365976

Each of the above three lines contains different information. These are explained below.

gsidcap://gsidcap-door.example.org:22128/pnfs/example.org/data/dteam/
group is the transfer URL (TURL).

-2147365977 is the SRM Request Id, Please note that it is a negative number in this example, which
is allowed by the specification.

-2147365976 is the Unique identifier for the file with respect to the Request Id. Please note that with
this example this is a negative number.

Remember to return your Request Id

dCache limits the number of Request Ids a user may have. All Request Ids should be returned
to dCache using the command lcg-sd.

If you use lcg-gt to request a file with a protocol that is not supported by dCache the command will block
for some time as dCache’s SRM interface times out after approximately 10 minutes.

The lcg-sd Application
This command should be used to return any TURLs given by dCache’s SRM interface. This is because
dCache provides a limited number of TURLs available concurrently.

lcg-sd takes four parameters: the SURL, the Request Id, the File Id with respect to the Request
Id, and the direction of data transfer.

The following example is to complete the get operation, the values are taken form the above example of
lcg-gt.

[user] $ lcg-sd srm://srm-door.example.org:22128/pnfs/example.org/data/dteam/group " -2147365977" "
 -2147365976" 0

Negative numbers

dCache returns negative numbers for Request Id and File Id. Please note that lcg-sd requires
that these values are places in double-quotes with a single space before the - sign.
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The Request Id is one of the values returned by the lcg-gt command. In this example, the value
(-2147365977) comes from the above example lcg-gt.

The File Id is also one of the values returned returned by the lcg-gt command. In this example, the value
(-2147365976) comes from the above example lcg-gt.

The direction parameter indicates in which direction data was transferred: 0 for reading data and 1 for
writing data.
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Chapter 23. Pool Operations

Checksums
In dCache the storage of a checksum is part of a successful transfer.

• For an incoming transfer a checksum can be sent by the client (Client Checksum, it can be calculated
during the transfer (Transfer Checksum) or it can be calculated on the server after the file has been written
to disk (Server File Checksum).

• For a pool to pool transfer a Transfer Checksum or a Server File Checksum can be calculated.

• For data that is flushed to or restored from tape a checksum can be calculated before flushed to tape or
after restored from tape, respectively.

Client Checksum
The client calculates the checksum before or while the data is sent to dCache. The checksum value,
depending on when it has been calculated, may be sent together with the open request to the door and
stored into Chimera before the data transfer begins or it may be sent with the close operation after the
data has been transferred.

The dCap protocol provides both methods, but the dCap clients use the latter by default.

The FTP protocol does not provide a mechanism to send a checksum. Nevertheless, some FTP clients
can (mis-)use the “site” command to send the checksum prior to the actual data transfer.

Transfer Checksum
While data is coming in, the server data mover may calculate the checksum on the fly.

Server File Checksum
After all the file data has been received by the dCache server and the file has been fully written to disk,
the server may calculate the checksum, based on the disk file.

The default configuration is that a checksum is calculated on write, i.e. a Server File Checksum.

How to configure checksum calculation
Configure the calculation of checksums in the admin interface. The configuration has to be done for each
pool separately.

(local) admin > cd <poolname>
(<poolname>) admin > csm set policy -<option>=<on/off>
(<poolname>) admin > save

The configuration will be saved in the file <path/to/pool>/<nameOfPooldirectory>/setup.

Use the command csm info to see the checksum policy of the pool.

(<poolname>) admin > csm info
 Policies :
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        on read : false
       on write : true
       on flush : false
     on restore : false
    on transfer : false
    enforce crc : true
  getcrcfromhsm : false
          scrub : false
      

The default configuration is to check checksums on write.

Use the command help csm set policy to see the configuration options.

The syntax of the command csm set policy is

csm set policy [-<option>=on [|off]]
where <option> can be replaced by

OPTIONS

ontransfer
If supported by the protocol, the checksum is calculated during file transfer.

onwrite
The checksum is calculated after the file has been written to disk.

onrestore
The checksum is calculated after data has been restored from tape.

onflush
The checksum is calculated before data is flushed to tape.

getcrcfromhsm
If the HSM script supports it, the <pnfsid>.crcval file is read and stored in Chimera.

scrub
Pool data will periodically be veryfied against checksums. Use the command help csm set policy to
see the configuration options.

enforcecrc
If no checksum has been calculated after or during the transfer, this option ensures that a checksum is
calculated and stored in Chimera.

The option onread has not yet been implemented.

If an option is enabled a checksum is calculated as described. If there is already another checksum, the
checksums are compared and if they match stored in Chimera.

Important

Do not change the default configuration for the option enforcecrc. This option should always
be enabled as this ensures that there will always be a checksum stored with a file.
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Migration Module
The purpose of the migration module is essentially to copy or move the content of a pool to one or more
other pools.

Typical use cases for the migration module include:

• Vacating pools, that is, moving all files to other pools before decomissioning the pool.

• Caching data on other pools, thus distributing the load and increasing availability.

• As an alternative to the hopping manager.

Overview and Terminology
The migration module runs inside pools and hosts a number of migration jobs. Each job operates on a set
of files on the pool on which it is executed and can copy or move those files to other pools. The migration
module provides filters for defining the set of files on which a job operates.

The act of copying or moving a single file is called a migration task. A task selects a target pool and asks
it to perform a pool to pool transfer from the source pool. The actual transfer is performed by the same
component performing other pool to pool transfers. The migration module does not perform the transfer;
it only orchestrates it.

The state of the target copy (the target state) as well as the source copy (the source state) can be explicitly
defined. For instance, for vacating a pool the target state is set to be the same as the original source state,
and the source state is changed to removed; for caching files, the target state is set to cached, and the source
state is unmodified.

Sticky flags owned by the pin manager are never touched by a migration job, however the migration module
can ask the pin manager to move the pin to the target pool. Care has been taken that unless the pin is moved
by the pin manager, the source file is not deleted by a migration job, even if asked to do so. To illustrate this,
assume a source file marked precious and with two sticky flags, one owned by foobar and the other by the
pin manager. If a migration job is configured to delete the source file, but not to move the pin, the result will
be that the file is marked cached, and the sticky flag owned by foobar is removed. The pin remains. Once
it expires, the file is eligible for garbage collection.

All operations are idempotent. This means that a migration job can be safely rerun, and as long as everything
else is unchanged, files will not be transferred again. Because jobs are idempotent they do not need to
maintain persistent state, which in turns means the migration module becomes simpler and more robust.
Should a pool crash during a migration job, the job can be rerun and the remaining files will be transfered.

Note

Please notice that a job is only idempotent as long as the set of target pools do not change. If pools
go offline or are excluded as a result of a an exclude or include expression, then the idempotent
nature of a job may be lost.

It is safe to run migration jobs while pools are in use. Once started, migration jobs run to completion and
do only operate on those files that matched the selection filters at the time the migration job started. New
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files that arrive on the pool are not touched. Neither are files that change state after a migration job has
been initialized, even though the selection filters would match the new state of the file. The exception to
the rule is when files are deleted from the pool or change state so that they no longer match the selection
filter. Such files will be excluded from the migration job, unless the file was already processed. Rerunning
a migration job will force it to pick up any new files. Because the job is idempotent, any files copied before
are not copied again.

Permanent migration jobs behave differently. Rather than running to completion, permanent jobs keep run-
ning until explicitly cancelled. They monitor the pool for any new files or state changes, and dynamically
add or remove files from the transfer queue. Permanent jobs are made persistent when the save command
is executed and will be recreated on pool restart. The main use case for permanent jobs is as an alternative
to using a central hopping manager.

Idempotence is achieved by locating existing copies of a file on any of the target pools. If an existing copy
is found, rather than creating a new copy, the state of the existing copy is updated to reflect the target state
specified for the migration job. Care is taken to never make a file more volatile than it already is: Sticky
flags are added, or existing sticky flags are extended, but never removed or shortened; cached files may
be marked precious, but not vice versa. One caveat is when the target pool containing the existing copy is
offline. In that case the existence of the copy cannot be verified. Rather than creating a new copy, the task
fails and the file is put back into the transfer queue. This behaviour can be modified by marking a migration
job as eager. Eager jobs create new copies if an existing copy cannot be immediately verified. As a rule of
thumb, permanent jobs should never be marked eager. This is to avoid that a large number of unnecessary
copies are created when several pools are restarted simultaneously.

A migration task aborts whenever it runs into a problem. The file will be reinserted at the end of the transfer
queue. Consequently, once a migration job terminates, all files have been successfully transferred. If for
some reason tasks for particular files keep failing, then the migration job will never terminate by itself as
it retries indefinitely.

Command Summary
Login to the admin interface and cd to a pool to use the migration commands. Use the command help
migration to view the possiblities.

(local) admin > cd <poolname>
(<poolname>) admin > help migration
migration cache [OPTIONS] TARGET...
migration cancel [-force] JOB
migration clear
migration concurrency ID CONCURRENCY
migration copy [OPTIONS] TARGET...
migration info JOB
migration ls
migration move [OPTIONS] TARGET...
migration resume JOB
migration suspend JOB
      

The commands migration copy, migration cache and migration move create new migration jobs. These
commands are used to copy files to other pools. Unless filter options are specified, all files on the source
pool are copied. The syntax for these commands is the same; example migration copy:

migration <copy> [<option>] <target>
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There are four different types of options. The filter options, transfer options, target options and lifetime
options. Please run the command help migration copy for a detailed description of the various options.

The commands migration copy, migration move and migration cache take the same options and only
differ in default values.

migration move
The command migration move does the same as the command migration copy with the options:

• -smode=delete (default for migration copy is same).

• -pins=move (default for migration copy is keep).

additionally it uses the option -verify.

migration cache
The command migration cache does the same as the command migration copy with the option:

• -tmode=cached

Jobs are assinged a job ID and are executed in the background. The status of a job may be queried through
the migration info command. A list of all jobs can be obtained through migration ls. Jobs stay in the list
even after they have terminated. Terminated jobs can be cleared from the list through the migration clear
command.

Jobs can be suspended, resumed and cancelled through the migration suspend, migration resume and
migration cancel commands. Existing tasks are allowed to finish before a job is suspended or cancelled.

Example:

A migration job can be suspended and resumed with the commands migration suspend  and migration
resume respectively.

(local) admin > cd <poolname>
(<poolname>) admin > migration copy -pnfsid=000060D40698B4BF4BE284666ED29CC826C7 pool2
[1] INITIALIZING migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2
[1] SLEEPING     migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2
(<poolname>) admin > migration ls
[1] RUNNING      migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2
(<poolname>) admin > migration suspend 1
[1] SUSPENDED    migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2
(<poolname>) admin > migration resume 1
[1] RUNNING      migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2
(<poolname>) admin > migration info 1
Command    : migration copy -pnfsid=000060D40698B4BF4BE284666ED29CC826C7 pool2
State      : RUNNING
Queued     : 0
Attempts   : 1
Targets    : pool2
Completed  : 0 files; 0 bytes; 0%
Total      : 5242880 bytes
Concurrency: 1
Running tasks:
[1] 00007C75C2E635CD472C8A75F5A90E4960D3: TASK.GettingLocations
(<poolname>) admin > migration info 1
Command    : migration copy -pnfsid=000060D40698B4BF4BE284666ED29CC826C7 pool2
State      : FINISHED
Queued     : 0
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Attempts   : 1
Targets    : pool2
Completed  : 1 files; 5242880 bytes
Total      : 5242880 bytes
Concurrency: 1
Running tasks:
(<poolname>) admin > migration ls
[1] FINISHED     migration copy 000060D40698B4BF4BE284666ED29CC826C7 pool2
 

A migration job can be cancelled with the command migration cancel .

(local) admin > cd <poolname>
(<poolname>) admin > migration copy -pnfsid=0000D194FBD450A44D3EA606D0434D6D88CD pool2
[1] INITIALIZING migration copy 0000D194FBD450A44D3EA606D0434D6D88CD pool2
(<poolname>) admin > migration cancel 1
[1] CANCELLED    migration copy -pnfsid=0000D194FBD450A44D3EA606D0434D6D88CD pool2
 

And terminated jobs can be cleared with the command migration clear.

(<poolname>) admin > migration ls
[3] FINISHED     migration copy -pnfsid=0000D194FBD450A44D3EA606D0434D6D88CD pool2
[2] FINISHED     migration copy -pnfsid=00007C75C2E635CD472C8A75F5A90E4960D3 pool2
[1] FINISHED     migration copy -pnfsid=0000A48650142CBF4E55A7A26429DFEA27B6 pool2
[5] FINISHED     migration move -pnfsid=000028C0C288190C4CE7822B3DB2CA6395E2 pool2
[4] FINISHED     migration move -pnfsid=00007C75C2E635CD472C8A75F5A90E4960D3 pool2
(<poolname>) admin > migration clear
(<poolname>) admin > migration ls
 

Except for the number of concurrent tasks, transfer parameters of existing jobs cannot be changed. This
is by design to ensure idempotency of jobs. The concurrency can be altered through the migration
concurrency command.

(<poolname>) admin > migration concurrency 4 2
(<poolname>) admin > migration info
Command    : migration copy pool2
State      : FINISHED
Queued     : 0
Attempts   : 6
Targets    : pool2
Completed  : 6 files; 20976068 bytes
Total      : 20976068 bytes
Concurrency: 2
Running tasks:
      

Examples

Vacating a pool

Example:

To vacate the pool <sourcePool>, we first mark the pool read-only to avoid that more files are
added to the pool, and then move all files to the pool <targetPool>. It is not strictly necessary to
mark the pool read-only, however if not done there is no guarantee that the pool is empty when the
migration job terminates. The job can be rerun to move remaining files.

(<sourcePool>) admin > pool disable -rdonly
(<sourcePool>) admin > migration move <targetPool>
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[1] RUNNING      migration move <targetPool>
(<sourcePool>) admin > migration info 1
Command    : migration move <targetPool>
State      : RUNNING
Queued     : 0
Attempts   : 1
Targets    : <targetPool>
Completed  : 0 files; 0 bytes; 0%
Total      : 830424 bytes
Concurrency: 1
Running tasks:
[0] 0001000000000000000BFAE0: TASK.Copying -> [<targetPool>@local]
(<sourcePool>) admin > migration info 1
Command    : migration move <targetPool>
State      : FINISHED
Queued     : 0
Attempts   : 1
Targets    : <targetPool>
Completed  : 1 files; 830424 bytes
Total      : 830424 bytes
Concurrency: 1
Running tasks:
(<sourcePool>) admin > rep ls
(<sourcePool>) admin >

Caching recently accessed files

Example:

Say we want to cache all files belonging to the storage group atlas:default and accessed within
the last month on a set of low-cost cache pools defined by the pool group cache_pools. We can
achieve this through the following command.

(<sourcePool>) admin > migration cache -target=pgroup -accessed=0..2592000 -storage=atlas:default
 cache_pools
[1] INITIALIZING migration cache -target=pgroup -accessed=0..2592000 -storage=atlas:default
 cache_pools
(<sourcePool>) admin > migration info 1
Command    : migration cache -target=pgroup -accessed=0..2592000 -storage=atlas:default
 cache_pools
State      : RUNNING
Queued     : 2577
Attempts   : 2
Targets    : pool group cache_pools, 5 pools
Completed  : 1 files; 830424 bytes; 0%
Total      : 2143621320 bytes
Concurrency: 1
Running tasks:
[72] 00010000000000000000BE10: TASK.Copying -> [pool_2@local]

The files on the source pool will not be altered. Any file copied to one of the target pools will be marked
cached.

Renaming a Pool
A pool may be renamed with the following procedure, regardless of the type of files stored on it.

Disable file transfers from and to the pool with

(<poolname>) admin > pool disable -strict
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Then make sure, no transfers are being processed anymore. All the following commands should give no
output:

(<poolname>) admin > queue ls queue
(<poolname>) admin > mover ls
(<poolname>) admin > p2p ls
(<poolname>) admin > pp ls
(<poolname>) admin > st jobs ls
(<poolname>) admin > rh jobs ls

Now the files on the pools have to be unregistered on the namespace server with

(<poolname>) admin > pnfs unregister

Note
Do not get confused that the commands pnfs unregister and pnfs register contain pnfs in their
names. They also apply to dCache instances with Chimera and are named like that for legacy reasons.

Even if the pool contains precious files, this is no problem, since we will register them again in a moment.
The files might not be available for a short moment, though. Log out of the pool, and stop the domain running
the pool:

[root] # dcache stop <poolDomain>
Stopping <poolDomain> (pid=6070) 0 1 2 3 done
[root] #

Adapt the name of the pool in the layout files of your dCache installation to include your new pool-name.
For a general overview of layout-files see the section called “Defining domains and services”.

Example:

For example, to rename a pool from swimmingPool to carPool, change your layout file from

[<poolDomain>]
[<poolDomain>/pool]
name=swimmingPool
path=/pool/

to

[<poolDomain>]
[<poolDomain>/pool]
name=carPool
path=/pool/

Warning

Be careful about renaming pools in the layout after users have already been writing to them. This can
cause inconsistencies in other components of dCache, if they are relying on pool names to provide
their functionality. An example of such a component is the Chimera cache info.

Start the domain running the pool:

[root] # dcache start <poolDomain>
Starting poolDomain done
[root] #

Register the files on the pool with

(<poolname>) admin > pnfs register
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Pinning Files to a Pool
You may pin a file locally within the private pool repository:

(<poolname>) admin > rep set sticky <pnfsid> on|off

the sticky mode will stay with the file as long as the file is in the pool. If the file is removed from the
pool and recreated afterwards this information gets lost.

You may use the same mechanism globally: in the command line interface (local mode) there is the command

(local) admin > set sticky <pnfsid>

This command does:

1. Flags the file as sticky in the name space database (Chimera). So from now the filename is globally
set sticky.

2. Will go to all pools where it finds the file and will flag it sticky in the pools.

3. All new copies of the file will become sticky.



212

Chapter 24. PostgreSQL and dCache
PostgreSQL is used for various things in a dCache system: The SRM, the pin manager, the space manager,
the replica manager, the billing, and the pnfs server might make use of one or more databases in a
single or several separate PostgreSQL servers.

The SRM, the pin manager, the space manager and the replica manager will use the PostgreSQL database
as configured at cell start-up in the corresponding batch files. The billing will only write the accounting
information into a database if it is configured with the option -useSQL. The pnfs server will use a Post-
greSQL server if the pnfs-posgresql version is used. It will use several databases in the PostgreSQL
server.

Installing a PostgreSQL Server
The preferred way to set up a PostgreSQL server should be the installation of the version provided by your
OS distribution; however, version 8.3 or later is required.

Install the PostgreSQL server, client and JDBC support with the tools of the operating system.

Initialize the database directory (for PostgreSQL version 9.2 this is /var/lib/pgsql/9.2/data/) ,
start the database server, and make sure that it is started at system start-up.

[root] # service postgresql-9.2 initdb
Initializing database:                                     [  OK  ]
[root] # service postgresql-9.2 start
Starting postgresql-9.2 service:                           [  OK  ]
[root] # chkconfig postgresql-9.2 on

Configuring Access to PostgreSQL
In the installation guide instructions are given for configuring one PostgreSQL server on the admin node
for all the above described purposes with generous access rights. This is done to make the installation as
easy as possible. The access rights are configured in the file <database_directory_name>/da-
ta/pg_hba.conf. According to the installation guide the end of the file should look like

...
# TYPE  DATABASE    USER        IP-ADDRESS        IP-MASK           METHOD
local   all         all                                             trust
host    all         all         127.0.0.1/32                        trust
host    all         all         ::1/128                             trust
host    all         all         <HostIP>/32          trust

This gives access to all databases in the PostgreSQL server to all users on the admin host.

The databases can be secured by restricting access with this file. E.g.

...
# TYPE  DATABASE    USER        IP-ADDRESS        METHOD
local   all         postgres                      ident sameuser
local   all         pnfsserver                    password
local   all         all                           md5
host    all         all         127.0.0.1/32      md5
host    all         all         ::1/128           md5
host    all         all         <HostIP>/32          md5
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To make the server aware of this you need to reload the configuration file as the user postgres by:

[root] # su - postgres
[postgres] # pg_ctl reload

And the password for e.g. the user pnfsserver can be set with

[postgres] # psql template1 -c "ALTER USER pnfsserver WITH PASSWORD '<yourPassword>'"

The pnfs server is made aware of this password by changing the variable dbConnectString in the file
/usr/etc/pnfsSetup:

...
export dbConnectString="user=pnfsserver password=<yourPassword>"

User access should be prohibited to this file with

[root] # chmod go-rwx /usr/etc/pnfsSetup

Performance of the PostgreSQL Server
On small systems it should never be a problem to use one single PostgreSQL server for all the functions
listed above. In the standard installation, the ReplicaManager is not activated by default. The billing
will only write to a file by default.

Whenever the PostgreSQL server is going to be used for another functionality, the impact on performance
should be checked carefully. To improve the performance, the functionality should be installed on a separate
host. Generally, a PostgreSQL server for a specific funcionality should be on the same host as the dCache
cell accessing that PostgreSQL server, and the PostgreSQL server containing the databases for Chimera
should run on the same host as Chimera and the PnfsManager cell of the dCache system accessing it.

It is especially useful to use a separate PostgreSQL server for the billing cell.

Note

The following is work-in-progress.

Create PostgreSQL user with the name you will be using to run pnfs server. Make sure it has CREATEDB
privilege.

[user] $ psql -U postgres template1 -c "CREATE USER johndoe with CREATEDB"
[user] $ dropuser pnfsserver
[user] $ createuser --no-adduser --createdb --pwprompt pnfsserver

Table 24.1. Protocol Overview

Component Database Host Database
Name

Database
User

Database
Password

SRM srm.db.hostor if not set: srmDbHost
or if not set: localhost

dcache srmdcache srmdcache

pin manag pinManagerDatabaseHost or if not
set: srmDbHost or if not set: localhost

dcache srmdcache srmdcache

Replica-
Manager

replica.db.host or if not set: lo-
calhost

replicas srmdcache srmdcache
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Component Database Host Database
Name

Database
User

Database
Password

pnfs server localhost admin, data1,
exp0, ...

pnfsserver --free--

billing billingDatabaseHost or if not set:
localhost

billing srmdcache srmdcache
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Chapter 25. Complex Network
Configuration
This chapter contains solutions for several non-trivial network configurations. The first section discusses
the interoperation of dCache with firewalls and does not require any background knowledge about dCache
other than what is given in the installation guide (Chapter 2, Installing dCache) and the first steps tutorial
(Chapter 3, Getting in Touch with dCache). The following sections will deal with more complex network
topologies, e.g. private subnets. Even though not every case is covered, these cases might help solve other
problems, as well. Intermediate knowledge about dCache is required.

Firewall Configuration
The components of a dCache instance may be distributed over several hosts (nodes). Some of these compo-
nents are accessed from outside and consequently the firewall needs to be aware of that. We contemplate
two communication types, the dCache internal communication and the interaction from dCache with clients.

Since dCache is very flexible, most port numbers may be changed in the configuration. The command dcache
ports will provide you with a list of services and the ports they are using.

Basic Installation
This section assumes that all nodes are behind a firewall and have full access to each other.

dCache internal. 

• As we assume that all nodes are behind a firewall and have full access to each other there is nothing to
be mentioned here.

• On the pool nodes the LAN range ports need to be opened to allow pool to pool communication. By
default these are ports 33115-33145 (set by the properties dcache.net.lan.port.min and
dcache.net.lan.port.max).

dCache communication with client. 

• The door ports need to be opened to allow the clients to connect to the doors.

• The WAN/LAN range ports need to be opened to allow the clients to connect to the pools. The default
values for the WAN port range are 20000-25000. The WAN port range is defined by the properties
dcache.net.wan.port.min and dcache.net.wan.port.max.

Multi-Node with Firewalls
Multinode setup with firewalls on the nodes.

dCache internal. 
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• The LocationManager server runs in the dCacheDomain. By default it is listening on UDP port
11111. Hence, on the head node port 11111 needs to be opened in the firewall to allow connections
to the LocationManager.

• On the pool nodes the LAN range ports need to be opened to allow pool to pool communication. By
default these are ports 33115-33145 (set by the properties dcache.net.lan.port.min and
dcache.net.lan.port.max).

dCache communication with client. 

• The door ports need to be opened to allow the clients to connect to the doors.

• The WAN/LAN range ports need to be opened to allow the clients to connect to the pools. The default
values for the WAN port range are 20000-25000. The WAN port range is defined by the properties
dcache.net.wan.port.min and dcache.net.wan.port.max.

More complex setups are described in the following sections.

GridFTP Connections via two or more Net-
work Interfaces

Description
The host on which the GridFTP door is running has several network interfaces and is supposed to accept
client connections via all those interfaces. The interfaces might even belong to separate networks with no
routing from one network to the other.

As long as the data connection is opened by the GridFTP server (passive FTP mode), there is no problem
with having more than one interface. However, when the client opens the data connection (active FTP mode),
the door (FTP server) has to supply it with the correct interface it should connect to. If this is the wrong
interface, the client might not be able to connect to it, because there is no route or the connection might
be inefficient.

Also, since a GridFTP server has to authenticate with an X.509 grid certificate and key, there needs to
be a separate certificate and key pair for each name of the host or a certificate with alternative names. Since
each network interface might have a different name, several certificates and keys are needed and the correct
one has to be used, when authenticating via each of the interfaces.

Solution
Define two domains, one for the internal and one for the external use. Start a separate loginbroker, srm
and gridftp service in these domains.

The srm and the gridftp service have to be configured with the property listen, only to lis-
ten on the interface they should serve. The locations of the grid host certificate and key files for the
interface have to be specified explicitly with the properties dcache.authn.hostcert.cert and
dcache.authn.hostcert.key.
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Example:

In this example we show a setup for two GridFTP doors serving two network interfaces with the host-
names door-internal (111.111.111.5) and door-external (222.222.222.5) which are served
by two GridFTP doors in two domains.

[internalDomain]
listen=111.111.111.5
dcache.authn.hostcert.cert=/etc/dcache/interface-cert-internal.pem
dcache.authn.hostcert.key=/etc/dcache/interface-key-internal.pem
[internalDomain/loginbroker]
loginbroker.cell.name=loginbroker-internal
[internalDomain/srm]
srm.cell.name=srm-internal
srm.protocols.loginbroker=loginbroker-internal
srm.net.host=door-internal
[internalDomain/ftp]
ftp.authn.protocol = gsi
ftp.cell.name=GFTP-door-internal
dcache.service.loginbroker=loginbroker-internal

[externalDomain]
listen=222.222.222.5
dcache.authn.hostcert.cert=/etc/dcache/interface-cert-external.pem
dcache.authn.hostcert.key=/etc/dcache/interface-key-external.pem
[externalDomain/loginbroker]
loginbroker.cell.name=loginbroker-external
[externalDomain/srm]
srm.cell.name=srm-external
srm.protocols.loginbroker=loginbroker-external
srm.net.host=door-external
[externalDomain/ftp]
ftp.authn.protocol = gsi
ftp.cell.name=GFTP-door-external
dcache.service.loginbroker=loginbroker-external

GridFTP with Pools in a Private Subnet

Description
If pool nodes of a dCache instance are connected to a secondary interface of the GridFTP door, e.g. because
they are in a private subnet, the GridFTP door will still tell the pool to connect to its primary interface,
which might be unreachable.

The reason for this is that the control communication between the door and the pool is done via the network
of TCP connections which have been established at start-up. In the standard setup this communication is
routed via the dCache domain. However, for the data transfer, the pool connects to the GridFTP door. The
IP address it connects to is sent by the GridFTP door to the pool via the control connection. Since the
GridFTP door cannot find out which of its interfaces the pool should use, it normally sends the IP address
of the primary interface.

Solution
Tell the GridFTP door explicitly which IP it should send to the pool for the data connection with the
ftp.net.internal property.
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Example:

E.g. if the pools should connect to the secondary interface of the GridFTP door host which has the
IP address 10.0.1.1, set

ftp.net.internal=10.0.1.1

in the /etc/dcache/dcache.conf file.
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Chapter 26. Advanced Tuning
The use cases described in this chapter are only relevant for large-scale dCache instances which require
special tuning according to a longer experience with client behaviour.

Multiple Queues for Movers in each Pool

Description
Client requests to a dCache system may have rather diverse behaviour. Sometimes it is possible to classify
them into several typical usage patterns. An example are the following two concurrent usage patterns:

Example:

Data is copied with a high transfer rate to the dCache system from an external source. This is done via
the GridFTP protocol. At the same time batch jobs on a local farm process data. Since they only need a
small part of each file, they use the dCap protocol via the dCap library and seek to the position in the file
they are interested in, read a few bytes, do a few hours of calculations, and finally read some more data.

As long as the number of active requests does not exceed the maximum number of allowed active
requests, the two types of requests are processed concurrently. The GridFTP transfers complete at a
high rate while the processing jobs take hours to finish. This maximum number of allowed requests is
set with mover set max active and should be tuned according to capabilities of the pool host.

However, if requests are queued, the slow processing jobs might clog up the queue and not let the fast
GridFTP request through, even though the pool just sits there waiting for the processing jobs to request
more data. While this could be temporarily remedied by setting the maximum active requests to a higher
value, then in turn GridFTP request would put a very high load on the pool host.

The above example is pretty realistic: As a rule of thumb, GridFTP requests are fastest, dCap requests
with the dccp program are a little slower and dCap requests with the dCap library are very slow. However,
the usage patterns might be different at other sites and also might change over time.

Solution
Use separate queues for the movers, depending on the door initiating them. This easily allows for a separation
of requests of separate protocols. (Transfers from and to a tape backend and pool-to-pool transfers are
handled by separate queues, one for each of these transfers.)

A finer grained queue selection mechanism based on, e.g. the IP address of the client or the file which has
been requested, is not possible with this mechanism. However, the pool selection unit (PSU) may provide
a separation onto separate pools using those criteria.

In the above example, two separate queues for fast GridFTP transfers and slow dCap library access would
solve the problem. The maximum number of active movers for the GridFTP queue should be set to a lower
value compared to the dCap queue since the fast GridFTP transfers will put a high load on the system
while the dCap requests will be mostly idle.
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Configuration
For a multi mover queue setup, the pools have to be told to start several queues and the doors have to be
configured to use one of these. It makes sense to create the same queues on all pools. This is done by the
following change to the file /etc/dcache/dcache.conf:

pool.queues=queueA,queueB

Each door may be configured to use a particular mover queue. The pool, selected for this request, does not
depend on the selected mover queue. So a request may go to a pool which does not have the particular mover
queue configured and will consequently end up in the default mover queue of that pool.

ftp.mover.queue=queueA
dcap.mover.queue=queueB

All requests send from this kind of door will ask to be scheduled to the given mover queue. The selection
of the pool is not affected.

The doors are configured to use a particular mover queue as in the following example:

Example:

Create the queues queueA and queueB, where queueA shall be the queue for the GridFTP transfers
and queueB for dCap.

pool.queues=queueA,queueB
ftp.mover.queue=queueA
dcap.mover.queue=queueB

If the pools should not all have the same queues you can define queues for pools in the layout file. Here you
might as well define that a specific door is using a specific queue.

Example:

In this example queueCis defined for pool1 and queueD is defined for pool2. The GridFTP door
running in the domain myDoors is using the queue queueB.

[myPools]
[myPools/pool1]
pool.queues=queueC
[myPools/pool2]
pool.queues=queueD

[myDoors]
[myDoors/dcap]
dcap.mover.queue=queueC
[myDoors/ftp]
ftp.authn.protocol = gsi
ftp.mover.queue=queueD

There is always a default queue called regular. Transfers not requesting a particular mover queue or
requesting a mover queue not existing on the selected pool, are handled by the regular queue.

The pool cell commands mover ls and mover set max active have a -queue option to select the mover
queue to operate on. Without this option, mover set max active will act on the default queue while mover
ls will list all active and waiting client transfer requests.
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For the dCap protocol, it is possible to allow the client to choose another queue name than the one defined
in the file dcache.conf. To achieve this the property dcap.authz.mover-queue-overwrite
needs to be set to allowed.

Example:

Create the queues queueA and queue_dccp, where queueA shall be the queue for dCap.

pool.queues=queueA,queue_dccp
dcap.mover.queue=queueA
dcap.authz.mover-queue-overwrite=allowed

With the dccp command the queue can now be specified as follows:

[user] $ dccp -X-io-queue=queue_dccp <source> <destination>

Since dccp requests may be quite different from other requests with the dCap protocol, this feature may be
used to use separate queues for dccp requests and other dCap library requests. Therefore, the dccp command
may be changed in future releases to request a special dccp-queue by default.

Tunable Properties for Multiple Queues

Property Default Value Description

pool.queues Not set I/O queue name

dcap.mover.queue Not set Insecure dCap I/O queue name

dcap.mover.queue Not set GSIdCap I/O queue name

dcap.authz.mover-queue-overwrite denied Controls whether an application is allowed to overwrite a queue name

dcap.authz.mover-queue-overwrite denied Controls whether an application is allowed to overwrite a queue name

dcap.authz.mover-queue-overwrite denied Controls whether an application is allowed to overwrite a queue name

ftp.mover.queue Not set GSI-FTP I/O queue name

nfs.mover.queue Not set NFS I/O queue name

transfermanagers.mover.queue Not set queue used for SRM third-party transfers (i.e. the srmCopy command)

webdav.mover.queue Not set WebDAV and HTTP I/O queue name

xrootd.mover.queue Not set xrootd I/O queue name

Tunable Properties

dCap

Table 26.1. Property Overview

Property Default Value Description

dcap.mover.queue Not set GSIdCap I/O queue name

dcap.mover.queue Not set Insecure dCap I/O queue name

dcap.authz.mover-queue-overwrite denied Is application allowed to overwrite queue name?

dcap.authz.mover-queue-overwrite denied Is application allowed to overwrite queue name?
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GridFTP

Table 26.2. Property Overview

Property Default Value Description

ftp.net.port.gsi 2811 GSI-FTP port listen port

spaceReservation False Use the space reservation service

spaceReservationStrict False Use the space reservation service

ftp.performance-marker-period 180 Performance markers in seconds

gplazmaPolicy ${ourHomeDir}/etc/
dcachesrm-gplazma.policy

Location of the gPlazma Policy File

ftp.service.poolmanager.timeout 5400 Pool Manager timeout in seconds

ftp.service.pool.timeout 600 Pool timeout in seconds

ftp.service.pnfsmanager.timeout 300 Pnfs timeout in seconds

ftp.limits.retries 80 Number of PUT/GET retries

ftp.limits.streams-per-client 10 Number of parallel streams per FTP PUT/GET

ftp.enable.delete-on-failure True Delete file on connection closed

ftp.limits.clients 100 Maximum number of concurrently logged in users

ftp.net.internal Not set In case of two interfaces

ftp.net.port-range 20000:25000 The client data port range

gplazma.kpwd.file ${ourHomeDir}/etc/
dcache.kpwd

Legacy authorization

SRM

Table 26.3. Property Overview

Property Default Value Description

srm.net.port 8443 srm.net.port

srm.db.host localhost srm.db.host

srm.limits.external-copy-script.timeout 3600 srm.limits.external-copy-script.timeout

srmVacuum True srmVacuum

srmVacuumPeriod 21600 srmVacuumPeriod

srmProxiesDirectory /tmp srmProxiesDirectory

srm.limits.transfer-buffer.size 1048576 srm.limits.transfer-buffer.size

srm.limits.transfer-tcp-buffer.size 1048576 srm.limits.transfer-tcp-buffer.size

srm.enable.external-copy-script.debug True srm.enable.external-copy-script.debug

srm.limits.request.scheduler.thread.queue.size 1000 srm.limits.request.scheduler.thread.queue.size

srm.limits.request.scheduler.thread.pool.size 100 srm.limits.request.scheduler.thread.pool.size

srm.limits.request.scheduler.waiting.max 1000 srm.limits.request.scheduler.waiting.max

srm.limits.request.scheduler.ready-queue.size 1000 srm.limits.request.scheduler.ready-queue.size

srm.limits.request.scheduler.ready.max 100 srm.limits.request.scheduler.ready.max

srm.limits.request.scheduler.retries.max 10 srm.limits.request.scheduler.retries.max

srm.limits.request.scheduler.retry-timeout 60000 srm.limits.request.scheduler.retry-timeout

srm.limits.request.scheduler.same-owner-running.max 10 srm.limits.request.scheduler.same-owner-running.max

srm.limits.request.put.scheduler.thread.queue.size 1000 srm.limits.request.put.scheduler.thread.queue.size
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Property Default Value Description

srm.limits.request.put.scheduler.thread.pool.size 100 srm.limits.request.put.scheduler.thread.pool.size

srm.limits.request.put.scheduler.waiting.max 1000 srm.limits.request.put.scheduler.waiting.max

srm.limits.request.put.scheduler.ready-queue.size 1000 srm.limits.request.put.scheduler.ready-queue.size

srm.limits.request.put.scheduler.ready.max 100 srm.limits.request.put.scheduler.ready.max

srm.limits.request.put.scheduler.retries.max 10 srm.limits.request.put.scheduler.retries.max

srm.limits.request.put.scheduler.retry-timeout 60000 srm.limits.request.put.scheduler.retry-timeout

srm.limits.request.put.scheduler.same-own-
er-running.max

10 srm.limits.request.put.scheduler.same-own-
er-running.max

srm.limits.request.copy.scheduler.thread.queue.size 1000 srm.limits.request.copy.scheduler.thread.queue.size

srm.limits.request.copy.scheduler.thread.pool.size 100 srm.limits.request.copy.scheduler.thread.pool.size

srm.limits.request.copy.scheduler.waiting.max 1000 srm.limits.request.copy.scheduler.waiting.max

srm.limits.request.copy.scheduler.retries.max 30 srm.limits.request.copy.scheduler.retries.max

srm.limits.request.copy.scheduler.retry-timeout 60000 srm.limits.request.copy.scheduler.retry-timeout

srm.limits.request.copy.scheduler.same-own-
er-running.max

10 srm.limits.request.copy.scheduler.same-own-
er-running.max
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Chapter 27. dCache Clients

The SRM Client Suite
An SRM URL has the form srm://dmx.lbl.gov:6253//srm/DRM/srmv1?SFN=/tmp/try1 and
the file URL looks like file:////tmp/aaa.

srmcp
srmcp — Copy a file from or to an SRM or between two SRMs.

Synopsis
srmcp [option...] <sourceUrl> <destUrl>

Arguments

sourceUrl
The URL of the source file.

destUrl
The URL of the destination file.

Options

gss_expected_name
To enable the user to specify the gss expected name in the DN (Distinguished Name) of the srm server.
The default value is host.

Example:

If the CN of host where srm server is running is CN=srm/tam01.fnal.gov, then
gss_expected_name should be srm.

[user] $ srmcp --gss_expected_name=srm <sourceUrl> <destinationUrl>

globus_tcp_port_range
To enable the user to specify a range of ports open for tcp connections as a pair of positive integers
separated by “:”, not set by default.

This takes care of compute nodes that are behind firewall.

Example:

globus_tcp_port_range=40000:50000

[user] $ srmcp --globus_tcp_port_range=<minVal>:<maxVal> <sourceUrl> <destinationUrl>
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streams_num
To enable the user to specify the number of streams to be used for data transfer. If set to 1, then stream
mode is used, otherwise extended block mode is used.

Example:

[user] $ srmcp --streams_num=1 <sourceUrl> <destinationUrl>

server_mode
To enable the user to set the (gridftp) server mode for data transfer. Can be active or passive,
passive by default.

This option will have effect only if transfer is performed in a stream mode (see streams_num)

Example:

[user] $ srmcp --streams_num=1 --server_mode=active <sourceUrl> <destinationUrl>

Description

srmstage
srmstage — Request staging of a file.

Synopsis
srmstage [<srmUrl>...]

Arguments

srmUrl
The URL of the file which should be staged.

Description

Provides an option to the user to stage files from HSM to dCache and not transfer them to the user right
away. This case will be useful if files are not needed right away at user end, but its good to stage them to
dcache for faster access later.

dccp

dccp
dccp — Copy a file from or to a dCache server.
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Synopsis

dccp [option...] <sourceUrl> <destUrl>

Arguments

The following arguments are required:

sourceUrl
The URL of the source file.

destUrl
The URL of the destination file.

Description

The dccp utility provides a cp(1) like functionality on the dCache file system. The source must be a single
file while the destination could be a directory name or a file name. If the directory is a destination, a new file
with the same name as the source name will be created there and the contents of the source will be copied.
If the final destination file exists in dCache, it won’t be overwritten and an error code will be returned. Files
in regular file systems will always be overwritten if the -i option is not specified. If the source and the final
destination file are located on a regular file system, the dccp utility can be used similar to the cp(1) program.

Options

The following arguments are optional:

-a
Enable read-ahead functionality.

-b <bufferSize>
Set read-ahead buffer size. The default value is 1048570 Bytes. To disable the buffer this can be set
to any value below the default. dccp will attempt to allocate the buffer size so very large values should
be used with care.

-B <bufferSize>
Set buffer size. The size of the buffer is requested in each request, larger buffers will be needed to saturate
higher bandwidth connections. The optimum value is network dependent. Too large a value will lead to
excessive memory usage, too small a value will lead to excessive network communication.

-d <debug level>
Set the debug level. <debug level> is a integer between 0 and 127. If the value is 0 then no output
is generated, otherwise the value is formed by adding together one or more of the following values:
Value Enabled output
1 Error messages
2 Info messages
4 Timing information
8 Trace information
16 Show stack-trace
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Value Enabled output
32 IO operations
32 IO operations
64 Thread information

-h <replyHostName>
Bind the callback connection to the specific hostname interface.

-i
Secure mode. Do not overwrite the existing files.

-l <location>
Set location for pre-stage. if the location is not specified, the local host of the door will be used. This
option must be used with the -P option.

-p <first_port>:<last_port>
Bind the callback data connection to the specified TCP port/rangeSet port range. Delimited by the ’:’
character, the <first_port> is required but the <last_port> is optional.

-P
Pre-stage. Do not copy the file to a local host but make sure the file is on disk on the dCache server.

-r <bufferSize>
TCP receive buffer size. The default is 256K. Setting to 0 uses the system default value. Memory useage
will increase with higher values, but performance better.

-s <bufferSize>
TCP send buffer size. The default is 256K. Setting to 0 uses the system default value.

-t <time>
Stage timeout in seconds. This option must be used with the -P option.

Examples:

To copy a file to dCache:

[user] $ dccp /etc/group dcap://example.org/pnfs/desy.de/gading/

To copy a file from dCache:

[user] $ dccp dcap://example.org/pnfs/desy.de/gading/group /tmp/

Pre-Stage request:

[user] $ dccp -P -t 3600 -l example.org /acs/user_space/data_file

stdin:

[user] $ tar cf - data_dir | dccp - /acs/user_space/data_arch.tar

stdout:

[user] $ dccp /acs/user_space/data_arch.tar - | tar xf - 
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See also

cp
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Chapter 28. dCache Cell Commands
This is the reference to all (important) cell commands in dCache. You should not use any command not
documented here, unless you really know what you are doing. Commands not in this reference are used for
debugging by the developers.

This chapter serves two purposes: The other parts of this book refer to it, whenever a command is mentioned.
Secondly, an administrator may check here, if he wonders what a command does.

Common Cell Commands

pin
pin — Adds a comment to the pinboard.

Synopsis
pin <comment>

Arguments

comment
A string which is added to the pinboard.

Description

info
info — Print info about the cell.

Synopsis
info [-a] [-l]

Arguments

-a
Display more information.

-l
Display long information.

Description

The info printed by info depends on the cell class.
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dump pinboard
dump pinboard — Dump the full pinboard of the cell to a file.

Synopsis
dump pinboard <filename>

Arguments

filename
The file the current content of the pinboard is stored in.

Description

show pinboard
show pinboard — Print a part of the pinboard of the cell to STDOUT.

Synopsis
show pinboard [ <lines> ]

Arguments

lines
The number of lines which are displayed. Default: all.

Description

PnfsManager Commands

pnfsidof
pnfsidof — Print the pnfs id of a file given by its global path.

Synopsis
pnfsidof <globalPath>

Description

Print the pnfs id of a file given by its global path. The global path always starts with the “VirtualGlobalPath”
as given by the “info”-command.
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flags remove
flags remove — Remove a flag from a file.

Synopsis
flags remove <pnfsId> <key> ...

Arguments

pnfsId
The pnfs id of the file of which a flag will be removed.

key
flags which will be removed.

Description

flags ls
flags ls — List the flags of a file.

Synopsis
flags ls <pnfsId>

pnfsId
The pnfs id of the file of which a flag will be listed.

Description

flags set
flags set — Set a flag for a file.

Synopsis
flags set <pnfsId> <key>=<value> ...

Arguments

pnfsId
The pnfs id of the file of which flags will be set.
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key
The flag which will be set.

value
The value to which the flag will be set.

Description

metadataof
metadataof — Print the meta-data of a file.

Synopsis
metadataof [ <pnfsId> ] | [ <globalPath> ] [-v] [-n] [-se]

Arguments

pnfsId
The pnfs id of the file.

globalPath
The global path of the file.

Description

pathfinder
pathfinder — Print the global or local path of a file from its PNFS id.

Synopsis
pathfinder <pnfsId> [[-global] | [-local]]

Arguments

pnfsId
The pnfs Id of the file.

-global
Print the global path of the file.

-local
Print the local path of the file.
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Description

set meta
set meta — Set the meta-data of a file.

Synopsis
set meta [<pnfsId>] | [<globalPath>] <uid> <gid> <perm> <levelInfo>...

Arguments

pnfsId
The pnfs id of the file.

globalPath
The global path oa the file.

uid
The user id of the new owner of the file.

gid
The new group id of the file.

perm
The new file permitions.

levelInfo
The new level information of the file.

Description

storageinfoof
storageinfoof — Print the storage info of a file.

Synopsis
storageinfoof [<pnfsId>] | [<globalPath>] [-v] [-n] [-se]

Arguments

pnfsId
The pnfs id of the file.
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globalPath
The global path oa the file.

Description

cacheinfoof
cacheinfoof — Print the cache info of a file.

Synopsis
cacheinfoof [<pnfsId>] | [<globalPath>]

Arguments

pnfsId
The pnfs id of the file.

globalPath
The global path oa the file.

Description

Pool Commands

rep ls
rep ls — List the files currently in the repository of the pool.

Synopsis
rep ls [pnfsId...] | [-l= s | p | l | u | nc | e ... ] [-s= k | m | g | t ]

pnfsId
The pnfs ID(s) for which the files in the repository will be listed.

-l
List only the files with one of the following properties:

s      sticky files
p      precious files
l      locked files
u      files in use
nc     files which are not cached
e      files with an error condition



dCache Cell Commands

236

-s
Unit, the filesize is shown:

k      data amount in KBytes
m      data amount in MBytes
g      data amount in GBytes
t      data amount in TBytes

Description

st set max active
st set max active — Set the maximum number of active store transfers.

Synopsis
st set max active <maxActiveStoreTransfers>

maxActiveStoreTransfers
The maximum number of active store transfers.

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.

rh set max active
rh set max active — Set the maximum number of active restore transfers.

Synopsis
rh set max active <maxActiveRetoreTransfers>

maxActiveRetoreTransfers
The maximum number of active restore transfers.

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.

mover set max active
mover set max active — Set the maximum number of active client transfers.

Synopsis
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mover set max active <maxActiveClientTransfers> [-queue=<moverQueueName>]

maxActiveClientTransfers
The maximum number of active client transfers.

moverQueueName
The mover queue for which the maximum number of active transfers should be set. If this is not specified,
the default queue is assumed, in order to be compatible with previous versions which did not support
multiple mover queues (before version 1.6.6).

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.

mover set max active -queue=p2p
mover set max active -queue=p2p — Set the maximum number of active pool-to-pool server transfers.

Synopsis
mover set max active -queue=p2p <maxActiveP2PTransfers>

maxActiveP2PTransfers
The maximum number of active pool-to-pool server transfers.

Description

Any further requests will be queued. This value will also be used by the cost module for calculating the
performance cost.

pp set max active
pp set max active — Set the value used for scaling the performance cost of pool-to-pool client transfers
analogous to the other set max active-commands.

Synopsis
pp set max active <maxActivePPTransfers>

maxActivePPTransfers
The new scaling value for the cost calculation.

Description

All pool-to-pool client requests will be performed immediately in order to avoid deadlocks. This value will
only used by the cost module for calculating the performance cost.
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set gap
set gap — Set the gap parameter - the size of free space below which it will be assumed that the pool is
full within the cost calculations.

Synopsis
set gap <gapPara>

gapPara
The size of free space below which it will be assumed that the pool is full. Default is 4GB.

Description

The gap parameter is used within the space cost calculation scheme described in the section called “The
Space Cost”. It specifies the size of free space below which it will be assumed that the pool is full and
consequently the least recently used file has to be removed if a new file has to be stored on the pool. If, on
the other hand, the free space is greater than gapPara, it will be expensive to store a file on the pool which
exceeds the free space.

set breakeven
set breakeven — Set the breakeven parameter - used within the cost calculations.

Synopsis
set breakeven <breakevenPara>

breakevenPara
The breakeven parameter has to be a positive number smaller than 1.0. It specifies the impact of the
age of the least recently used file on space cost. It the LRU file is one week old, the space cost will be
equal to (1 + breakeven). Note that this will not be true, if the breakeven parameter has been set
to a value greater or equal to 1.

Description

The breakeven parameter is used within the space cost calculation scheme described in the section called
“The Space Cost”.

mover ls
mover ls — List the active and waiting client transfer requests.

Synopsis
mover ls [ -queue | -queue=<queueName> ]
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queueName
The name of the mover queue for which the transfers should be listed.

Description

Without parameter all transfers are listed. With -queue all requests sorted according to the mover queue
are listed. If a queue is explicitly specified, only transfers in that mover queue are listed.

migration cache
migration cache — Caches replicas on other pools.

SYNOPSIS

migration cache [<options>] <target>...

DESCRIPTION

Caches replicas on other pools. Similar to migration copy, but with different defaults. See migration copy
for a description of all options. Equivalent to: migration copy -smode=same -tmode=cached

migration cancel
migration cancel — Cancels a migration job

SYNOPSIS

migration cancel [-force] job

DESCRIPTION

Cancels the given migration job. By default ongoing transfers are allowed to finish gracefully.

migration clear
migration clear — Removes completed migration jobs.

SYNOPSIS

migration clear

DESCRIPTION

Removes completed migration jobs. For reference, information about migration jobs are kept until explicitly
cleared.
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migration concurrency
migration concurrency — Adjusts the concurrency of a job.

SYNOPSIS

migration concurrency <job> <n>

DESCRIPTION

Sets the concurrency of <job> to <n>.

migration copy
migration copy — Copies files to other pools.

SYNOPSIS

migration copy [<options>] <target>...

DESCRIPTION

Copies files to other pools. Unless filter options are specified, all files on the source pool are copied.

The operation is idempotent, that is, it can safely be repeated without creating extra copies of the files. If
the replica exists on any of the target pools, then it is not copied again. If the target pool with the existing
replica fails to respond, then the operation is retried indefinitely, unless the job is marked as eager.

Please notice that a job is only idempotent as long as the set of target pools does not change. If pools go
offline or are excluded as a result of an exclude or include expression then the job may stop being idempotent.

Both the state of the local replica and that of the target replica can be specified. If the target replica already
exists, the state is updated to be at least as strong as the specified target state, that is, the lifetime of sticky
bits is extended, but never reduced, and cached can be changed to precious, but never the opposite.

Transfers are subject to the checksum computiton policy of the target pool. Thus checksums are verified if
and only if the target pool is configured to do so. For existing replicas, the checksum is only verified if the
verify option was specified on the migration job.

Jobs can be marked permanent. Permanent jobs never terminate and are stored in the pool setup file with
the save command. Permanent jobs watch the repository for state changes and copy any replicas that match
the selection criteria, even replicas added after the job was created. Notice that any state change will cause
a replica to be reconsidered and enqueued if it matches the selection criteria — also replicas that have been
copied before.

Several options allow an expression to be specified. The following operators are recognized: <, <=, ==, !=,
>=, >, lt, le, eq, ne, ge, gt, ~=, !~, +, -, *, /, %, div, mod, |, &, ^, ~, &&, ||, !, and, or, not, ?:,
=. Literals may be integer literals, floating point literals, single or double quoted string literals, and boolean
true and false. Depending on the context, the expression may refer to constants.
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Please notice that the list of supported operators may change in future releases. For permanent jobs we
recommend to limit expressions to the basic operators <, <=, ==, !=, >=, >, +, -, *, /, &&, || and !.

Options

-accessed=<n>|[<n>]..[<m>]
Only copy replicas accessed <n> seconds ago, or accessed within the given, possibly open-ended, in-
terval; e.g. -accessed=0..60 matches files accessed within the last minute; -accesed=60..
matches files accessed one minute or more ago.

-al=ONLINE|NEARLINE
Only copy replicas with the given access latency.

-pnfsid=<pnfsid>[,<pnfsid>] ...
Only copy replicas with one of the given PNFS IDs.

-rp=CUSTODIAL|REPLICA|OUTPUT
Only copy replicas with the given retention policy.

-size=<n>|[<n>]..[<m>]
Only copy replicas with size <n>, or a size within the given, possibly open-ended, interval.

-state=cached|precious
Only copy replicas in the given state.

-sticky[=<owner>[,<owner>...]]
Only copy sticky replicas. Can optionally be limited to the list of owners. A sticky flag for each owner
must be present for the replica to be selected.

-storage=<class>
Only copy replicas with the given storage class.

-concurrency=<concurrency>
Specifies how many concurrent transfers to perform. Defaults to 1.

-order=[-]size|[-]lru
Sort transfer queue. By default transfers are placed in ascending order, that is, smallest and least recently
used first. Transfers are placed in descending order if the key is prefixed by a minus sign. Failed transfers
are placed at the end of the queue for retry regardless of the order. This option cannot be used for
permanent jobs. Notice that for pools with a large number of files, sorting significantly increases the
initialization time of the migration job.

size
Sort according to file size.

lru
Sort according to last access time.

-pins=move|keep
Controls how sticky flags owned by the PinManager are handled:
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move
Ask PinManager to move pins to the target pool.

keep
Keep pins on the source pool.

-smode=same|cached|precious|removable|delete[+<owner>[(<lifetime>)] ...]
Update the local replica to the given mode after transfer:

same
does not change the local state (this is the default).

cached
marks it cached.

precious
marks it precious.

removable
marks it cached and strips all existing sticky flags exluding pins.

delete
deletes the replica unless it is pinned.

An optional list of sticky flags can be specified. The lifetime is in seconds. A lifetime of 0 causes the
flag to immediately expire. Notice that existing sticky flags of the same owner are overwritten.

-tmode=same|cached|precious[+<owner>[(<lifetime>)]...]
Set the mode of the target replica:

same
applies the state and sticky bits excluding pins of the local replica (this is the default).

cached
marks it cached.

precious
marks it precious.

An optional list of sticky flags can be specified. The lifetime is in seconds.

-verify
Force checksum computation when an existing target is updated.

-eager
Copy replicas rather than retrying when pools with existing replicas fail to respond.

-exclude=<pool>[,<pool>...]
Exclude target pools. Single character (?) and multi character (*) wildcards may be used.

-exclude-when=<expression>
Exclude target pools for which the expression evaluates to true. The expression may refer to the follow-
ing constants:
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source.name or target.name
pool name

source.spaceCost or target.spaceCost
space cost

source.cpuCost or target.cpuCost
cpu cost

source.free or target.free
free space in bytes

source.total or target.total
total space in bytes

source.removable or target.removable
removable space in bytes

source.used or target.used
used space in bytes

-include=<pool>[,<pool>...]
Only include target pools matching any of the patterns. Single character (?) and multi character (*)
wildcards may be used.

-include-when=<expression>
Only include target pools for which the expression evaluates to true. See the description of -ex-
clude-when for the list of allowed constants.

-refresh=<time>
Specifies the period in seconds of when target pool information is queried from the pool manager. The
default is 300 seconds.

-select=proportional|best|random
Determines how a pool is selected from the set of target pools:

proportional
selects a pool with a probability inversely proportional to the cost of the pool.

best
selects the pool with the lowest cost.

random
selects a pool randomly.

The default is proportional.

-target=pool|pgroup|link
Determines the interpretation of the target names. The default is ’pool’.

-pause-when=<expression>
Pauses the job when the expression becomes true. The job continues when the expression once again
evaluates to false. The following constants are defined for this pool:
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queue.files
The number of files remaining to be transferred.

queue.bytes
The number of bytes remaining to be transferred.

source.name
Pool name.

source.spaceCost
Space cost.

source.cpuCost
CPU cost.

source.free
Free space in bytes.

source.total
Total space in bytes.

source.removable
Removable space in bytes.

source.used
Used space in bytes.

targets
The number of target pools.

-permanent
Mark job as permanent.

-stop-when=<expression>
Terminates the job when the expression becomes true. This option cannot be used for permanent jobs.
See the description of -pause-when for the list of constants allowed in the expression.

migration info
migration info — Shows detailed information about a migration job.

SYNOPSIS

migration info <job>

DESCRIPTION

Shows detailed information about a migration job. Possible job states are:

INITIALIZING
Initial scan of repository
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RUNNING
Job runs (schedules new tasks)

SLEEPING
A task failed; no tasks are scheduled for 10 seconds

PAUSED
Pause expression evaluates to true; no tasks are scheduled for 10 seconds.

STOPPING
Stop expression evaluated to true; waiting for tasks to stop.

SUSPENDED
Job suspended by user; no tasks are scheduled

CANCELLING
Job cancelled by user; waiting for tasks to stop

CANCELLED
Job cancelled by user; no tasks are running

FINISHED
Job completed

FAILED
Job failed. Please check the log file for details.

Job tasks may be in any of the following states:

Queued
Queued for execution

GettingLocations
Querying PnfsManager for file locations

UpdatingExistingFile
Updating the state of existing target file

CancellingUpdate
Task cancelled, waiting for update to complete

InitiatingCopy
Request send to target, waiting for confirmation

Copying
Waiting for target to complete the transfer

Pinging
Ping send to target, waiting for reply

NoResponse
Cell connection to target lost
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Waiting
Waiting for final confirmation from target

MovingPin
Waiting for pin manager to move pin

Cancelling
Attempting to cancel transfer

Cancelled
Task cancelled, file was not copied

Failed
The task failed

Done
The task completed successfully

migration ls
migration ls — Lists all migration jobs.

SYNOPSIS

migration ls

DESCRIPTION

Lists all migration jobs.

migration move
migration move — Moves replicas to other pools.

SYNOPSIS

migration move [<options>] <target>...

DESCRIPTION

Moves replicas to other pools. The source replica is deleted. Similar to migration copy, but with different
defaults. Accepts the same options as migration copy. Equivalent to: migration copy -smode=delete -
tmode=same -pins=move

migration suspend
migration suspend — Suspends a migration job.
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SYNOPSIS

migration suspend job

DESCRIPTION

Suspends a migration job. A suspended job finishes ongoing transfers, but is does not start any new transfer.

migration resume
migration resume — Resumes a suspended migration job.

SYNOPSIS

migration resume job

DESCRIPTION

Resumes a suspended migration job.

PoolManager Commands

rc ls
rc ls — List the requests currently handled by the PoolManager

Synopsis
rc ls [<regularExpression>] [-w]

Description

Lists all requests currently handled by the pool manager. With the option -w only the requests currently
waiting for a response are listed. Only requests satisfying the regular expression are shown.

cm ls
cm ls — List information about the pools in the cost module cache.

Synopsis
cm ls [-r] [-d] [-s] [<fileSize>]

-r
Also list the tags, the space cost, and performance cost as calculated by the cost module for a file of
size <fileSize> (or zero)
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-d
Also list the space cost and performance cost as calculated by the cost module for a file of size
<fileSize> (or zero)

-t
Also list the time since the last update of the cached information in milliseconds.

Description

A typical output reads

(PoolManager) admin > cm ls -r -d -t 12312434442
<poolName1>={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
    (...line continues...)  SP={t=2147483648;f=924711076;p=1222772572;r=0;lru=0;{g=20000000;b=0.5}}}
<poolName1>={Tag={{hostname=<hostname>}};size=543543543;SC=1.7633947200606475;CC=0.0;}
<poolName1>=3180
<poolName2>={R={a=0;m=2;q=0};S={a=0;m=2;q=0};M={a=0;m=100;q=0};PS={a=0;m=20;q=0};PC={a=0;m=20;q=0};
    (...line continues...)  SP={t=2147483648;f=2147483648;p=0;r=0;lru=0;{g=4294967296;b=250.0}}}
<poolName2>={Tag={{hostname=<hostname>}};size=543543543;SC=0.0030372862312942743;CC=0.0;}
<poolName2>=3157

set pool decision
set pool decision — Set the factors for the calculation of the total costs of the pools.

Synopsis
set pool decision [-spacecostfactor=<scf>] [-cpucostfactor=<ccf>] [-costcut=<cc>]

scf
The factor (strength) with which the space cost will be included in the total cost.

ccf
The factor (strength) with which the performance cost will be included in the total cost.

cc
Deprecated since version 5 of the pool manager.

Description
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Chapter 29. dCache Default Port Values
You can use the command dcache ports to get the list of ports used by dCache.

Port number Description Component

32768 and 32768 is used by the NFS layer within
dCache which is based upon rpc.
This service is essential for rpc.

NFS

1939 and 33808 is used by portmapper which is al-
so involved in the rpc dependen-
cies of dCache.

portmap

34075 is for postmaster listening to re-
quests for the PostgreSQL data-
base for dCache database func-
tionality.

Outbound for SRM, PnfsDomain,
dCacheDomain and doors; in-
bound for PostgreSQL server.

33823 is used for internal dCache com-
munication.

By default: outbound for all com-
ponents, inbound for dCache do-
main.

8443 is the SRM port. See Chapter 13,
dCache Storage Resource Manag-
er

Inbound for SRM

2288 is used by the web interface to
dCache.

Inbound for httpdDomain

22223 is used for the dCache admin in-
terface. See the section called
“The Admin Interface”

Inbound for adminDomain

22125 is used for the dCache dCap pro-
tocol.

Inbound for dCap door

22128 is used for the dCache GSIdCap . Inbound for GSIdCap door
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Chapter 30. Glossary
The following terms are used in dCache.

The dcache.conf File This is the primary configuration file of a dCache. It is located at /etc/
dcache/dcache.conf.

The dcache.conf file is initially empty. If one of the default configura-
tion values needs to be changed, copy the default setting of this value from
one of the properties files in /usr/share/dcache/defaults to this
file and update the value.

The layout File The layout file is located in the directory /etc/dcache/layouts. It
contains lists of the domains and the services that are to be run within these
domains.

The properties Files The properties files are located in the directory /usr/share/dcache/
defaults. They contain the default settings of the dCache.

Chimera The Chimera namespace is a core component of dCache. It maps each
stored file to a unique identification number and allows storing of metadata
against either files or directories.

Chimera includes some features like levels, directory tags and many of the
dot commands.

Chimera ID A Chimera ID is a 36 hexadecimal digit that uniquely defines a file or di-
rectory.

Domain A domain is a collection of one or more cells that provide a set of related
services within a dCache instance. Each domain requires its own Java Vir-
tual Machine. A typical domain might provide external connectivity (i.e.,
a door) or manage the pools hosted on a machine.

Each domain has at least one cell, called the System cell and many tunnel
cells for communicating with other Domains. To provide a useful service,
a domain will contain other cells that provide specific behaviour.

Cell A cell is a collection of Java threads that provide a discrete and simple
service within dCache. Each cell is hosted within a domain.

Cells have an address derived from concatenating their name, the @ symbol
and their containing domain name.

Well Known Cell A well-known cell is a cell that registers itself centrally. Within the admin
interface, a well-known cell may be referred to by just its cell name.

Door Door is the generic name for special cells that provides the first point of
access for end clients to communicate with a dCache instance. There are
different door implementations (e.g., GSIdCap door and GridFTP door),
allowing a dCache instance to support multiple communication protocols.
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A door will (typically) bind to a well-known port number depending on the
protocol the door supports. This allows for only a single door instance per
machine for each protocol.

A door will typically identify which pool will satisfy the end user’s oper-
ation and redirect the client to the corresponding pool. In some cases this
is not possible; for example, some protocols (such as GridFTP version 1)
do not allow servers to redirect end-clients, in other cases pool servers may
be behind a firewall, so preventing direct access. When direct end-client
access is not possible, the door may act as a data proxy, streaming data to
the client.

By default, each door is hosted in a dedicated domain. This allows easy
control of whether a protocol is supported from a particular machine.

Java Virtual Machine (JVM) Java programs are typically compiled into a binary form called Java byte-
code. Byte-code is comparable to the format that computers understand
native; however, no mainstream processor understands Java byte-code. In-
stead compiled Java programs typically require a translation layer for them
to run. This translation layer is called a Java Virtual Machine (JVM). It is
a standardised execution environment that Java programs may run within.
A JVM is typically represented as a process within the host computer.

tertiary storage system A mass storage system which stores data and is connected to the dCache
system. Each dCache pool will write files to it as soon as they have been
completely written to the pool (if the pool is not configured as a LFS). The
tertiary storage system is not part of dCache. However, it is possible to
connect any mass storage system as tertiary storage system to dCache via
a simple interface.

tape backend A tertiary storage system which stores data on magnetic tapes.

Hierarchical Storage Manag-
er (HSM)

See tertiary storage system.

HSM Type The type of HSM which is connected to dCache as a tertiary storage sys-
tem. The choice of the HSM type influences the communication between
dCache and the HSM. Currently there are osm and enstore. osm is used
for most HSMs (TSM, HPSS, ...).

HSM Instance

Large File Store (LFS) A Large File Store is the name for a dCache instance that is acting as a
filesystem independent to, or in cooperation with, an HSM system. When
dCache is acting as an LFS, files may be stored and later read without in-
volving any HSM system.

Whether a dCache instance provides an LFS depends on whether there are
pools configured to do so. The LFS option, specified for each pool within
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the layout file, describes how that pool should behave. This option can
take three possible values:

none
the pool does not contribute to any LFS capacity. All newly written
files are regarded precious and sent to the HSM backend.

precious
Newly create files are regarded as precious but are not scheduled for
the HSM store procedure. Consequently, these file will only disappear
from the pool when deleted in the Chimera namespace.

to store Copying a file from a dCache pool to the tertiary storage system.

to restore Copying a file from the tertiary storage system to one of the dCache pools.

to stage See to restore.

transfer Any kind of transfer performed by a dCache pool. There are store, restore,
pool to pool (client and server), read, and write transfers. The latter two are
client transfers.
See Also mover.

mover The process/thread within a pool which performs a transfer. Each pool has
a limited number of movers that may be active at any time; if this limit is
reached then further requests for data are queued.

In many protocols, end clients connect to a mover to transfer file contents.
To support this, movers must speak the protocol the end client is using.
See Also transfer.

Location Manager The location manager is a cell that instructs a newly started domains to
which domain they should connect. This allows domains to form arbitrary
network topologies; although, by default, a dCache instance will form a star
topology with the dCacheDomain domain at the centre.

Pinboard The pinboard is a collection of messages describing events within dCache
and is similar to a log file. Each cell will (typically) have its own pinboard.

Breakeven Parameter The breakeven parameter has to be a positive number smaller than 1.0. It
specifies the impact of the age of the least recently used file on space cost. It
the LRU file is one week old, the space cost will be equal to (1 + breakeven).
Note that this will not be true, if the breakeven parameter has been set to
a value greater or equal to 1.

least recently used (LRU)
File

The file that has not be requested for the longest.

file level In Chimera, each file can have up to eight independent contents; these file-
contents, called levels, may be accessed independently. dCache will store
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some file metadata in levels 1 and 2, but dCache will not store any file data
in Chimera.

directory tag Chimera includes the concept of tags. A tag is a keyword-value pair asso-
ciated with a directory. Subdirectories inherit tags from their parent direc-
tory. New values may be assigned, but tags cannot be removed. The dot
command .(tag)(<foo>) may be used to read or write tag <foo>’s
value. The dot command .(tags)() may be read for a list of all tags in
that file’s subdirectory.

More details on directory tags are given in the section called “Directory
Tags”.

dot command To configure and access some of the special features of the Chimera name-
space, special files may be read, written to or created. These files all start
with a dot (or period) and have one or more parameters after. Each parame-
ter is contained within a set of parentheses; for example, the file .(tag)
(<foo>) is the Chimera dot command for reading or writing the <foo>
directory tag value.

Care must be taken when accessing a dot command from a shell. Shells will
often expand parentheses so the filename must be protected against this;
for example, by quoting the filename or by escaping the parentheses.

Wormhole A wormhole is a feature of the Chimera namespace. A wormhole is a file
that is accessible in all directories; however, the file is not returned when
scanning a directory(e.g., using the ls command).

Pool to Pool Transfer A pool-to-pool transfer is one where a file is transferred from one dCache
pool to another. This is typically done to satisfy a read request, either as a
load-balancing technique or because the file is not available on pools that
the end-user has access.

Storage Class The storage class is a string of the form

       <StoreName>:<StorageGroup>@<type-of-storage-system>
     

containing exactly one @-symbol.

• <StoreName>:<StorageGroup> is a string describing the storage
class in a syntax which depends on the storage system.

• <type-of-storage-system> denotes the type of storage system
in use.

In general use <type-of-storage-system>=osm.

A storage class is used by a tertiary storage system to decide where to store
the file (i.e. on which set of tapes). dCache can use the storage class for a
similar purpose, namely to decide on which pools the file can be stored.
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Replica It is possible that dCache will choose to make a file accessible from more
than one pool using a pool-to-pool copy. If this happens, then each copy
of the file is a replica.

A file is independent of which pool is storing the data whereas a replica is
uniquely specified by the pnfs ID and the pool name it is stored on.

Precious Replica A precious replica is a replica that should be stored on tape.

Cached Replica A cached replica is a replica that should not be stored on tape.

Replica Manager The replica manager keeps track of the number of replicas of each file with-
in a certain subset of pools and makes sure this number is always within a
specified range. This way, the system makes sure that enough versions of
each file are present and accessible at all times. This is especially useful to
ensure resilience of the dCache system, even if the hardware is not reliable.
The replica manager cannot be used when the system is connected to a ter-
tiary storage system. The activation and configuration of the replica man-
ager is described in Chapter 6, The replica Service (Replica Manager).

Storage Resource Manager
(SRM)

An SRM provides a standardised webservice interface for managing a stor-
age resource (e.g. a dCache instance). It is possible to reserve space, initiate
file storage or retrieve, and replicate files to another SRM. The actual trans-
fer of data is not done via the SRM itself but via any protocol supported by
both parties of the transfer. Authentication and authorisation is done with
the grid security infrastructure. dCache comes with an implementation of
an SRM which can turn any dCache instance into a grid storage element.

Billing/Accounting Accounting information is either stored in a text file or in a PostgreSQL
database by the billing cell usually started in the httpdDomain do-
main. This is described in Chapter 15, The billing Service.

Pool Manager The pool manager is the cell running in the dCacheDomain domain. It is
a central component of a dCache instance and decides which pool is used
for an incoming request.

Cost Module The cost module is a Java class responsible for combining the different
types of cost associated with a particular operation; for example, if a file is
to be stored, the cost module will combine the storage costs and CPU costs
for each candidate target pool. The pool manager will choose the candidate
pool with the least combined cost.

Pool Selection Unit The pool selection unit is a Java class responsible for determining the set
of candidate pools for a specific transaction. A detailed account of its con-
figuration and behaviour is given in the section called “The Pool Selection
Mechanism”.

Pin Manager The pin manager is a cell by default running in the utility domain. It is
a central service that can “pin” files to a pool for a certain time. It is used
by the SRM to satisfy prestage requests.
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Space Manager The (SRM) Space Manager is a cell by default running in the srm domain.
It is a central service that records reserved space on pools. A space reser-
vation may be either for a specific duration or never expires. The Space
Manager is used by the SRM to satisfy space reservation requests.

Pool A pool is a cell responsible for storing retrieved files and for providing
access to that data. Data access is supported via movers. A machine may
have multiple pools, perhaps due to that machine’s storage being split over
multiple partitions.

A pool must have a unique name and all pool cells on a particular machine
are hosted in a domain that derives its name from the host machine’s name.

The list of directories that are to store pool data are found in definition of
the pools in the layout Files, which are located on the pool nodes.

sweeper A sweeper is an activity located on a pool. It is responsible for deleting files
on the pool that have been marked for removal. Files can be marked for
removal because their corresponding namespace entry has been deleted or
because the local file is a cache copy and more disk space is needed.

HSM sweeper The HSM sweeper, if enabled, is a component that is responsible for re-
moving files from the HSM when the corresponding namespace entry has
been removed.

cost The pool manager determines the pool used for storing a file by calculating
a cost value for each available pool. The pool with the lowest cost is used.
The costs are calculated by the cost module as described in the section
called “Classic Partitions”. The total cost is a linear combination of the
performance cost and the space cost. I.e.,

     cost = ccf * performance_cost + scf * space_cost   

where ccf and scf are configurable with the command set pool decision.

performance cost See also the section called “The Performance Cost”.

space cost See also the section called “The Space Cost”..
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