
dCache, the Overview

Patrick Fuhrmann1 for the dCache team

Deutsches Elektronen Synchrotron
Notkestrasse 85, 22607 Hamburg

Abstract. In 2007, the most challenging high energy physics experi-
ment ever, the Large Hardon Collider(LHC), at CERN, will produce a
sustained stream of data in the order of 300MB/sec, equivalent to a
stack of CDs as high as the Eiffel Tower once per week. This data is,
while produced, distributed and persistently stored at several dozens of
sites around the world, building the LHC data grid. The destination sites
are expected to provide the necessary middle-ware, so called Storage El-
ements, offering standard protocols to receive the data and to store it
at the site specific Storage Systems. A major player in the set of Stor-
age Elements is the dCache/SRM system. dCache/SRM has proven to
be capable of managing the storage and exchange of several hundreds of
terabytes of data, transparently distributed among dozens of disk storage
nodes. One of the key design features of the dCache is that although the
location and multiplicity of the data is autonomously determined by the
system, based on configuration, cpu load and disk space, the name space
is uniquely represented within a single file system tree. The system has
shown to significantly improve the efficiency of connected tape storage
systems, by caching, ’gather & flush’ and scheduled staging techniques.
Furthermore, it optimizes the throughput to and from data clients as well
as smoothing the load of the connected disk storage nodes by dynami-
cally replicating datasets on the detection of load hot spots. The system
is tolerant against failures of its data servers which enables administra-
tors to go for commodity disk storage components. Access to the data
is provided by various standard protocols. Furthermore the software is
coming with an implementation of the Storage Resource Manager pro-
tocol (SRM), which is evolving to an open standard for grid middleware
to communicate with site specific storage fabrics.

1 Technical Overview

The intention of this publication is to descibe features, behaviour and applica-
tions of a storage middleware system, called the dCache/SRM[12][10].

The core part of the dCache has proven to combine heterogenous disk storage
systems in the order of several hundred tera bytes and let its data repository
appear under a single filesystem tree. It takes care of data hot spots, failing
hardware and makes sure, if configured, that at least a minimum number of
copies of each dataset resides within the system to ensure full data availability
in case of disk server maintainance or failure. Furthermore, dCache supports a
large set of standard access protocols to the data repository and its namespace.



II

If dCache is connected to a Tertiary Storage System, it optimized access
to such a system by various technics. Currently Enstore[7], the Open Storage
Manager (OSM), the High Performance Storage System (HPSS) and the Tivoli
Storage Manager (TSM)[9] are supported by the dCache middleware.

Moreover, dCache/SRM supports all interfaces of the LCG storage element
definition.

2 Contributors

dCache/SRM is a joined effort between the Deutsches Elektronen-Synchrotron[1]
in Hamburg and the Fermi National Accelerator Laboratory[2] near Chicago
with significant distributions and support from the University of California, San
Diego, INFN, Bari as well as from the GridPP people at Rutherford Appleton
Laboratory, UK[4] and CERN[3].

3 Technical Specification

3.1 File name space and dataset location

dCache strictly separates the filename space of its data repository from the actual
physical location of the datasets. The filename space is internally managed by
a database and interfaced to the user resp. to the application process by the
nfs2[16] protocol and through the various ftp filename operations. The location
of a particular file may be on one or more dCache data servers as well as within
the repository of an external Tertiary Storage Manager. dCache transparently
handles all necessary data transfers between nodes and optionally between the
external Storage Manager and the cache itself. Inter dCache transfers may be
caused by configuration or load balancing constrains. As long as a file is transient,
all dCache client operations to the dataset are suspended and resumed as soon
as the file is fully available.

3.2 Maintenance and fault tolerance

As a result of the name space and data separation, dCache data server nodes,
subsequently denoted as pools, can be added at any time without interfering
with system operation. Having a Tertiary Storage System attached, or having
the system configured to hold multiple copies of each dataset, data nodes can
even be shut down at any time. In both setups, the dCache system is extremely
tolerant against failures of its data server nodes.

3.3 Data access methods

In order to access dataset contents, dCache provides a native protocol (dCap),
supporting regular file access functionality. The software package includes a c-
language client implementation of this protocol offering the posix open, read,



III

write, seek, stat, close as well as the standard filesystem name space operations.
This library may be linked against the client application or may be preloaded
to overwrite the file system I/O. The library supports pluggable security mech-
anisms where the GssApi (Kerberos) and ssl security protocols are already im-
plemented. Additionally, it performs all necessary actions to survive a network
or pool node failure. It is available for Solaris, Linux, Irix64 and windows. Fur-
thermore, it allows to open files using an http like syntax without having the
dCache nfs file system mounted. In addition to this native access, various FTP
dialects are supported, e.g. GssFtp (kerberos)[15] and GsiFtp (GridFtp)[14]. An
interface definition is provided, allowing other protocols to be implemented as
well.

3.4 Tertiary Storage Manager connection

Although dCache may be operated stand alone, it can also be connected to
one or more Tertiary Storage Systems. In order to interact with such a system,
a dCache external procedure must be provided to store data into and retrieve
data from the corresponding store. A single dCache instance may talk to as many
storage systems as required. The cache provides standard methods to optimize
access to those systems. Whenever a dataset is requested and cannot be found
on one of the dCache pools, the cache sends a request to the connected Tape
Storage Systems and retrieves the file from there. If done so, the file is made
available to the requesting client. To select a pool for staging a file, the cache
considers configuration information as well as pool load, available space and a
Least Recently Used algorithms to free space for the incoming data. Data, written
into the cache by clients, is collected and, depending on configuration, flushed
into the connected tape system based on a timer or on the maximum number of
bytes stored, or both. The incoming data is sorted, so that only data is flushed
which will go to the same tape or tape set. Mechanisms are provided that allow
giving hints to the cache system about which file will be needed in the near
future. The cache will do its best to stage the particular file before it’s requested
for transfer. Space management is internally handled by the dCache itself. Files
which have their origin on a connected tape storage system will be removed from
cache, based on a Least Recently Used algorithm, if space is running short. Less
frequently used files are removed only when new space is needed. In order to
allow site administrators to tune dCache according to their local tape storage
system or their migration and retrieval rules, dCache provides an open API to
centrally steer all interactions with Tertiary Storage Systems.

3.5 Pool Attraction Model

Though dCache distributes datasets autonomously among its data nodes, prefer-
ences may be configured. As input, those rules can take the data flow direction,
the subdirectory location within the dCache file system, storage information of
the connected Storage Systems as well as the IP number of the requesting client.
The cache defines data flow direction as getting the file from a client, delivering



IV

a file to a client and fetching a file from the Tertiary Storage System. The sim-
plest setup would direct incoming data to data pools with highly reliable disk
systems, collect it and flush it to the Tape Storage System when needed. Those
pools could e.g. not be allowed to retrieve data from the Tertiary Storage System
as well as deliver data to the clients. The commodity pools on the other hand
would only handle data fetched from the Storage System and delivered to the
clients because they would never hold the original copy and therefore a disk resp.
node failure wouldn’t do any harm to the cache. Extended setups may include
the network topology to select an appropriate pool node. Those rules result in
a matrix of pools from which the load balancing module, described below, may
choose the most appropriate candidate. The final decision, which pool to select
out of this set, is based on free space, age of file and node load considerations.

3.6 Load Balancing and pool to pool transfers

The load balancing module is, as described above, the second step in the pool
selection process. This module keeps itself updated on the number of active data
transfers and the age of the least recently used file for each pool. Based on this set
of information, the most appropriate pool is chosen. This mechanism is efficient
even if requests are arriving in bunches. In other words, as a new request comes
in, the scheduler already knows about the overall state change of the whole
system triggered by the previous request though this state change might not
even have fully evolved. System administrators may decide to make pools with
unused files more attractive than pools with only a small number of movers, or
some combination. Starting at a certain load, pools can be configured to transfer
datasets to other, less loaded pools, to smooth out the overall load pattern. At
a certain point, pools may even refetch a file from the Tertiary Storage System
rather than an other pool, assuming that all pools, holding the requested dataset
are too busy. Regulations are in place to suppress chaotic pool to pool transfer
orgies in case the global load is steadily increasing. Furthermore, the maximum
numbers of replica of the same file can be defined to avoid having the same set
of files on each node.

3.7 File Replica Manager

The Replica Manager Module enforces that at least N copies of each file, dis-
tributed over different pool nodes, must exist within the system, but never more
than M copies. This approach allows to shut down servers without affecting
system availability or to overcome node or disk failures. The administration in-
terface allows to announce a scheduled node shut down to the Replica Manager
so that it can adjust the N ¡ M interval prior to the shutdown.

3.8 Data Grid functionality

In order to comply with the definitions of a LCG Storage Element the storage
fabric must provide the following interfaces :



V

There must be a protocol for locally accessing data. dCache provides this
by nfs mounting a server for file name operations but transferring the actual
data via faster channels. Local Storage Elements, including dCache, hide this
mechnism by being integrated into a local filesystem wrapper software provided
by CERN, the Grid File Access Layer, GFAL[20].

A secure wide-are transfer protocol must be implemented which, at the time
being, is agreed to be GsiFtp, a secure Ftp dialect. Furthermore dCache offers
kerberos based FTP as well as regular and secure http access.

To allow central services to select an appropriate Storage Element for file
copy or file transfer requests, each Storage Element has to provide sufficient
information about its status. This includes its availability as well as its total
and available space. Currently this information is provided via the ldap protocol
but this, for scalability reasons, is in process of being redesigned. In order to be
independed of the actually distribution mechanism, dCache provides an interface
to the Generic Information Provider, GIP. GIP is responsible to make this
information available to the connected grid middle ware.

The forth area, defining a LCG Storage Element, is a protocol which makes
a storage area a manageable. The interface is called the Storage Resource Man-
ager,SRM[10]. Beside name space operations, it allows to prepare datasets for
transfers directly to the client or to initiate third party transfers between Storage
Elements. SRM takes care that transfers are retried in case they didn’t succeed
and handles space reservation and management. In addition, it protects storage
systems and data transfer channels from being overloaded by scheduling trans-
fers appropriately. The SRM doesn’t do the transfer by itself, instead it allows
to negotiate transfer protocols available by the data exchanging parties.

4 Dissemination

At the time of this publication, dCache is in production at more than 35 locations
in Europe and the US. The size of installations span from tapeless, single hosted
systems to setups exceeding 200 TBytes of disk storage attached to tertiary
storage. Typically LHC Tier I sites, like SARA (Amsterdam), IN2P3 (Lyon),
gridKa (Karlsruhe), Brookhaven (US) and FermiLab (US) are running dCache
installations connected to a variety of tape storage systems, while Tier II centers
make use of the high availability resilient dCache mechanism. Peak throughputs,
we learned about, have been in the order of 200 TBytes/day to more than 1000
clients. Large sites report about sustained data rates above 50 TBytes/day.

5 References

References

1. DESY : http://www.desy.de
2. FERMI : http://www.fnal.gov
3. CERN : http://www.fnal.gov



VI

4. Rutherford Appleton Laboratory : http://www.cclrc.ac.uk/
5. Large Hadron Collider : http://lhc.web.cern.ch/lhc/
6. LHC Computing Grid : http://lcg.web.cern.ch/LCG/
7. Fermi Enstore http://www.fnal.gov/docs/products/enstore/
8. High Performance Storage System : http://www.hpss-collaboration.org/hpss/
9. Tivoli Storage Manager : http://www-306.ibm.com/software/tivoli/products/storage-

mgr/
10. SRM : http://sdm.lbl.gov/srm-wg
11. CASTOR Storage Manager : http://castor.web.cern.ch/castor/
12. dCache Documentation : http://www.dcache.org
13. dCache, the Book : http://www.dcache.org/manuals/Book
14. GsiFtp http://www.globus.org/ datagrid/deliverables/gsiftp-tools.html
15. Secure Ftp : http://www.ietf.org/rfc/rfc2228.txt
16. NFS2 : http://www.ietf.org/rfc/rfc1094.txt
17. Fermi CDF Experiment : http://www-cdf.fnal.gov
18. GridKA : http://www.gridka.de/
19. Cern CMS Experiment : http://cmsinfo.cern.ch
20. Grid GFAL http://lcg.web.cern.ch/LCG/peb/GTA/GTA-ES/Grid-File-

AccessDesign-v1.0.doc
21. D-Grid, The GErman e-science program : http://www.d-grid.de


