
Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

Mover Queues and

Transfer Parameters

13th April 2010

University of Wuppertal

Xavier Mol <xavier.mol@kit.edu>

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

Outline

I. Mover queues

1. Why several queues?

2. How to define queues?

II. Transfer parameters

1. (gsi-)dcap

2. gsiftp a.k.a. gridftp

1. passive gridftp a.k.a. gridftp2

3. SRM

4. xrootd

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

Why several queues?

• Different transfer protocols often serve

different use cases

– dcap: (possibly) non-continuous, non-sequential

(i.e. random access) transfers for hours

– gridftp: normally very fast but also stressful for the

system

– Combined in one queue the dcap transfers will

block gridftp transfers (which will timeout)

– Normally the amount of dcap transfers on a site is

much higher than for gridftp

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

Why several queues?

• So the simplest solution is to distribute

transfers with different usage pattern over

different queues (per pool)

• Moreover, every queue may be configured

seperately regarding their capacity and

timeouts

• In combination with the pool selection unit

(psu) transfers can even be distributed over

different pools (will not be discussed here)

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

How to define queues?

• Originally through editing the batch files for

pools and doors

– Single pools may also be configured by means of

their respective poollist files

• However configuration with the dCacheSetup

file is advised (less error prone)

– Every supported transfer protocol offers also an

dedicated variable for definition of the queue

name

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

How to define queues?

• There are neither restrictions nor conventions

for queue names

• Errors (e.g. inconsistent names or typos) are

silently ignored

– Whether a queue is present or not does not

influence mover distribution

– Every pool always has a default queue where

movers without suitable queue will end up in

• The first queue mentioned for the variable
poolIoQueue is the default queue

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

How to define queues?

• In pool setup file

– capacity of the queues

mover set max active <int> -queue <qname>

– timeouts of the queues
jtm <qname> -sleep=<int> -total=<int>

• In dCacheSetup file

dcapIoQueue, gsidcapIoQueue,

gsiftpIoQueue, xrootdIoQueue

• If value of remoteGsiftpIoQueue is not set

then movers will share with gsiftp-io-queue

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

Transfer parameters

• As a general remark:

Most parameters for tuning of transfer

performance or behaviour are not meant to be

changed by (unexperienced) administrators! In

order to ensure this these parameters are not

documented.

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

Transfer parameters

• Once again configuration can be done by

editing batch files for the respective doors of

the protocol

• But this method is old-fashioned and

discouraged, too

• Use the dCacheSetup file to alter the values

for the transfer parameters

• Except as noted otherwise all time values are

given in seconds

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

(gsi-)dcap parameters

• Define the name of the queue used for dcap

movers
dcapIoQueue=<string>

• Define the capacity of the dcap-queue (per

dCache pool)
dcapMaxLogin=<int>

• The client may specify a queue to use
dcapIoQueueOverwrite=(denied|allowed)

• For gsidcap just prepend gsi to the variable

names

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

gsiftp a.k.a. gridftp param.

• Set the interval for sending performance

markers
performanceMarkerPeriod=<int>

– Performance markers are sort-of a heart beat of

an active transfer

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

gsiftp a.k.a. gridftp param.

• Define timeouts for reactions from either

PoolManager, PoolDomain or PnfsManager
gsiftpPoolManagerTimeout=<int>

gsiftpPoolTimeout=<int>

gsiftpPnfsTimeout=<int>

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

gsiftp a.k.a. gridftp param.

• Setting maximum and default stream count

for a file transfer.
gsiftpMaxStreamsPerClient=<int>

gsiftpDefaultStreamsPerClient=<int>

• Remove (most likely) corrupted/incomplete

files after irregular transfer exit
gsiftpDeleteOnConnectionClosed=<bool>

– This variable must stay at true! Otherwise retries

of a failed job will always result in an (file-already-

exists-)error

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

gsiftp a.k.a. gridftp param.

• The range of port numbers to be used for

transfers
clientDataPortRange=<int1>:<int2>

(where int1 < int2)

• For internal communication the doors may

use a different interface
gsiftpAdapterInternalInterface=\

<internal IP>

• This variable is neglected
FtpTLogDir

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

passive gridftp a.k.a. gridftp2

• With activating passive gridftp transfers the

gridftp doors may deligate the data transfer to

the involved dCache pools

– this depends on the used client commands, i.e.

GET or PUT for FTP via FTS (“gridftp2

commands”)

– in FTS 2.2.3 these are default

• Otherwise data will be tunneled through a

proxy at the gridftp door

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

passive gridftp a.k.a. gridftp2

• gsiftpAllowPassivePool=<bool>

• The default is:

– 'false' for FTP doors

– 'true' for pools

• If set to true at the door, then the setting at

the individual pool will be used

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

• srm falls back to gridftp for the datatransfer

• Hence settings for srm may override

parameters for gridftp

– e.g. parallelStreams

• Mostly srm parameters are an extension to

gridftp transfers

• Often parameters are defined as default

values; i.e. clients may specify own values

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

• Specify default version for srm usage
srmVersion=(version1|version2)

• Value will be prepended to all SURL paths
pnfsSrmPath=(absolute path|/)

• Redefine maximum number of parallel data

streams per transfer
parallelStreams=<int>

• Caching of proxy information needed for

communication with gPlazma
srmAuthzCacheLifetime=<int>

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

• Every srm transfer creates a TURL stored in the

srm

• These have a limited life time (milliseconds)

specifyed by
srmGetLifeTime=<int>

srmBringOnlineLifeTime=<int>

srmPutLifeTime=<int>

srmCopyLifeTime=<int>

• When life time is exceeded TURLs will be

garbage collected; running transfers are not

influenced

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

• Activate regular “vacuuming” of the srm

database and set the interval
srmVacuum=<int>

srmVacuumPeriod=<int>

• Specifies the number of bytes for buffering of

third party transfers (non-srm clients)
srmBufferSize=<int>

srmTcpBufferSize=<int>

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

• Another neglected variable
srmProxiesDirectory=/tmp

• Maybe activates special developers debug

output from srm; independently from log4j!
srmDebug=<bool>

• Unfortunately we could not find out in time for

what this timeout is needed

srmTimeout=<int>

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

• Probably equivalent to a variable like
remoteGsiftpMoverTimeout

srmMoverTimeout=<int>

• Similar timeouts are also defined for gridftp
srmPoolManagerTimeout=<int>

srmPoolTimeout=<int>

srmPnfsTimeout=<int>

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

• „remote-‟ signals transfers between two

(dCache) endpoints (doors)
remoteCopyMaxTransfers=<int>

remoteHttpMaxTransfers=<int>

remoteGsiftpMaxTransfers=\
(${srmCopyReqThreadPoolSize}|<int>)

• If not set than will be shared with other

queues of the same protocol

• For http this is probably not even supported

by current client tools

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

• Four identical sets of variables specific for each

kind of srm transfer
srm<k1>ReqThreadQueueSize=<int>

srm<k1>ReqThreadPoolSize=<int>

srm<k2>ReqMaxWaitingRequests=<int>

srm<k2>ReqReadyQueueSize=<int>

srm<k1>ReqMaxReadyRequests=<int>

srm<k1>ReqMaxNumberOfRetries=<int>

srm<k1>ReqRetryTimeout=<int>

srm<k1>ReqMaxNumOfRunningBySameOwner=<int>

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

• k2 ∈ {BringOnline, Get, Put}

• k1 ∈ {k2, Copy}

• Explanation exemplified by the variables of

get-transfers

• A statement from Timur Perelmutov

(Fermilab) follows after the images

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

active threads <

srmGetReqThreadPoolSize

AND

retries <

srmGetReqMaxNumberOfRetries

AND

jobs for owner <
srmGetReqMaxNumOfRunningBySameOwner

client request

queued threads <

srmGetReqThreadQueueSize
no

thread queued on SRM

yes

client request rejected

no

file is READY?

continue on next slide

yes

thread goes to pool and

tries to get file ready

yes

no

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

active TURLs <

srmGetReqMaxReadyRequests

file is READY

data transfer may start

queued TURLs <

srmGetReqMaxWaitingRequests
no

TURLs queued on SRM

yes

client request rejected

no

yes

restart from beginning

if data transfer failed

retry in

srmGetReqRetryTimeout ms

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

“srmPrepareToGet and srmBringOnline requests are

executed by the threads in the pool,

srmGetReqThreadPoolSize specfies maximum number

of such threads. When all the threads are busy, the rest

of the requests are put on the queue. The maximum

number of the elements in the queue is specied by

srmGetReqThreadQueueSize. Once the files are

prepared for reading, permissions are verified, files are

staged, the files status is changed to Ready and a

TURL is given to the user.”

Timur Perelmutov (Fermilab):

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

“In order to limit the load of the system, that means to

avoid clogging the system with to many parallel (SRM)

transfers, maximum number of such requests is limited

to srmGetReqMaxReadyRequests. The rest of the

requests that are almost ready, except that all the

transfer slots are occupied, are put on the ready queue,

the maximal length of the queue is controlled by

srmGetReqMaxWaitingRequests. If the execution of the

request fails with non fatal error, the request is retried

after the retry timout; the timeout time in milliseconds is

controlled by srmGetReqRetryTimeout. ”

Timur Perelmutov (Fermilab):

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

srm parameters

“If the request execution is retried

srmGetReqMaxNumberOfRetries times but execution

still fails the request is aborted and the error is

propagated to the client. In order to implement fairness,

we have the parameter

srmGetReqMaxNumOfRunningBySameOwner. This

way one user is limited to have a maximal number of

running jobs at a time. If there are still jobs from another

user in the queue, these will be started first.”

Timur Perelmutov (Fermilab):

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

xrootd parameters

• All parameters regarding usage of xrootd

transfer protocol are well-documented in

dCacheSetup

Xavier Mol Mover Queues and Transfer Parameters 4th dCache Wrkshp.

Last words

• Sources:

– dCache, the Book

– configuration files and source code

– statements from experts/developers

• Credits go to…

– dCache devs from DESY as well as FNAL

– the German dCache support group

