
19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Johannes Elmsheuser, LMU Munich, Atlas
Patrick Fuhrmann
Yves Kemp
Tigran Mkrtchyan

With contributions by Andrei Maslennekov

First results of NFS v 4.1 (pNFS) in dCache

And many thanks to Johannes E. for modifying the
Hammer-cloud system to run as stand alone as possible.

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Goal of this presentation :

NFS 4.1 (pNFS) (client and server)

is close to be used in production and already
provides very competitive performance and
stability results.

To provide first prove that

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

However :

All numbers presented here have
been collected during the last 5
days. Although they all have been
double-checked, the one or other
mistake might have sneaked in.

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Quick reminder of NFS 4.1 advantages
Compared to WLCG protocols (dCap/rfio/xroot)

 NFSv4.1 is an industry standard (will be supported by many vendors)
 NFSv4.1 clients are provided and maintained by other people
 Client caching is coming for free (regular file system cache)

 Caching algorithms are designed by file system experts.
 Security of files in cache is consistent.

Compared to previous NFS protocol versions
 pNFS makes use of highly distributed data (client redirect, layout)
 Compound RPC calls (multiple ops, one rpc call)
 Security gss api defined in spec and not added later. (Secure)

Using NFS 4.1 with dCache
dCache can be mounted on your WN as any other network file
system and dCache data can be directly accessed through this
protocol.

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Status : dCache NFSv4.1 Server

 Nameserver & I/O implemented since 1.9.5

 Immutable files only (as for any other dCache I/O protocol)

 Security
 Kerberos in code-trunk. (expected for 1.9.9)

 X509 not yet clear but might be possible

 Full NFS 4 ACL support

 BUT : Still only through admin interface, ‘setacl’ will follow very soon.

 Automatic Tape restore disabled (to protect ‘tape system’ meltdown)

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Status : NFS 4.1 (pNFS) Linux client
 NFS 4.1 and the linux kernel

 NFS 4 already in SL5

 NFS 4.1 in 2.6.32

 NFS 4.1 plus pNFS in 2.6.33/34

 Kernel 2.6.34 will be in Fedora 13 and RH6 Enterprise (summer)

 NFS 4.1 (pNFS) Kernel available in Fedora 12 (NOW)

 Windows Client expected 4Q10.

 DESY grid-lab is testing with :

 SL5 and 2.6.33 kernel plus some special RPM. (mount tools)

 See our wiki for further information

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

ROOT

TREE-CACHE

T-FILE File://
Fadvice=async

T-DCACHE
Async=no Async=yes

T-XNET

dCap-Client xrootd-Client File-system

NFS 4.1 dCap xRoot

Simple read Vector read
SMART Block

caching

Application

File system cache

ROOT
Framework

Client
Code

Server

ROOT Framework I/O structure

Event Based
Caching

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

It is very difficult for us to know which
optimization the ROOT frameworks tries to
use for different Applications and different
files.

Different tuning might be required for
different access patterns.

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Mechanisms to speed up wire protocols
Read Ahead

Read more (linear) data than requested by the application.
Of advantage only for linear reads in forward direction and if
reasonable amounts of the file are read in.

Vector Read

A list of (offset,size) values are send to the server which returns the
requested data in one chunk.
Very efficient but client has to wait till the entire ‘chunk’ arrived.

Asynchronous Vector Read

A list of (offset,size) values are send to the server which returns the
requested data asynchronously, while the application can already
read data as it arrives.
Very efficient.

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

implement TFile::ReadBufferAsync() using posix_fadvise() which tells the
kernel which blocks we are going to read, so it can start loading these
blocks in the buffer cache. Works only on Linux for the time being.
Minimum speedup about 15%-20%.

Async Vector Read and Posix
There is no posix call allowing Vector Read. So it be used directly on
the file system. However there is an fadvice posix call, which is
implemented in Linux, which allows to ask the file system to read a list
of (non continues) blocks in the background. Tigran added this call to
the Tfile driver with the following result :

Quote Fons Rademakers :

So, other than often claimed, the file system layer, and with that
NFS4.1, can make use of the ROOT vector read optimization.

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Library Block Caching (Smart Caching)

The client library holds a list of cached data blocks which are replaced
by newly incoming blocks based on e.g. an LRU algorithm.
Similar to file system approach. Helps with jumping read pointers e.g.
non optimized ROOT files.

File System caching

Partition wide, process wide, caching of often used blocks. OS
providers have been putting big efforts in optimizing this part.
Very efficient.

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Mechanisms to speed up wire protocols

Mechanism	 dCap/Client	 NFS	 v	 4.1/Client	 Xroot/Client	

Read	 Ahead	 Yes	 Small	 Yes	

Vector	 Read	 Yes	 No	 Yes	

Async	 Vector	 Read	 No	 Yes	 Yes	

Event	 Caching	 ROOT	 ROOT	 ROOT	

Block	 Caching	 Only	 dCap++	 Yes	 Yes	

File	 System	 Caching	 No	 Yes	 No	

(*)dCap++ is a dCap version modified by Günter Duckeck (Munich)
providing smart block Caching.

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

First results under ‘developers conditions’

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

dCap++	 dCache/NFSv4.1	 dCache/xroot	 NaJve/xroot	

Se
co
nd

s	

ROOT	 I/O	 job	 runBme	

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

Se
co
nd

s	

ROOT	 I/O	 job	 run	 Bme	

No optimization, no caching, no read
ahead, no vector read

Not optimized ‘atlas’ file results in reading of small portions of the file in rather random
fashion and a lots of jumping forth and back within the file.

Access : reading every 100th event out of 52804 events from an non optimized Atlas event file

Smart Block Caching

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Stability/Stress tests

Numbers provided by Yves Kemp using DESY grid-lab

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

dCache NFS 4.1 setup (DESY grid-lab)

1 headnode
8 pool nodes

7 Workernodes
2 CPU * 2 Cores
each

SL5
2.6.33 kernel
NFS 4.1 (pNFS)

dCache head

1 Gbit Network

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

“Real” ROOT stress

Seconds [file processing time]

File Processing count

 Test lasted for about 12 hours
 7 WN’s *4 Jobs accessing 9849 files on 8 pool nodes
 11 Tbytes transferred with an average of 260 MB/sec
 Compressed data to detect possible corruption
 Disadvantage : High CPU to uncompress
 No client kernel panic, no server error
 No I/O error reported by ROOT

To be as close as possible to
Real analysis

Stolen from Yves Kemp

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Seconds [process time]

Seconds [process time]

Zoom

Demonstration of File System Cache Effect
X Job runs first time
X Job runs second time

Stolen from Yves Kemp

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Hammer Cloud Results

Sorry, they have not been ready in time.

We will present those for CHEP or/and next HEPIX

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Interpretation of the results from Hepix Storage
working group evaluation.

 Running CMS (black-box) job for 14 minutes

 Measuring total amount of data transferred and

 Number of event processed

 10 client machines running 20,40,60 and 80 jobs/threads

 Andrei’s test give a very good impression on the advantages of

file system caching.

Stolen from Andrei Maslennikov

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

0	

100	

200	

300	

400	

500	

600	

700	

800	

20	 30	 40	 50	 60	 70	 80	

M
by
te
s/
se
c	

Number	 of	 threads	

Transferrate	 server-‐>client	

AFS/NATox	

GPFS	

Lustre	

AFS/VILU	

dCache/dCap	

Data Rate between server and client

Stolen from Andrei Maslennikov

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

0	

5000000	

10000000	

15000000	

20000000	

25000000	

20	 30	 40	 50	 60	 70	 80	

Ev
en

ts
	

Threads	

Events	 processed	

AFS/NATox	

GPFS	

Lustre	

AFS/VILU	

dCache/dCap	

Events process within 14 Minutes

This is certainly the file system cache effect, as
 See Tigran’s and Yves results from above.
 The bytes received from the various servers are nearly identical.
 dCap is the only protocols (in this set) which can’t make use of the fs cache.
 We would expect dCache/NFS4.1 do behave as GPFS/Lustre …

Stolen from Andrei Maslennikov

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Summary on NFS 4.1 (pNFS) in dCache
 pNFS is now an agreed industry standard

 It comes with the advantages of a mountable file system (as e.g.

GPFS, Lustre) plus the benefits of a standard.

 Clients are available or will be available soon

 dCache provides an NFS 4.1 server which we believe is

 Reliable and

 Provides competitive performance

 Although special tuning of an I/O system might give better results

than generic once, the vast possible ways, ROOT applications do

already access the underlying I/O system will spoil all attempts to find

specific solutions.

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

WebDav

Not to forget :

Even more standards in dCache

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Status : WebDav (s)
 Available since 1.9.6 (3)

 Tested with

 Mac OSX

 Mac OSX doesn’t support WebDav with Certificates (needs stunnel)

 Writing only possible with 1.9.8 (expected)

 Windows(XP) OK

 SuSE11.2 (Gnome, KDE) OK

 Write via ‘redirect’ or if not supported by client via ‘proxy’.

 Security

 Plain or x509 (user, password in preparation)

 On redirect, only control line is encrypted.

19 April 2010 Lisboa, PT Hepix, Spring 2010 patrick.fuhrmann @ dCache.ORG

Further Reading

 www.dCache.org

