
��

��

What to remember from this talk

� Migration module is safe
� Migration module can do more than you might

know

��

Vacating pools

Balancing free space

In
cr

ea
si

ng
 a

va
ila

bi
lit

y

Hopping

Fixing pool assignment and state

��

scp

rsync

maintenance cell

pool manager

hopping manager

migration “module”

��

migration copy pool_b

pool_a pool_b

� Generates exact copy of files on the other pool, including
the meta data state.

��

migration copy -state=precious -storage=atlas:default pool_b

pool_a pool_b

� Can filter files on state, sticky flags, storage group, PNFS id,
access time, access latency, retention policy, size.

-accessed=<n>|[<n>]..[<m>]
-al=ONLINE|NEARLINE
-pnfsid=<pnfsid>[,<pnfsid>] …
-rp=CUSTODIAL|REPLICA|OUTPUT

-size=<n>|[<n>]..[<m>]
-state=cached|precious
-sticky[=<owner>[,<owner>...]]
-storage=<class>

��

migration copy -smode=removable pool_b

pool_a pool_b

� Can alter the state of the source copy.

-smode=same|cached|precious|removable|
delete[+<owner>[(<lifetime>)] …]

-pins=move|keep

�	

migration copy -tmode=cached+behrmann(51000) pool_b

pool_a pool_b

� Can set custom state for the target copy.

-tmode=same|cached|precious[+<owner>[(<lifetime>)] ...]

�

migration copy -target=pgroup atlas_disk

pool_a

� Can transfer to pool, set of pools, pool group or link.

-target=pool|pgroup|link
-exclude=<pattern>[,<pattern>...]
-include=<pattern>[,<pattern>...]

���

migration copy -exclude-when='target.free < 3Ti'
 -target=pgroup atlas_disk

pool_a

� Target set can be dynamic.
Can refer to size, free, used, removable and total space, cpu cost,
space cost, name and both source and target.

-exclude-when=<expr>
-include-when=<expr>

���

migration copy -select=random -target=pgroup atlas_disk

pool_a

� Can balance space usage

-select=proportional|best|random
-refresh=<time>

���

migration copy -target=pgroup atlas_disk
 -exclude-when='target.cpuCost > 0.3'
 -pause-when='source.cpuCost > 0.3 or targets < 4'

pool_a

� Adapts to changing conditions.

-exclude-when=<expr>
-include-when=<expr>
-pause-when=<expr>
-stop-when=<expr>

���

migration copy -target=pgroup atlas_disk
 -smode=delete
 -stop-when='source.used < 3Ti'
 -order=size

pool_a

� Partial jobs

-stop-when=<expr>
-order=[-]size|[-]lru

���

migration copy -pins=move pool_b

pool_a pool_b

� Integrates with pin manager to move pins.
Never deletes a pin.
Never deletes a file if there is still a pin on it.

-pins=move|keep

PinManager

���

migration copy pool_b

pool_a pool_b

� Subject to checksum policy on target pool

csm set policy [-onwrite=on|off] [-ontransfer=on|off]

csm set policy -onwrite=off
 -ontransfer=on

���

migration copy -concurrency=3 pool_b

pool_a pool_b

� Multiple concurrent transfers.

-concurrency=<concurrency>

migration concurrency <job> <n>

���

migration move pool_b

pool_a pool_b

� Convenient short hands for moving and caching files.
Only difference is the default values.

migration move ….
migration cache ….

migration -smode=delete
 -tmode=same
 -pins=move -verify
 pool_b

=

��	

migration move -al=CUSTODIAL -rp=CUSTODIAL
 -permanent pool_b

pool_a pool_b

� Permanent jobs never terminate.
Are saved to setup file with save command.

-permanent

��

migration copy pool_b

pool_a pool_b

� Actual transfer is a regular pool to pool transfer.

pp get file <pnfsid> pool_a

���

migration copy -target=pgroup atlas_disk
migration copy -target=pgroup atlas_disk

pool_a

� Operation is idempotent!
Can be rerun or restarted without changing the result.

migration copy -target=pgroup atlas_disk

=

���

������ ��	
�	�
����
�� �������
��

������ ������ ������

������ ����	
�� ����	
��

����	
�� ������ ����	
��

����	
�� ����	
�� ����	
��

�
	������ �
	������ �
	�������������

���

pool_a

� Can optionally verify the checksum of an existing target.
On by default when using the move command.

-verify

migration copy -smode=delete -verify -target=pgroup atlas_disk

���

migration copy -eager -target=pgroup atlas_disk

pool_a

� Usually waits for offline pools to become online, but an
eager job creates new copies instead.

-eager

���

rebalance pgroup -metric=relative atlas_disk

rebalance pgroup [-metric=relative|sc] [-refresh=<period>] <pgroup>
rebalance cancel pgroup <pgroup>

� PoolManager can submit migration jobs to all
pools in a pool group to balance space usage.

EX
PE R

IM
E N

T A
L

���

What to remember from this talk

� Migration module is safe

Uses the existing pool to pool transfer code.
Extensive checksum validation.

Idempotent operations allow jobs to fail, to be cancelled
and to be restarted without ill effects.

Never touches pins – relies on PinManager to move pins.

Safe doesn't mean you can't shoot yourself in the foot!

���

What to remember from this talk

� Migration module can do more than you might
know

Copying, moving, caching
Filtering
State manipulation
Permanent jobs
Advanced and dynamic selection criteria
Adapts to load conditions
Doesn't have to transfer everything

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

