dCache, a distributed high performance storage system for HPC

ISC 2013

Patrick Fuhrmann
Content

• Who are the dCache people?

• Where are we coming from?
 – Some words about WLCG, and others
 – Some dCache deployments

• Where do we want to go and why?
 – HTC to HPC
 – HPC for our current customers

• But there is more than just performance.
 – Multi Tier storage model
 – Multi Protocol Support
 – Consistent Authentication and Authorization
Who are we?

dCache is an international collaboration.

- German Project with Helmholtz Alliance Data Centers
- Large Scale DM and Analysis
- WP1: Federated Identities
- WP2: Federated Storage
What do we do?

We
– design
– implement
– and deploy

Data Storage and Management software for data intensive communities.
Where are we coming from?
From High Energy Physics
HERA and the Tevatron in the past
and now
The Large Hadron Collider in Geneva
High Energy Physics (the sensors)

The Atlas detector, 12 m long, 6 in diameter and 12,000 tonnes

The ring: 27 km long, -271 degrees cold, some billion Euros and looking for the Higgs and for Dark Matter. Collisions every 25 nsec, filled with 13,000 bunches running with nearly speed of light. The ring needs 120 MW and 50 MW for cooling.
And its computer:

The LHC Computing Grid
The Grid never sleeps: this image shows the activity on 1 January 2013, just after midnight, with almost 250,000 jobs running and 14 GiB/sec data transfers.

Image courtesy Data SIO, NOAA, US Navy, NGA, GEBCO, Google, l Dept. of State Geographer, GeoBasis, DE/BKG and April 2013 issue of the CERN Courier
Now, where is dCache?

We do \(\frac{1}{2} \) of their storage

So we have 50% of their famous Higgs 😊
dCache storage for the Large Hadron Collider around the world

About 115 PBytes only for WLCG in 8(+2) out of 11(+3) Tier 1 centers and about 60 Tier 2's, which is about \(\frac{1}{2} \) of the entire WLCG data.

- **Europe**: 66 PB
- **US**: 34 PB
- **Canada**: 9.6 PB
- **Russia**: 5 PB
- **Germany**: 25.5 PB
- **Spain**: 13.7 PB
- **France**: 8.8 PB
- **Netherlands**: 4.5 PB
- **Nordics**: 4.5 PB
- **DESY**
- **LMU**
- **Wuppertal Aachen**

Increase over 2.5 years:

- Germany: 4.5
- Europe: 4.0
- US: 3.0
- Canada: 1.5
- Russia: 1.0
But there are more …
Other customers

- European XFEL
- iLC
- SNIC
- Sloan Digital Sky Survey
- LOFAR
- USQCD
- EMBL
- SciBooNE
- Mu2e
- IceCube
- HASYLAB
- INRA
- The French National Institute for Agricultural Research
And how do we do this?

With joy … and
LHC Computing Storage Element dCache.org
medium single stream performance
This is quite nice but getting a bit boring ….

So, where do we want to go?
HPC Computing
Possibly high single stream performance

<table>
<thead>
<tr>
<th>IO Nodes</th>
<th>CORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>Titan</td>
</tr>
<tr>
<td>4096</td>
<td>Tianhe-2</td>
</tr>
</tbody>
</table>
Having a look into real HPC performance numbers.
Real Data Rates for HPC

Three file system partitions in front of the Titan

Equivalent to 5000 and 10000 Cores per File system in GRID Terms

Each GRID core consumes about 6Mbytes/s

Courtesy: Oak Ridge National Lab, Spider FS Project
So the question arises …

Can dCache do this in a single instance?
Core Count of FERMILab

Fermilab CPU - CORES

 Courtesy: Vicky White, Institutional Review 2011
US CMS dCache Setup to serve the farm and the wide area connection to CERN and the US Tier II’s

40 PBytes Tape

US-CMS Tier I
14 PBytes on Disk

260 Front Nodes

Total:
6 Head
280 Pool/Door

Physical Hosts

Information provided by Catalin Dumitrescu and Dmitry Litvintsev
As network and spinning disks are becoming the bottleneck, we can even do better …

Or

Using Multi-Tier Storage
Multi Tier Storage

Wide area resp. cloud protocols

Parallel NFS to compute nodes
Why do we want to go HPC?

- The LHC experiment (e.g. ATLAS) are seriously looking into HPC. They would like to utilize free resources in HPC worldwide. Feasibility evaluations are ongoing. If they decide to go for it, they need Grid Storage Elements to ensure access to their worldwide data federation.
- The HPC community begins to share data. Right now this is still all manual. But they could learn from the LHC Grid. We share and transfer data automatically for about a decade, including proper authentication and authorization at the source and endpoints.
Just performance is not sufficient for BIG DATA in the future
NASA Evaluation of scientific data flow

SensorWeb High Level Architecture

Components outlined in red are part of NASA generic SensorWeb toolbox

Courtesy: Goddard Tech Transfer News | volume 10, number 3 | summer 2012
Scientific Storage Cloud

LOFAR antenna
Huge amounts of data

X-FEL (Free Electron Lasers)
Fast Ingest
Scientific Storage Cloud

• The same dCache instance can serve
 – Globus-online transfers via gridFTP
 – FTS Transfers for WLCG via gridFTP or WebDAV
 – Private upload and download via WebDAV
 – Public anonymous access via plain http(s)
 – Direct fast access from worker-nodes via NFS4.1/pNFS (just a mount like GPFS or Lustre but with standards)
Now, performance seems to be ok…

how about automated worldwide data transfers?
How can you do worldwide automated transfers I

• Use ‘globus online’ a worldwide transfer services.
• dCache provides the necessary interfaces, including authentication.
How can you do worldwide automated transfers II

- Run your own “File Transfer Service, FTS(3)”.
- The Software is provided by EMI/CERN DM.
- FTS uses gridFTP or http(s).
- FTS can do network shaping.
- FTS does the necessary tries.
- FTS is free and “Open Source”.
- dCache provides the necessary interfaces to FTS, including authentication.
The Dynamic http/WebDAV federation

• Still prototype status
• Collaboration between dCache.org and CERN DM, started with EMI
Dynamic Federation

Federation Service

- Portal
 - One or more candidates
- Best Match Engine
- Candidate Collection Engine

GEO IP

WGET CURL Nautilus Dolphin Konqueror

ROOT

dCache

Other http enabled SE’s

Any cloud provider

LFC Catalogue

dCache for HPC | ISC 2013 Leipzig | Patrick Fuhrmann | 17 June 2013 | 34
Some remarks on authentication and authorization

• A user (individual) usually holds a set of credentials to identify him/herself against services.
 – Passport, Driver license, credit card
 – Google account, Twitter,
 – X509 Certificates (GRID, Country Certificate Authority)

• Federated Data Services should
 – Understand as many as possible of those credentials
 – Be able to map different ones to the same individual

• dCache does all this with:
 – User/password
 – Kerberos
 – X509 Certificates and Proxies
 – SAML assertions (in development within LSDMA)
In summary

- dCache has a long history in serving Big Data communities with PetaBytes of local and remote storage and Gbytes/sec of transfer performance.
- dCache is successfully moving into the “Scientific Cloud” direction, incorporating HTC and HPC.
- Focusing on High Individual Throughput as well as scaling out.
- Moreover, making sharing of scientific data easy and secure.
 - Making all data available via a set of industry access protocols:
 - NFS 4.1/pNFS for local high performance access (like local mount)
 - WebDAV and http for Web Sharing
 - CDMI and S3 (in preparation) for cloud access.
 - GridFTP for fast wide area transfers.
 - Mapping various different credentials to a single ‘user’
 - X509 Certificates
 - User/Password
 - Kerberos
 - SAML/OpenID
The End

further reading

www.dCache.org