

dCache: status update and future directions

Paul Millar

TERENA Storage TF Uppsala, Sweden

What is dCache?

Introducing dCache

- OpenSource software for aggregating heterogeneous storage
- Immutable filesystem with its own namespace independent of data location,
- Integrates with tertiary storage (tape)
- Sophisticated data-placement
- Built-in support for **multiple protocols** (NFS, FTP, HTTP/WebDAV, ...)
 - Consistent and coherent view of the files.
- Pluggable authentication / identity system
 - Supports X.509 client cert, username+password and Kerberos
 - Integrates with site IdM: NIS, LDAP, Active Directory, Kerberos, ...

dCache in one slide

dCache: people and support

- Core team (8 people): collaboration between DESY, Fermilab and NEIC,
- Students: HTW Berlin,
- External contributors: people making infrequent contributions
- German support group: volunteer dCache admins who organise and run workshops
- Support channels:
 - User forum where users (i.e., admins) help each other
 - Direct channels (support@dcache.org and security@dcache.org)

dCache: funding

- Core partners: DESY, Fermilab, NEIC
- German government: LSDMA project → PoF
- EU projects:

FP7 projects (EMI) and in three H2020 proposals.

WLCG dCache instances (non-WLCG not shown)

Deployments (just some of 'em...)

- WLCG: 44 sites (world-wide) together provide 100 PB, satisfying ~50% of LHC current requirement.
- **DESY**: HERA, ATLAS, CMS, LHCb, Photon science, ...
- Fermilab: CMS, general storage, Intensity Frontier, ...
- BNL: ATLAS and RHIC.
- **SNIC**: SweStore.
- NDGF: geographically largest single instance, spread over 5 countries.

...

<Your Name Here>

dCache server releases

... along with the series support durations.

doing with the series support durations.																			
Jun Ju 2014		Aug	Sep		Nov	Dec	Jan 2015	Feb	Mar	Apr	May	Jun	l _{Jul}	Aug	Sep	Oct	Nov	Dec	Jan 2016
2.13 series	S (a	nticipated	goldern re	See)								_							
2.12 series	5 (a	nticipated	release)																
2.11 series	S (a	nticipated	release)		_														
2.10 series	S (g	olden rele	ase)																
2.9 series												_							
2.8 series																			
2.7 series												_							
2.6 series	(gold	en release																	
2014	ul	_l Aug	Sep	Oct	_l Nov	Dec	2015 Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	2016 Jan

The code-base

- Open Source license (AGPL)
- Code available in github
 - four commands (one of which is 'cd') gives you a fully functional, running dCache on your laptop.
- All changes subject to code-review,
- Large sections of the functionality are extensible / pluggable.
- Spun off some functionality as independent libraries:
 - Code used by banks, other storage system vendors, ...
 - We only know who from the bug reports and bugfixes

Status updates and Future directions

dCache the scientific cloud

Improving data-injection performance

How to store small files on tape

- Small files are bad for tapes
 - Load/seek time vs read time.
 - Random selection → many tape mounts → slow access & broken tapes.
- Solution: dCache collects files in a container (a zip file) before writing to tape
 Replacing lots of shuttle-buses with one big bus
- When user writes new files:
 - "Small files" are written into dCache,
 - dCache groups files and, based on policies, writes a container back into dCache,
 - Containers are written to tape.
- When user opens a file for reading:
 - Fetch container from tape, if not cached
 - Extract file from container
- User sees no difference, yet tape is better utilised.

HTTP and WebDAV

- Added support for HTTP and WebDAV.
 - Support redirection on read, redirection on write.
 - Metadata operations can be encrypted; when redirected, data is transported unencrypted.
 - Found problems with (almost) all webday clients.
- Extending WebDAV to include additional functionality:
 - Added support for triggering 3rd party copy,
 - Added support for recovery in dynamic data federation.

HTTP Federation

- Project in collaboration with CERN
- Multiple HTTP/WebDAV servers provide users an overlap namespace

Like partial mirrors of some central repository

- Central server provides an aggregate view
 - Assume that if files exists in multiple server, they are identical replicas
 - Client sees all available files
- When reading, the client is redirected to "best" replica.
- Available as a demo; being evaluated by WLCG experiments

Developing dCache sync-n-share

- Provide unlimited storage:
- Access via web-browser:
- Synchronisation:
- Sharing:
 - how do we present shared data to the user?
 - how do users share data with others?

DESY sync-and-share service

- DESY users needed to stop using DropBox.
- dCache already started working on adding sync-and-share facilities.
- For DESY, using dCache and ownCloud to build a DropBox-like service was the best option.

dCache with ownCloud

- Use ownCloud on top of dCache, via NFS
 Files in dCache owned by the user (not ownCloud process)
- Users can write data into dCache
 Immediately visible through ownCloud.
- Users can write data into ownCloud (sync client)
 Immediately visible through dCache
- Limitations:
 - If user shares data with you, you can only read that through ownCloud.
 - If you set ACL in dCache, not reflected in ownCloud
- Service goes live today (for the brave); DESY-wide in two weeks.

What is the sync-n-share future?

- Have the client sync directly with dCache.
 maybe the ownCloud client
- Add support for sharing within dCache.
 enhanced web interface
- Drop ownCloud and provide a pure dCache solution.

CDMI: managing cloud storage

- Network protocol for Cloud storage
 - initially by SNIA, now an ISO standard
 - with many, many features
- Limited vendor uptake:

Catch-22: demand and availability

- Some IAAS systems use CDMI internally,
 the EGI FedCloud has CDMI as a common requirement
- Preliminary support for dCache from student project,
 Not available now, but plan to integrate (after code review)
- What is the demand?

gPlazma: flexible identity management

- dCache's IdM identity management system:
 - (mostly) authenticates user,
 - figures out their uid, gid(s),
 - rejects banned users,
 - discovers session information: home directory ...
- Public API: anyone can write a plugin.
- We supply plugins for NIS, LDAP, ActiveDirectory, Kerberos, X.509, VOMS, XACML, PAM and some local files (e.g., htaccess).

Federated Identity

- Increasing need to "do something"
- SAML seems prevalent system
 OpenID Connect is also gaining traction.
- With LSDMA: initial work on credential translation (SAML → X.509)
- Later, add native SAML support:
 - Initially with Web-SSO, later maybe Moonshot/AbFab.

Globus (Online)

- Globus (Online) provides a file-movement service,
- Data connections always authenticate via X.509

Globus can use externally-generated credentials

- LSDMA providing a "glue" service:
 - Germany's DFN-AAI run a SLCS (a bit like TCS).
 - The glue service allow Globus users to use the SLCS.

Software Defined Storage & QoS

- dCache can already provide differentiated QoS (Quality of Service):
 - Different files can have different replication factors, multitier (SSD, HDD, tape) usage, utilise different hardware
- Currently these QoS attributes are most configured by the dCache admin.
- We are investigating SDS to allow:
 - Modification of QoS after data is written,
 - Allow users finer grain control of QoS choices.

Summary

- We are adding Cloud-like features, both interactive (currently via ownCloud) and through protocols (like CDMI) – rolling out a production service at DESY.
- Investigating how to integrate support for Federated
 Identity into storage software
- For more than 10 years, dCache provides Big Data storage software that:
 - focuses on users needs,
 - implements state-of-the-art features,
 - pushing user expectations by exposes users to innovation.

Backup slides

The grid solution: X.509 (user) certificates

Federated Identity

Check who you are Authorisation decision

Authorisation decision

Check who you are

Identity Provider (IdP)

Assertion

SAML Web Single Sign-On (Web SSO)

Who do you trust?

Will information be abused or leaked?
Will they track users' activities?
Will they tell me if there is suspicious behaviour?

Identity Provider (IdP)

Assertion

Service Provider (SP)

Is this really the same person as before?
Is the information accurate?

How to trust lots of people?

Using (remote) computers

Web portal

Using (remote) computers

Using (remote) computers

Project Moonshot Service **Identity Provider** Provider (SP) (IdP) Computing Resource

Managing (remote) data

Web portal

Managing (remote) storage

Fetch Substitute Credential

Token: Amazon AWS/S3 SAML support, X.509: SLCS, TCS, CI-Login, EMI STS, ...

Managing (remote) storage

Project Moonshot

Credential vs Principal

Name: Wile E. Coyote

ACME customer ID: 11493

Passport number: 0008103314

Bank account number: **001213921**Banks with: **United ACME Bank**

Member-of: Antagonists Anonymous

Credentials

Principals

Authentication: door, both or gPlazma

Logging in: four phases, using plugins

Something extra: identity mapping

