dCacheorg &

Tuning SRM
Paul Millar

on behalf of the rest of the dCache feam.

dCache workshop 2015

% v | SDMA:

dCacheorg

What is improved with SRM in 2.10

 Never abort a requests that has been
worked on.

 Control over the induced load.

dCacheorg &

A request’s journey: the simple* reqhests

| Jetty

'SRM

Jetty
TCP queue queued In progress
@

M"“’“ ’

Request

‘ * Requests include rm, mv, rmdir, mkdir, ... SUCCESS

{ Done
C O

dCacheorg ™

—;Q/

A request's journey: sched. non-’rrqﬁsfers

Request

Jetty
SRM
{TCP queue1 (qﬁ;?éd (Queued 1 (In progress} (Done }
é Ej < ® A ® < ® 7 < ® T o
SUCCESS

L

Bring-online, Copy, Ls, Reserve-space

dCacheorg &

A request’'s journey: asynchronous

Jetty
SRM
{TCP queue1 (Jetty 1 (Queued 1 (In progress} (Done }
/\\ . /\que‘ued/\ R I o Ik o

Request

L

QUEUED INPROGRESS SUCCESS

dCacheorg &

A request’s journey: retries

Jetty
SRM
{TCP queue1 (Jetty 1 { Queued 1 (In progress} (Done }
/\\ . /\que‘ued/\ R I Ik

\\

Request N <

L

QUEUED INPROGRESS SUCCESS

dCacheorg W

A request’'s journey: transfers

(TCPqueue} " queued 1 " Queued 1 ‘FHFWOQNSS1 (RQueued 1 (Ready 1_{ Done }
™ ® a4 s N ® ZARAS L 7 ® 7 - — — @
Request <

L

QUEUED INPROGRESS SUCCESS

dCacheorg &

Throttling number of transfers

Max concurrent transfers

srm.request.*.max-transfers

SRM /

ett
(uneu):ed 1 (Queued 1
/ N T ‘ 7 T

In progress] { RQueued

/
TCP queue ‘ Ready JJ Done }
L ® ® AR\ ® — - — — @
. A
t < Retry

QUEUED INPROGRESS SUCCESS

Protecting the rest of dCache

Load on dCache

srm.request.*.max-inprogress

/

dCacheorg &

Max concurrent transfers

srm.request.*.max-transfers

Jetty

/

SRM

/

Jetty

T
®

In progress] { RQueued | ‘
J 'Y

/
TCP queue queued Queued Ready JJ Done }
ﬁ i © - o ® o - — — —e
Request < WI
‘ QUEUED INPROGRESS SUCCESS

dCacheorg &

Don't run out of memory!

Total requests Load on dCache Max concurrent transfers

srm.request.*.max-requests srm.request.*.max-inprogress srm.request.*.max-transfers

/ / /
Jetty / / /
/

4

T
®

J N\

/
tt |
TCP queue queuéd 1 l(Queued] In progress] { RQueued | ‘ Ready L{ Done }
g ' ® ' 77T C ® yam ® ® — o — — -9

]
Request N < ——
q M Retry

&

QUEUED INPROGRESS SUCCESS

dCacheorg &

Info of non-transfer requests

--- scheduler-1s (Scheduler for LS operations) ---

Queued i i e 0 [TQueued]

Waiting for CPU 0 [PriorityTQueued]
Running (max 50) 0 [Running]

Running without thread ... 0 [RunningWithoutThread]
Waiting for callback 0 [AsyncWait]

In progress (max 50) SUM >> 0

Queued for retry oo, 0 [RetryWait]

Total requests (max 50000) 0

In progress per user soft limit : 100 requests

Maximum number of retries 10

Retry timeout : 60000 ms

Retry limit

10 retries

Load on dCache

srm.request.*.max-inprogress

Total requests

srm.request.*.max-requests

Il

TCP queue

Request

dCache.org /lg\

__/'//

Info of non-transfer requests

--- scheduler-put (Scheduler for PUT operations) ---
Queued i e 0 [TQueued]
Waiting for CPU 0 [PriorityTQueued]
Running (max 12) 0 [Running]
Running without thread ... 0 [RunningWithoutThread]
Waiting for callback 0 [AsyncWait]
In progress (max 50) SuU

0
Queued for retry, 0 [RetryWait]
Queued for transfer 0 [RQueued]
Waiting for transfer (max 50000) 0 [Ready]
Total requests (max 50000) 0
In progress per user soft limit : 100 requests
Maximum number of retries : 10
Retry timeout : 60000 ms
Retry limit : 10 retries

Total requests Load on dCache Max concurrent transfers

srm.request.*.max-requests srm.request.*.max-inprogress srm.request.*.max-transfers

oty / / /
/

7 V4
tt |
TCP queuew { uneeuyed ” Queued 1 (In progressl {RQueuedw { Ready L{ Done }
TG ® ® - @ O —C o — — _e L

Request

dCacheorg ™

Tuning points not covered...

* Tuning number of threads:
acceptor-thread(s), jefty-threads, scheduler-threads
» Closing idle connections,
* Tuning synchronous—-asynchronous delay,
« Tuning DB behaviour,
connectors, persistence of requests
* Retfry behaviour;
delay before retrying, number of refries to attempt

« Same-user request balancing,
* Number of in-flight rm requests

See Dmitry's previous talk on these points

dCacheorg &

one more thing...

_Qi‘/e{:

dCacheorg
Multiple SRM instances

Yes, you can do it...

even running multiple SRM instances on the
same host™

... but for isolating multiple “customers”, not
load-balancing.

* some limitations apply

dCacheorg &

Requirements

Each SRM instance...

« must use a different SRM databases (can be in same PostgreSQL
instfance)

 must be bound to different IP addresses (if on the same host)
 must be in different domains

Clients must...

« connect to same instance for duration of an asynchronous request.

o call srmPutDone / srmReleaseFiles on same SRM instance as
srmPrepareloPut / srmPrepareloGet.

Probably easiest to have VO-specific SRM endpoint and clients
that know to connect to that endpoint.

dCacheorg &

Thanks for listening!

dCacheorg W

What is SRM?

« Standard protocol for managing storage
* Features not available in other protocols:

AL/RP, spaces, protocol negoftiation, 2-stage commit for uploads,
staging with pins, 3 party copy, ...

* Bulk operations:

BringOnline, PrepareToGet, Ls, PrepareloPut, Copy, CheckPermission,
GetPermission, Rm, ReleasekFiles, PutDone, AbortFiles, ExtendFileLifeTime,
ChangeSpacerfortiles, ExtendFileLifeTimelnSpace, PurgeFromSpace.

* Asynchronous operations:

BringOnline, PrepareToGet, Ls, PrepareloPut, Copy, ReserveSpace,
ChangeSpacerforfiles, UpdateSpace.

dCacheorg &

SRM: asynchronous operations

 What: tell client to come back later

* Why: some reguests require SRM to communicate
with other dCache components. While clients wait,
memory and a thread are “wasted”

 How does it work: SRM starts a timer; if this goes off
pefore reply iIs complete, tell client fo come back.

e How to tune?

srm.request.switch-to-async-mode-delay & .unit
 How to know what is the correct value?

dCacheorg W

SRM: tuning threads

« What: adjust the thread behaviour to match server

* Why: idle threads make server more responsive, maximum threads prevent running
out of memory.

« How to tune?

srm.limits.jetty.threads.max
srm.limits.jetty.threads.min
srm.limits.jetty.threads.idle-time.max & .unit
J

srm.limits.jetty.threads.queued.max
* How to know what is the correct value?
512 kB per thread (1,000 threads — 500 MiB)
takes time to create a thread (~ 0.25 ms), much beftter to avoid this
Tune threads.max and thread.queued.max so you don't run out of memory
Tune threads.idle-fime.max based on observed client behaviour
Tune threads.min on

dCacheorg A

SRM: client-view of requests

» General progression:

srM_REQUEST {QUEUED — INPROGRESS —
SUCCESS}

 What they mean:

QUEUED: no work done yet,
INPROGRESS: work started,
SUCCESS: finished.

dCacheorg W

SRM: internal states (simple case)

o Simple flow:

PEN
* What

PEN
TQU

DING — TQUEUED — RUNNING — DONE
they mean:

DING - just received
EUED - not working on request

RUN

NING — dCache (GRM or elsewhere) working

DONE - successful outcome.

dCacheorg A

SRM: internal states (fransfer requesis)

o Simple flow:

PENDING —» TQUEUED — RUNNING —» RQUEUED —
READY — DONE

 What they mean:

PENDING, TQUEUED, RUNNING as before

RQUEUED the TURL is ready but not handed to the client
READY the TURL is in client's hands

DONE the TURL is no longer valid, fransfer was successful.

dCacheorg ™

SRM: when too much activity

 When too much client activity, requests are
queued

 Need to remember client activity — writfing to
database for restart

dCacheorg ™

What is SRM?

 Parameters for throttling client activity

* Parameters for recording client activity:
Knowing what happened, surviving restart

 Parameters for protecting against OOM

 Parameters for generating TURLs

* Parameters controlling interaction with rest
of dCache.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

