

#### dCache introduction

#### **Paul Millar**

On behalf of the dCache team.

EGI-EISCAT-3D ad-hoc meeting













### High-level Overview



#### dCache is...

**software** for providing **scalable**, managed storage for huge amounts of data.

**deployed** at research institutes throughout the world and used by a diverse collection of user-communities.

supported through the **dCache.org** collaboration, which provides:

- regular feature releases that are maintained with subsequent bug-fix releases.
- Support and advice through a variety of channels.







# dCache history







# What is dCache today?





## Current and future project funding





### dCache key features include...

- Users see a single POSIX filesystem (hard- & soft-links, etc),
- Transparent support for tertiary (tape) storage,
- Scalable bandwidth,
- Steerable target when reading and writing,
- Space management,
- Resilience to storage node failure,
- Supports transparent storage device life-cycle,
- Hot-spot detection and mitigation,
- Differentiable quality of service,
- Pluggable authentication,

. . .



### The scientific cloud vision





### Some details\* on how dCache operates...

\* Some details are deliberately omitted to keep slides manageable.



#### dCache - under the hood





## Core components when transferring





# Importance of redirection





























### Guaranteeing QoS for write







### Guaranteeing QoS for tape activity





### Operational experience



### Storage at DESY

 6 dCache instances: Hera, CMS, ATLAS, Photon, "DESY" and Cloud:

Hera is officially switched off,

CMS & ATLAS for WLCG experiments,

Photon is for various photon user-communities,

Cloud is for sync-and-share service,

**DESY** is for the rest.



### Comparative numbers

| CMS                      | ATLAS                    | Photon                     | DESY                     | Cloud                    |
|--------------------------|--------------------------|----------------------------|--------------------------|--------------------------|
| ~5x10 <sup>6</sup> files | ~1x10 <sup>7</sup> files | ~8x10 <sup>7</sup> files * | ~1x10 <sup>7</sup> files | ~2x10 <sup>6</sup> files |
| ~3 PiB                   | ~3 PiB                   | ~2.5 PiB *                 | ~3 PiB                   | ~10 TiB                  |
| ~300 pool-nodes          | ~300 pool-nodes          | ~30 pool-nodes             | ~30 pool-nodes           | ~6 pool-nodes            |
| ~580 GiB/s ‡             |                          | ~200 GiB/s ‡               | ~12 GiB/s ‡              | ~3 GiB/s ‡               |
| ~400 Hz (read)†          |                          | ~180 Hz (write)†           | ~200 Hz (read)†          |                          |

<sup>\*</sup> Photon instance accepts ~1 TiB per month as  $\sim 1 \times 10^7$  files.

<sup>‡</sup> Value is peak observed bandwidth aggregate over all clients within last 7 days.

<sup>†</sup> Value is peak observed open rate (either read rate or write rate) observed within last 7 days.



### Other dCache instances

| NT1                                   | US-CMS T1      | BNL            | SARA            |
|---------------------------------------|----------------|----------------|-----------------|
| ~5x10 <sup>7</sup> files              |                |                |                 |
| ~6.3 PiB (2.1 PiB tape; 4.2 PiB disk) | ~20 PiB (disk) | ~15 PiB (disk) | ~6.2 PiB (disk) |



# **Backup slides**