dCache - outsourced storage
Tigran Mkrtchyan for dCache Team
CHEP 2016, San Francisco
Agenda (from)

- WebDAV
- xFTP
- XrootD
- NFS
- DCAP

DC POOL
- RAID 6

DC POOL
- RAID 6

DC POOL
- RAID 6

DC POOL
- RAID 6
Agenda (to)
dCache as Storage System

- Provides a single-rooted namespace.
- Metadata (namespace) and data locations are independent.
- Aggregates multiple storage nodes into a single storage system.
- Manages data movement, replication, integrity.
- Provides data migration between multiple tiers of storage (DISK, SSD, TAPE).
- Uniquely handles different Authentication mechanisms, like x509, Kerberos, login+password, auth tokens.
- Provides access to the data via variety of access protocols (WebDAV, NFSv4.1/pNFS, xxxFTP, DCAP, Xrootd, DCAP).
dCache as Storage System

- Provides a single-rooted namespace.
- Metadata (namespace) and data locations are independent.
- Aggregates multiple storage nodes into a single storage system.
- Manages data movement, replication, integrity.
- Provides data migration between multiple tiers of storage (DISK, SSD, TAPE).
- Uniquely handles different Authentication mechanisms, like x509, Kerberos, login+password, auth tokens.
- Provides access to the data via variety of access protocols (WebDAV, NFSv4.1/pNFS, xxxFTP, DCAP, Xrootd, DCAP).
dCache building blocks

- WebDAV
- xFTP
- XrootD
- NFS
- DCAP

DC POOL

- RAID 6

DC POOL

- RAID 6

DC POOL

- RAID 6

DC POOL

- RAID 6
Final result

WebDAV xFTP XrootD NFS DCAP

DC POOL DC POOL DC POOL DC POOL

RADOS+Co.

CEPH POOL CEPH POOL CEPH POOL CEPH POOL

OSD HDD OSD HDD
Storage in dCache (what we have)

- dCache provides high level service
- Data replication and management core dCache service
- Each pool attached to own disks
Storage in dCache (outsourcing, phase 1)

- dCache provides high level service
- Data replication and management core dCache service
- Each pool has its own 'partition' on shared storage

![Diagram of dCache services](image)
Phase 1 (changing IO layer)

- Single data server owns the data
- Single data server manages data
 - flush to tape
 - restore from tape
 - removal
 - garbage collection
Storage in dCache (outsourcing, phase 2)

- dCache provides high level service
- All pool see all 'partition' on shared storage
- Any pool can deliver data from any partition
- Object store takes care about replication and reliability
Phase 2 (Changing core philosophy)

- All data managed by 'quorum'
 - group decision who interact with tape
 - group decision who/when file is removed
- File location is always 'known'
Storage in dCache (outsourcing, phase 3)

- dCache provides high level service
- dCache can move data between regular and OS pools
Phase 3 (mixed environment)

- Mixed setup
- Islands of storage servers
- dCache managed replication and data movement between islands
Why CEPH?

• Demanded by sites
 • deployed as objects store
 • used as back-end for OpenStack and Co.
• Possible alternative for RAID systems
 • one disk per OSD
 • allows to use JBODs and ignore broken disks
BUT, not only CEPH

- CEPH specific code only ~400 lines
- Other object store can be adopted
 - DDN WOS
- Swift/S3/CDMI
- Cluster file systems (as a side effect)
 - Luster
 - GPFS
 - GlusterFS
How it works?

- Pool still keeps its own meta
 - File state, checksum, etc.
- All IO requests forwarded directly to CEPH
- Each dCache pool is a CEPH pool
 - Resilience
 - Placement group
- Each dCache file is a RBD image in CEPH
 - Striping
 - Write-back cache
 - Out-of-order writes
Pool internals

- cell communication
- mover queue
- flush queue

Data Mover

virtual repository

metadata

data repository
Pool internals

- cell communication
- mover queue
- flush queue

- Data Mover
- POSIX IO
- XFS/Ext4
- Metadata
- ../meta
- ../data
Pool internals

- cell communication
- mover queue
- flush queue

Data Mover

virtual repository

metadata

../meta

data repository

librados

RDB
dCache setup

layout.conf

pool.backend = ceph

optional configuration

pool.backend.ceph.cluster = dcache
pool.backend.ceph.config = /.../ceph.conf
pool.backend.ceph.pool-name = pool-name
On the CEPH side

$ rados mkpool pool-name

$ rbd ls -p pool-name
0000000635D5968A4DD89E29C242185B2D82
0000001A770D854E41448D87C91822D90F0F
....
$

$
HSM script

- `file:/path/to/pnfsid`
 - shortcut to `/path/to/pnfsid`
- `backend://`
 - `rbd://<pool name>/pnfsid`

All files accessible in CEPH without dCache
Roadmap

- **Phase 1**
 - available in dCache-3.0
 - HSM integration under testing
 - performance/scale-out tests are required
 - sites are CEPH experts

- **Phase 2/3**
 - depends on user demand
 - operational overhead, if any
 - support overhead, if any
 - *we don’t want to convert into CEPH call center*
Current Status

- Part of dCache-3.0
 - release end of October 2016
- Focus on stability and functionality first
 - all existing dCache feature set must be available
- uses RBD interface
 - striping
 - write-back caching
 - alterable content
Links

- https://www.dcache.org/
- https://en.wikipedia.org/wiki/Software-defined_storage
- http://ceph.com/
CEPH (extremely simplified)

- OSD ~ a physical disk
- CRUSH - determines how to store and retrieve data by computing data storage locations.
- RADOS - distributes objects across the storage cluster and replicates objects
- librados - provides low-level access to the RADOS service.
Software-defined storage

- Abstraction of logical storage services and capabilities from the underlying physical storage systems
- Automation with policy-driven storage provisioning with service-level agreements replacing technology details.
- Commodity hardware with storage logic abstracted into a software layer.