

DESY CLOUD, THE SCIENTIFIC DATA CLOUD

Managed Shared Storage

At the "ownCloud Connects Business" workshop

Dr. Patrick Fuhrmann
Quirin Buchholz
Tigran Mkrtchyan
Peter van der Reest
Lusine Yakovleva

Content

- Storage @ DESY?
- Sync'n Share at DESY
 - Motivation
 - Requirements
 - Implementation
 - Setup
- Requirements from Science Communities.
- dCache for Dummies.
- The ownCloud dCache Hybrid system
- Summary and outlook.

Storage @ DESY

More storage at DESY

- The DESY data management team has quite some experience in managing huge amounts of data.
- In collaboration with other 'big data' sites, we are providing a data management system 'dCache', deployed at 70 sites around the world.
 - See later.
- So, why are we running ownCloud?

Motivation

- DESY has no experience in sophisticated data sharing.
 - Data sharing was done in the traditional way with ACL's and 'group' directories
- However: Young scientists start their careers at Universities and Lab's with *Sync'n Share* in their blood. (Drop Box Generation).
- Public IT departments, for a very long time, didn't regard *Sync'n Share* as being their problem as many commercial solutions were around.
- It essentially became an issue after Snowden.
 - Legal Requirement: Data had to be stored 'on site' or at least in Germany
- Consequence: CC needed to provide Sync'n Share like mechanisms.

Requirements

- Fine grained sharing of files and directories with individuals and groups.
- Sharing via intuitive Web 2.0 mechanisms (Apps or Browser)
- Sharing with 'the public' with or without password protection
- Sharing of space to upload data. (protected)
- Expiration of shares
- Automatic bidirectional synchronization of data between mobile devices and central repository.

Steps taken by DESY

- Evaluated possible solutions in 2013.
- Decided to go for ownCloud
 - Provides most of the features needed.
 - Open Source
 - Was in use by many institutes and Universities in Germany
 - Used by colleagues at SURFSara (Amsterdam) and CERN
- Evaluation showed:
 - Very good Sync'n Share feature set
 - Very good in planning ahead (roadmap)
 - Plans for cross site federated access (now in place).
 - A bit weak in data management
- Started prototype installation at DESY beginning of 2014

What should the DESY Setup look like?

(Actually will look like in July)

The Infrastructure

Accounting

Local and Wide Area Network
Load Balancing Firewalls

Horizontally Scaling Backend dCache.org

Some Statistics

Users Total	490
Users Active	277
Space Available	567 TBytes
Space Used	2 *30 TBytes
Files	10 Millions

Current Default Quality
Two Replicas on
different storage nodes.

Files in/out per hour

Is that sufficient for scientists?

Data Categories

Amount	Category	Typical Application
1 – 100 PB	Raw	LHC Detector data Raw X-Ray Images Brain Scans
10 - 100 TB	Derived	Reconstructed (Ntuples) Purified Images Brain Maps
1 TB	Publication	Papers, Presentations, Histograms

What do we need to support 'science workflows'?

More Requirements

- Storage must be manageable: Defined QoS and Data Lifecycle
 - Different type of data must have different QoS attached, regarding access latency (performance) and data durability (how safe is my data?)
 - Spinning Disk for streaming
 - SSD for fast random access
 - Tape for archive
 - Multiple copies in different locations on different media for long term data preservation
 - Moving data between different QoS types has to be performed
 - w/o service interruption
 - transparently to the user
 - w/o changes in the namespace

Quality of Service

Raw

Long Term Preservation (Legal Requirement)

Derived

Low Latency (HPC, Analysis)

Publication

Fast, Multi Stream Access

Even more Requirements

- Different access protocols for different applications
 - POSIX Mounted FS (nfs4.1/pNFS) for fast analysis
 - FTP dialects (gridFTP) for wide area transfers with GLOBUS, WLCG-FTS
 - http/WebDAV mostly for browser based applications, visualization, ...
- Different authentication mechanism must be available.
 - Username/password for web applications
 - SAML to support traditional IdP's
 - Open ID Connect for google/facebook like IdP's
 - Certificates for https or GRID applications
- Different credentials must be map-able to the same identity.

Scientific Data Cloud

High Speed Data Ingest

Fast Analysis NFS 4.1/pNFS

Wide Area Transfers (Globus Online, FTS) by GridFTP

Sync'ing and Sharing with OwnCloud

What would that look like from the user's perspective?

My DESY XXL Home QoS support

My DESY XXL Home Protocol Support

How do we achieve those goals?

The scientific data cloud

OR
Choosing dCache as the storage backend for ownCloud!

Side Track

What's dCache?

dCache in a nutshell (cont.) dCache.org

- International collaboration (DESY, FERMIlab, NDGF)
- About 10 members: developers, deployment, support, management
- Software deployed at about 70 sites Europe, US, Asia, Russia
- Largest deployments in the order of 20 PBytes on tape and disk.
- Total storage close to 200 PBytes.
- Geographically largest installation spans 4 countries.
- Largely funded by INDIGO-DataCloud, DESY, FERMIlab and NDGF

dCache Design

httpWebDAV

Protocol and Authentication Engines

Virtual file-system name space Layer

Media Transfer Engine and Pool Management

Automatic and Manual Media transition

SSDs

Spinning Disks

Tape, Blue Ray ...

Namespace Design

Design Consequence

- Files are stored as objects on various data back-ends
 - Random Devices: Harddisk, SSD
 - Removable Media: Tape
 - Object stores : CEPH
- Back-ends can be highly distributed (even beyond countries).
- The File namespace engine is independent of the data storage itself.
- Internal and external services can move data around w/o service interruption.

dCache Features

supporting our idea of a scientific data cloud

- Multi Protocol Support (Transfer and Authentication)
 - Transfer protocols: NFS/pNFS, http, WebDAV
 - Multi Authentication Credential support (OpenID Connect, Kerberos, passwd)
- Sophisticated Data Management
 - Multi Media support (Tape, Spinning Disk, SSD, ...)
 - Automatic and manual media transitions
 - Adding and removing data nodes w/o service interruption
 - Automatic replica management
 - Enforces n < x < m copies of data files.
 - External storage support (e.g. Tape systems: TSM, HPSS, OSM, DMF)

In particular: The QoS Interface

dCache QoS Interfaces

Putting pieces together

The Data Path

Web Load Balancer (F5)

NFS 4.1 / pNFS

dCache

Spinning Disks

dCache - OwnCloud hybrid

- Data path is the easiest part. Works nicely.
- Namespace synchronization is/was very difficult
 - Important to let all protocols see synchronized namespace.
 - ownCloud didn't expect the underlying storage system to change name space tree.
 - Manually triggered synchronization took too long.
 - OwnCloud 9 provides first attempt for an API for external namespace.
- Exposing 'shares' to external component not yet in ownCloud.
 - Important to allow all protocols to use ownCloud-defined shares.
 - Prerequisites :
 - ownCloud : needs API to expose 'shares'
 - dCache: needs to have a 'share' object implemented.

ownCloud and QoS

Summary

- An OwnCloud dCache Hybrid is a perfect system for providing managed shared storage to scientists.
- Sync'n Share is provided by ownCloud.
- Access protocols and Authentication Mechanisms used in science are provided by dCache.
- Unlimited storage spaces (via removable media, e.g. tape)
- Quality of Service support
 - automatic and manual media transitions
 - Automatic replica management resulting in high availability and data durability.
- Reduced downtimes due to transparent data migration.

Outlook

- The current version of the ownCloud-dCache Hybrid satisfies the need for
 - Sync'n Share
 - Highly scalable and manageable back-end storage
- For a full integration
 - The name-spaces of the two systems need to be synchronized (OC9)
 - The ownCloud 'shares' need to be exposed to have them visible in all protocols (nfs, gridFTP, ...)
 - We need to provide an ownCloud pluggin (server side app) to make the dCache QoS storage types visible in ownCloud.

The END

further reading www.dCache.org