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Abstract
This article is about a piece of middle ware, allowing to convert a dump tape based

Tertiary Storage System into a multi petabyte random access device with thousands of
channels. Using typical caching mechanisms, the software optimizes the access to the un-
derlying Storage System and makes better use of possibly expensive drives and robots or
allows to integrate cheap and slow devices without introducing unacceptable performance
degradation. In addition, using the standard NFS2 protocol, the dCache provides a unique
view into the storage repository, hiding the physical location of the file data, cached or tape
only. Bulk data transfer is supported through the kerberized FTP protocol and a C-API,
providing the posix file access semantics. Dataset staging and disk space management is
performed invisibly to the data clients.
The project is a DESY, Fermilab joint effort to overcome limitations in the usage of ter-
tiary storage resources common to many HEP labs.
The distributed cache nodes may range from high performance SGI machines to commod-
ity CERN Linux-IDE like file server models. Different cache nodes are assumed to have
different affinities to particular storage groups or file sets. Affinities may be defined man-
ually or are calculated by the dCache based on topology considerations. Cache nodes may
have different disk space management policies to match the large variety of applications
from raw data to user analysis data pools.
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1 Scopes

1.1 Scope of this document

This document presents the ideas, status and results of a software product, developed by a joint
effort between the DESY IT and the FERMI CD devisions. The paper is intended to create
curiosity and not to describe the system in full detail. Therefore we picked a small subset of
features which may be regarded as the signature of our product. Moreover, this document will
not prove that Hierarchical Storage Systems benefits from well known optimization methods
like Rate Adaption, Deferred Write, Staging and Read Ahead. It is assumed that the
reader consults the results of those studies at [6].

1.2 Scope of the product

Although the initial goal of the project was to create a compact system enabling a small set of
HSMs! to work more efficient, we learned[5] that by using modern technologies and by adding
reasonable effort we would be able to cover a spectrum of features which would make the system
a generic tool for caching, storing and easily accessing huge amounts of data, distributed among
a large set of heterogeneous caching nodes.

The product, subsequently called the dCache, is a standalone system providing a file
name space distributer and a data pool manager, being able to coordinate a large amount of
caching nodes. The system may run without an HSM backend or with an arbitrary number of
different HSM classes and/or instances. To optimize the HSM access, the dCache uses methods
like Rate Adaption, Deferred Write and Staging. The Read Ahead approach is in preparation.

! Hierarchical Storage Manager. This term is used within this document to denote Storage Systems base on
the TEEE[1] standard



To distribute files among multiple caching nodes, different attraction schemes may be used. The
system is able to detect data hot spots and, if required, distributes the most frequently used
datasets among multiple nodes. This feature allows that, although we provide a single unique
namespace, a cached file may reside within more than one pool. Besides FTP and a private
random access protocol (dCap?), we can easily integrate other methods even without restarting
the cache system. This and and other convenient features are enabled by using the modern
programming language Java[7][5]. The online configuration is presented to the administrator
through a command line or web interface. Both require strong authentication and support fine
grained access control lists.

2 Step by Step

2.1 Product Placement
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Figure 1: dCache Placement

The dCache system is located between a regular HSM[3] and the actual end user appli-
cation. We currently support FTP clients (regular or kerberized) and a dCache private random
access protocol, dCap.

2.2 The HSM backend

The interface between the HSM and the dCache System is highly configurable and sufficiently
flexible to support different instances of the same HSM and/or even different HSMs within the
same dCache instance. Moreover the dCache may run without backend HSM and as such can
be used as a large scalable file store.

By using standard staging/caching methods like Rate Adaption, Deferred Write and
Staging, the dCache allows to make better use of the connected HSM or to integrate slower and
possibly less expensive equipment without overall performance penalty.

2.3 The Pool Affinity Scheme

A single dCache instance is able to control an arbitrary number of so called Cache Pools.
Cache Pools are responsible for fetching files from the connected HSMs, if required by a reading
client, as well as grouping incoming files and flush them to one of the HSMs as soon as a timeout
has expired or space is running short. In addition, Pools launch movers talking the appropriate
protocol to send/receive data to/from the external clients.

2dCache Access Protocol



A set of criteria determines which of the available Cache Pools is assumed to hold the
required dataset. The first three items described below are statically configured while the last
item makes use of real time status information taken from the caching pools to achieve load
balancing among them.

Backend HSM criteria Most HSMs support some kind of internal grouping mechanism
which mainly predicts the tapeset a file will be written to or read from. (Storage Group
for OSM][1] and file family for Enstore[4]). The dCache supports these groups transiently
and allows to assign them to Cache Pools together with read and write preferences.
This feature allows to have dedicated Cache Pools for physics working groups. Different
preferences enforce overflow pools in case space is running short for a particular working
group.

Filesystem Topology In addition to the grouping mapped to the HSM groups, pools can
be configured to have an affinity to specific file system directories or directory trees. This
is necessary to support dCache instances without HSM backend systems.

IP Topology The IP number or subnet of the requesting client can be used as well to
determine the responsible Cache Pool. This allows to have Cache Pools per subnet for
network load balancing.

Cost Efficiency (Space and Load) In case more than one cache pool could be assigned
to hold the data, the relevant pools are asked for a cost claim about storing the file. This
cost is evaluated by taking the space and the CPU load of the pools into account.

2.4 Single Filename Space and Hot Spot Spreading

The dCache gives a unique view of its content together with the content of the backend storage
system with the help of an NFS server® (pnfs[2][8]). This allows the standard unix file name
manipulation tools (rm, muv, Is ..) to be used. The position or the name of an entry within this
namespace is independent of the location of the actual dataset. It may reside on

e a cache disk only.

e  within the HSM only.

e  within the HSM plus somewhere on at least one cache disk.
The distribution of hot spot datasets among different cache pools is done transiently. The NFS
namespace and therefore the user doesn’t notice this replication at all.

2.5 Access methods, Security and Redundancy

Within the dCache model, access methods are abstracted by means of pluggins. Therefore it’s
quite easy to implement new methods if required. They don’t influence the dCache kernel at
all. These entry points are called Doors in the dCache context and we are currently supporting
the FTP and the dCap door. Each type of door has its mover counterpart which talks the
corresponding data protocol. Doors have well known addresses while the data connection is
coming directly from the pools holding the request file or, for write accesses, is willing to accept
the incoming files.

The level of security is totally determined by the implementation of the door. Fermilab
had a strong requirement for a kerberized FTP door due to their Strong Authentication Project.
At DESY, we have to follow a smooth migration path to allow our experiments to keep track.
We will run the dCap protocol with the security level of the NFS2 protocol (nearly nothing),
but only within the DESY intranet. Accesses from outside for both protocols, dCap and FTP,
have to present a valid Kerberos5 ticket. On the client side, the dCap protocol is implemented
in a c-library, containing the posix like dc_open, dc.read, dc_write, dc_seek and dc_close I/O

3Currently we are using the NFS2 protocol, but an upgrade has already started



functions and for convenience we provide a decep application which is essentially the ¢p command
linked against the dCap c-library. Within DESY this library assumes to find a mounted PNFS
filesystem which reflects the dCache file name space. In general the library accepts a http
like syntax (dCap://pnfs/desy.de/...) to access files within our repository without a mounted
filesystem. The Door Concept allows to have additional Door instances running on different
hosts to allow load sharing and fail overs in case of server problems. Within DESY the PNFS
filesystem informs the dCap library which door to use. From outside DESY we could use alias
names and smart name server redirects to chose the server, but we don’t yet.

2.6 Administration Interfaces and Security

As well as the data access doors there are doors talking the ssh protocol and allow administrative
tasks to be done. The standard ssh client can be used as well as a graphical interface to login.
Both methods have the ssh security level which we regard as sufficient for all our purposes.
Administrative actions are protected by Access Control Lists which are checked against the
authenticated user.

3 Results and Status

We are running the development system since April and we have requested several millions of
files from Linux, Solaris and Irix servers. In the meantime we don’t have any doubts concerning
the stability. The performance using the dCap c-library has been evaluated by the teams from
the experiments and turned out to be comparable with the rfio performance. Due to these
positive results the experiments already integrated the dCap library into their data chain. The
majority of the experiments agreed to convert their own caching systems into dCache before
end of 2001.
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