Storage Classes Input from the experiments

18th January 2007

Flavia Donno, Maarten Litmaath IT/GD, CERN

- What input are the experiments asked to provide
- ATLAS
- LHCb
- Summary

Input requested per VO

- See presentation given at WLCG GDB <u>http://indico.cern.ch/getFile.py/access?contribId=8&r esId=1&materialId=slides&confId=8468</u>
 - Storage classes needed at Tier-1s and Tier-2s
 - Data flows between Tier-0, Tier-1s, Tier-2s
 - Static or dynamic space reservation ?
 - Which space token descriptions per storage class ?
 - How to divide the available disk space over those spaces ?
 - Transitions (data flows) between spaces?
 - Data access patterns
 - Network connectivity per space
 - Special requirements: xrootd, ...
 - Plans from 1st of April 2007 till the end of the year.

Input requested

- Furthermore, what about Tier-2s?
 - Is data loss an issue at Tier-2s?
 - How many file open/sec, read-write/sec, etc. ?
 - Is it important to publish the real size of a space (available vs. used) ?
 - Which storage classes ? Are Tier-2s required to make available reliable space (CUSTODIAL) ?
 - Dynamic reservation ?
 - Do transfers happen between Tier-2s? Interoperability tests?
 - What to do in case of unused/corrupted data sets? What about full disk pools ? Empty pools ?

ATLAS

- Storage classes needed at T1
 - T1D0
 - TOD1
 - T1D1
 - Used for reprocessing data
 - For now can be emulated by T1D0 + srmBringOnline
- Data flows per site given by mega table
 - Site to be able to buffer at least 2 days of data taking
 - Plus at least as much for reprocessing
- Space reservation static for now

ATLAS space token descriptions

- Are space tokens related to the way files are migrated to tape ?
 - Might consider ATLAS_RAW to ensure all raw is put together on tape
- Splitting per data type complicates FTS handling
- ATLAS_PROD_ONLINE (or _DISK)
- ATLAS_PROD_ARCHIVE (or _TAPE)
- ATLAS_PROD_REPROCESS ??
 - Should have a larger disk buffer
- ATLAS_USERS

ATLAS

- Data access for processing only from local site
- Currently each file copied to WN
 - Does not scale
- Analysis job will access 100-1000 files via POSIX-like I/O
 - rfio/dcap/GFAL/xrootd under study
 - ROOT/POOL version compatibility issues
 - Typical read rate per job 2 MB/s

ATLAS plans until end 2007

- 3 major commissioning activities before summer
 - Tier-0 internal tests
 - TO-T1-T2 data distribution
 - Calibration data challenge
- Continuous simulation production
 - Increasing up to 8 M events/week in Dec.
- July-October
 - Integration test for Final Dress Rehearsal
 - Ready for data taking by end of October

- See presentations given during the Storage Classes Working Group meetings:
 - <u>http://indico.cern.ch/getFile.py/access?contribId=s1t0&r</u> esId=5&materialId=0&confId=a058490
 - <u>http://indico.cern.ch/getFile.py/access?contribId=1&</u> resId=0&materialId=slides&confId=a058492

Storage Classes needed

- Tier-0 and Tier-1s: Tape1Disk0, Tape1Disk1, Tape0Disk1
- Tier-2: TapeODisk1
- Data Flow between Tier-0, Tier-1s and Tier-2s
 - Numbers given by 2nd presentation
- Space reservation
 - Static
 - It is needed to know how much space is free before bulk transfers.

Space Token Description

- Not fully discussed in LHCb
- Raw data at Tier-1s and Tier-0 on Tape1Disk0 LHCb_RAW
- Reconstructed data (RDST): Tape1Disk0 at reconstruction Tier0/1 - LHCb_RDST
- Stripped data and MC data (DST): Tape1Disk1 at production site (or closest Tier1 for MC), Tape0Disk1 at all other Tier1s (one other Tier1 for MC) - LHCb_M-DST and LHCb_DST, LHCb_MC_M-DST and LHCb_MC_DST
- User files, calibration files etc...: Tape1Disk1 (no replication, most probably each user using mainly a single SE for convenience?). Note: files might be small, hence not necessarily convenient for e.g. Castor. These are micro-DST, Ntuples, private format files, temporary alignment DB (SQLite files) etc. - LHCb_USER

Special Requirements

 Seriously interested in the xrootd tests as possible replacement for GFAL.

Data Access Pattern

- LHCb_RAW:
 - written (from the DAQ at Tier0, from Tier0 at Tier1) in (almost) real time with data taking. Access from both WAN (for distribution) and LAN (for reconstruction). Q: should there be distinct pools depending on the access with automatic disk-to-disk copy?
 - Files pinned on disk-cache for a few days, allowing reconstruction to take place
 - Files processed within a few days and unpinned by the reconstruction job (still unclear: when to unpin files at TierO that are reconstructed at Tier1s?)
 - For Re-reconstruction: files staged from tape before launching reconstruction jobs (not clear yet how to synchronize job s with staging), pinned and unpinned by reconstruction jobs
- LHCb_RDST:
 - written by the reconstruction job, pinned on disk for further stripping (unpinned by stripping job)
 - For Re-stripping: same procedure as for Re-reconstruction

Data Access Pattern

- LHCb_(MC_)M-DST:
 - written by the stripping job at local Tier1
 - WAN access for distribution to other Tier1s
 - Frequent and chaotic local access by analysis jobs
- LHCb_(MC_)DST:
 - distributed over WAN from M-DST
 - Frequent and chaotic local access by analysis jobs
- LHCb_USER:
 - fully chaotic usage
 - files written by analysis jobs running at other Tier1s (over WAN), presumably using the public network (primary storage)
 - files might be small, frequently accessed locally even from non-grid nodes (e.g. copy to desktop/laptop)

Plans from 1st of April 2007 till the end of the year

- Analysis of "DCO6" stripped data (for the LHCb physics book). Using "LHCb_MC_(M-)DST" at Tier1s
- Alignment/Calibration challenge (at TierO?): production of misaligned data (small sample), running alignment jobs, feeding into the Conditions-DB, streaming at Tier1s, reconstruction of control samples at Tier1s. All this doesn't involve large datasets.
- Computing Model exercise (so-called "dressed rehearsal"): repeat the DCO6 computing exercise: ship data from CERN at nominal rate (80 MB/s), reconstruct and stored RDST, strip and distribute DST
- (not fully discussed yet): new simulation round using measured detector position, reconstruction and analysis, in order to be prepared for data (possibly same data at 900 GeV?).

Summary

- ATLAS and LHCb have started identifying the properties of the storage class instances (i.e. spaces) they need
 - Some numbers, access patterns etc. already available
- ALICE and CMS to follow
- We need more details, per VO, per site
 - How to split the available disk over the various spaces ?
 - Decide per space which network connectivity is needed
 - What are the expected I/O rates per space ?
- If we have those numbers for a few example T1 and T2, the other sites can copy and scale the recipe, per VO